Inhaled Corticosteroids in Patients With Stable Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-analysis | Asthma | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.204.186.91. Please contact the publisher to request reinstatement.
1.
Wilt TJ, Niewoehner D, Kim C,  et al.  Use of spirometry for case finding, diagnosis, and management of chronic obstructive pulmonary disease (COPD).  Evid Rep Technol Assess (Summ). 2005;(121):1-716238364PubMedGoogle Scholar
2.
Jemal A, Ward E, Hao Y, Thun M. Trends in the leading causes of death in the United States, 1970-2002.  JAMA. 2005;294(10):1255-125916160134PubMedGoogle ScholarCrossref
3.
Heron MP, Smith BL. Deaths: leading causes for 2003.  Natl Vital Stat Rep. 2007;55:1-9217408087PubMedGoogle Scholar
4.
Nocturnal Oxygen Therapy Trial Group.  Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease: a clinical trial.  Ann Intern Med. 1980;93(3):391-3986776858PubMedGoogle ScholarCrossref
5.
Medical Research Council Working Party.  Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema: report of the Medical Research Council Working Party.  Lancet. 1981;1(8222):681-6866110912PubMedGoogle Scholar
6.
Anthonisen NR, Skeans MA, Wise RA, Manfreda J, Kanner RE, Connett JE. The effects of a smoking cessation intervention on 14.5-year mortality: a randomized clinical trial.  Ann Intern Med. 2005;142(4):233-23915710956PubMedGoogle ScholarCrossref
7.
Grimes GC, Manning JL, Patel P, Via RM. Medications for COPD: a review of effectiveness.  Am Fam Physician. 2007;76(8):1141-114817990836PubMedGoogle Scholar
8.
Hanania NA, Sharafkhaneh A. Update on the pharmacologic therapy for chronic obstructive pulmonary disease.  Clin Chest Med. 2007;28(3):589-60717720046PubMedGoogle ScholarCrossref
9.
Heaney LG, Lindsay JT, McGarvey LP. Inflammation in chronic obstructive pulmonary disease: implications for new treatment strategies.  Curr Med Chem. 2007;14(7):787-79617346163PubMedGoogle ScholarCrossref
10.
Burge PS, Calverley PM, Jones PW, Spencer S, Anderson JA, Maslen TK. Randomised, double blind, placebo controlled study of fluticasone propionate in patients with moderate to severe chronic obstructive pulmonary disease: the ISOLDE trial.  BMJ. 2000;320(7245):1297-130310807619PubMedGoogle ScholarCrossref
11.
Calverley P, Boonsawat W, Cseke Z, Zhong N, Peterson S, Olsson H. Maintenance therapy with budesonide and formoterol in chronic obstructive pulmonary disease [published correction appears in Eur Resp J . 2004;24(6):1075].  Eur Respir J. 2003;22(6):912-91914680078PubMedGoogle ScholarCrossref
12.
Calverley PM, Anderson JA, Celli B,  et al.  Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease.  N Engl J Med. 2007;356(8):775-78917314337PubMedGoogle ScholarCrossref
13.
Kardos P, Wencker M, Glaab T, Vogelmeier C. Impact of salmeterol/fluticasone propionate versus salmeterol on exacerbations in severe chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2007;175(2):144-14917053207PubMedGoogle ScholarCrossref
14.
Szafranski W, Cukier A, Ramirez A,  et al.  Efficacy and safety of budesonide/formoterol in the management of chronic obstructive pulmonary disease.  Eur Respir J. 2003;21(1):74-8112570112PubMedGoogle ScholarCrossref
15.
Wedzicha JA, Calverley PM, Seemungal TA, Hagan G, Ansari Z, Stockley RA. The prevention of chronic obstructive pulmonary disease exacerbations by salmeterol/fluticasone propionate or tiotropium bromide.  Am J Respir Crit Care Med. 2008;177(1):19-2617916806PubMedGoogle ScholarCrossref
16.
Zheng JP, Yang L, Wu YM,  et al.  The efficacy and safety of combination salmeterol (50 microg)/fluticasone propionate (500 microg) inhalation twice daily via accuhaler in Chinese patients with COPD.  Chest. 2007;132(6):1756-176317951625PubMedGoogle ScholarCrossref
17.
Rabe KF, Hurd S, Anzueto A,  et al.  Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary.  Am J Respir Crit Care Med. 2007;176(6):532-55517507545PubMedGoogle ScholarCrossref
18.
Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper.  Eur Respir J. 2004;23(6):932-94615219010PubMedGoogle ScholarCrossref
19.
Hubbard R, Tattersfield A, Smith C, West J, Smeeth L, Fletcher A. Use of inhaled corticosteroids and the risk of fracture.  Chest. 2006;130(4):1082-108817035441PubMedGoogle ScholarCrossref
20.
Pujades-Rodríguez M, Smith CJ, Hubbard RB. Inhaled corticosteroids and the risk of fracture in chronic obstructive pulmonary disease.  QJM. 2007;100(8):509-51717609226PubMedGoogle ScholarCrossref
21.
Gartlehner G, Hansen RA, Carson SS, Lohr KN. Efficacy and safety of inhaled corticosteroids in patients with COPD: a systematic review and meta-analysis of health outcomes.  Ann Fam Med. 2006;4(3):253-26216735528PubMedGoogle ScholarCrossref
22.
Nannini L, Cates CJ, Lasserson TJ, Poole P. Combined corticosteroid and long-acting beta-agonist in one inhaler versus placebo for chronic obstructive pulmonary disease.  Cochrane Database Syst Rev. 2007;(4):CD00379417943798PubMedGoogle Scholar
23.
Yang IA, Fong KM, Sim EH, Black PN, Lasserson TJ. Inhaled corticosteroids for stable chronic obstructive pulmonary disease.  Cochrane Database Syst Rev. 2007;(2):CD00299117443520PubMedGoogle Scholar
24.
Cazzola M, Matera MG. To add, or not to add an inhaled corticosteroid in moderate COPD: that is the question.  Chest. 2008;134(2):223-22518682451PubMedGoogle ScholarCrossref
25.
Suissa S. Medications to modify lung function decline in chronic obstructive pulmonary disease: some hopeful signs.  Am J Respir Crit Care Med. 2008;178(4):322-32318676961PubMedGoogle ScholarCrossref
26.
Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF. Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement: quality of reporting of meta-analyses.  Lancet. 1999;354(9193):1896-190010584742PubMedGoogle ScholarCrossref
27.
Cazzola M, MacNee W, Martinez FJ,  et al.  Outcomes for COPD pharmacological trials: from lung function to biomarkers.  Eur Respir J. 2008;31(2):416-46918238951PubMedGoogle ScholarCrossref
28.
Landis JR, Koch GG. The measurement of observer agreement for categorical data.  Biometrics. 1977;33(1):159-174843571PubMedGoogle ScholarCrossref
29.
Blais R, Gregoire JP, Rouleau R, Cartier A, Bouchard J, Boulet LP. Ambulatory use of inhaled beta(2)-agonists for the treatment of asthma in Quebec: a population-based utilization review.  Chest. 2001;119(5):1316-132111348934PubMedGoogle ScholarCrossref
30.
Higgins J, Altman DG. Assessing risk of bias in included studies. In: Higgins J, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions 5.0.0. Oxford, UK: The Cochrane Collaboration; February 2008
31.
Jadad AR, Moore RA, Carroll D,  et al.  Assessing the quality of reports of randomized clinical trials: is blinding necessary?  Control Clin Trials. 1996;17(1):1-128721797PubMedGoogle ScholarCrossref
32.
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses.  BMJ. 2003;327(7414):557-56012958120PubMedGoogle ScholarCrossref
33.
Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias.  Biometrics. 1994;50(4):1088-11017786990PubMedGoogle ScholarCrossref
34.
Lung Health Study Research Group.  Effect of inhaled triamcinolone on the decline in pulmonary function in chronic obstructive pulmonary disease.  N Engl J Med. 2000;343(26):1902-190911136260PubMedGoogle ScholarCrossref
35.
Aaron SD, Vandemheen KL, Fergusson D,  et al.  Tiotropium in combination with placebo, salmeterol, or fluticasone-salmeterol for treatment of chronic obstructive pulmonary disease: a randomized trial.  Ann Intern Med. 2007;146(8):545-55517310045PubMedGoogle ScholarCrossref
36.
Pauwels RA, Lofdahl CG, Laitinen LA,  et al.  Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking: European Respiratory Society Study on Chronic Obstructive Pulmonary Disease.  N Engl J Med. 1999;340(25):1948-195310379018PubMedGoogle ScholarCrossref
37.
Vestbo J, Sorensen T, Lange P, Brix A, Torre P, Viskum K. Long-term effect of inhaled budesonide in mild and moderate chronic obstructive pulmonary disease: a randomised controlled trial.  Lancet. 1999;353(9167):1819-182310359405PubMedGoogle ScholarCrossref
38.
Woodhead M. Inhaled corticosteroids cause pneumonia . . . or do they?  Am J Respir Crit Care Med. 2007;176(2):111-11217617534PubMedGoogle ScholarCrossref
39.
Turner MO. Inhaled corticosteroids and pneumonia in COPD: an association looking for evidence.  Am J Respir Crit Care Med. 2008;177(5):555-55618296470PubMedGoogle ScholarCrossref
40.
Ernst P, Gonzalez AV, Brassard P, Suissa S. Inhaled corticosteroid use in chronic obstructive pulmonary disease and the risk of hospitalization for pneumonia.  Am J Respir Crit Care Med. 2007;176(2):162-16617400730PubMedGoogle ScholarCrossref
41.
Rello J, Rodriguez A, Torres A,  et al.  Implications of COPD in patients admitted to the intensive care unit by community-acquired pneumonia.  Eur Respir J. 2006;27(6):1210-121616510452PubMedGoogle ScholarCrossref
42.
Restrepo MI, Mortensen EM, Pugh JA, Anzueto A. COPD is associated with increased mortality in patients with community-acquired pneumonia.  Eur Respir J. 2006;28(2):346-35116611653PubMedGoogle ScholarCrossref
43.
Whitford H, Orsida B, Kotsimbos T,  et al.  Bronchoalveolar lavage cellular profiles in lung transplantation: the effect of inhaled corticosteroids.  Ann Transplant. 2000;5(3):31-3711147027PubMedGoogle Scholar
44.
Sin DD, Man SF, Marciniuk DD,  et al.  The effects of fluticasone with or without salmeterol on systemic biomarkers of inflammation in chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2008;177(11):1207-121418310480PubMedGoogle ScholarCrossref
45.
Wyss D, Bonneau O, Trifilieff A. Synergistic effect of formoterol and mometasone in a mouse model of allergic lung inflammation.  Br J Pharmacol. 2007;152(1):83-9017618304PubMedGoogle ScholarCrossref
46.
Nelson HS, Chapman KR, Pyke SD, Johnson M, Pritchard JN. Enhanced synergy between fluticasone propionate and salmeterol inhaled from a single inhaler versus separate inhalers.  J Allergy Clin Immunol. 2003;112(1):29-3612847476PubMedGoogle ScholarCrossref
47.
Weatherall M, James K, Clay J,  et al.  Dose-response relationship for risk of non-vertebral fracture with inhaled corticosteroids.  Clin Exp Allergy. 2008;38(9):1451-145818537983PubMedGoogle ScholarCrossref
Clinical Review
Clinician's Corner
November 26, 2008

Inhaled Corticosteroids in Patients With Stable Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-analysis

Author Affiliations

Author Affiliations: Division of Pulmonary and Critical Care Medicine (Drs Drummond, Dasenbrook, Murphy, and Fan), Johns Hopkins University, Baltimore, Maryland; and Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada (Dr Pitz).

JAMA. 2008;300(20):2407-2416. doi:10.1001/jama.2008.717
Abstract

Context Recent studies of inhaled corticosteroid (ICS) therapy for managing stable chronic obstructive pulmonary disease (COPD) have yielded conflicting results regarding survival and risk of adverse events.

Objective To systematically review and quantitatively synthesize the effects of ICS therapy on mortality and adverse events in patients with stable COPD.

Data Sources Search of MEDLINE, CENTRAL, EMBASE, CINAHL, Web of Science, and PsychInfo through February 9, 2008.

Study Selection Eligible studies were double-blind, randomized controlled trials comparing ICS therapy for 6 or more months with nonsteroid inhaled therapy in patients with COPD.

Data Extraction Two authors independently abstracted data including study characteristics, all-cause mortality, pneumonia, and bone fractures. The I2 statistic was used to assess heterogeneity. Study-level data were pooled using a random-effects model (when I2 ≥ 50%) or a fixed-effects model (when I2 < 50%). For the primary outcome of all-cause mortality at 1 year, our meta-analysis was powered to detect a 1.0% absolute difference in mortality, assuming a 2-sided α of .05 and power of 0.80.

Results Eleven eligible randomized controlled trials (14 426 participants) were included. In trials with mortality data, no difference was observed in 1-year all-cause mortality (128 deaths among 4636 patients in the treatment group and 148 deaths among 4597 patients in the control group; relative risk [RR], 0.86; 95% confidence interval [CI], 0.68-1.09; P = .20; I2 = 0%). In the trials with data on pneumonia, ICS therapy was associated with a significantly higher incidence of pneumonia (777 cases among 5405 patients in the treatment group and 561 cases among 5371 patients in the control group; RR, 1.34; 95% CI, 1.03-1.75; P = .03; I2 = 72%). Subgroup analyses indicated an increased risk of pneumonia in the following subgroups: highest ICS dose (RR, 1.46; 95% CI, 1.10-1.92; P = .008; I2 = 78%), shorter duration of ICS use (RR, 2.12; 95% CI, 1.47-3.05; P < .001; I2 = 0%), lowest baseline forced expiratory volume in the first second of expiration (RR, 1.90; 95% CI, 1.26-2.85; P = .002; I2 = 0%), and combined ICS and bronchodilator therapy (RR, 1.57; 95% CI, 1.35-1.82; P < .001; I2 = 24%).

Conclusions Among patients with COPD, ICS therapy does not affect 1-year all-cause mortality. ICS therapy is associated with a higher risk of pneumonia. Future studies should determine whether specific subsets of patients with COPD benefit from ICS therapy.

×