Risk of Herpes Zoster in Patients With Rheumatoid Arthritis Treated With Anti–TNF-α Agents | Infectious Diseases | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.239.150.57. Please contact the publisher to request reinstatement.
1.
Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials.  JAMA. 2006;295(19):2275-228516705109PubMedGoogle ScholarCrossref
2.
Strangfeld A, Listing J. Infection and musculoskeletal conditions: bacterial and opportunistic infections during anti-TNF therapy.  Best Pract Res Clin Rheumatol. 2006;20(6):1181-119517127203PubMedGoogle ScholarCrossref
3.
Listing J, Strangfeld A, Kary S,  et al.  Infections in patients with rheumatoid arthritis treated with biologic agents.  Arthritis Rheum. 2005;52(11):3403-341216255017PubMedGoogle ScholarCrossref
4.
Dixon WG, Symmons DP, Lunt M, Watson KD, Hyrich KL, Silman AJ.British Society for Rheumatology Biologics Register Control Centre Consortium; British Society for Rheumatology Biologics Register.  Serious infection following anti-tumor necrosis factor alpha therapy in patients with rheumatoid arthritis: lessons from interpreting data from observational studies.  Arthritis Rheum. 2007;56(9):2896-290417763441PubMedGoogle ScholarCrossref
5.
Askling J, Fored CM, Brandt L,  et al.  Time-dependent increase in risk of hospitalisation with infection among Swedish RA patients treated with TNF- antagonists.  Ann Rheum Dis. 2007;66(10):1339-134417261532PubMedGoogle ScholarCrossref
6.
Curtis JR, Patkar N, Xie A,  et al.  Risk of serious bacterial infections among rheumatoid arthritis patients exposed to tumor necrosis factor alpha antagonists.  Arthritis Rheum. 2007;56(4):1125-113317393394PubMedGoogle ScholarCrossref
7.
Thomas SL, Hall AJ. What does epidemiology tell us about risk factors for herpes zoster?  Lancet Infect Dis. 2004;4(1):26-3314720565PubMedGoogle ScholarCrossref
8.
Glynn C, Crockford G, Gavaghan D, Cardno P, Price D, Miller J. Epidemiology of shingles.  J R Soc Med. 1990;83(10):617-6191962821PubMedGoogle Scholar
9.
Kost RG, Straus SE. Postherpetic neuralgia—pathogenesis, treatment, and prevention.  N Engl J Med. 1996;335(1):32-428637540PubMedGoogle ScholarCrossref
10.
Locksley RM, Flournoy N, Sullivan KM, Meyers JD. Infection with varicella-zoster virus after marrow transplantation.  J Infect Dis. 1985;152(6):1172-11813905982PubMedGoogle ScholarCrossref
11.
Veenstra J, Krol A, van Praag RM,  et al.  Herpes zoster, immunological deterioration and disease progression in HIV-1 infection.  AIDS. 1995;9(10):1153-11588519451PubMedGoogle ScholarCrossref
12.
Pope JE, Krizova A, Ouimet JM, Goodwin JL, Lankin M. Close association of herpes zoster reactivation and systemic lupus erythematosus (SLE) diagnosis: case-control study of patients with SLE or noninflammatory musculoskeletal disorders.  J Rheumatol. 2004;31(2):274-27914760796PubMedGoogle Scholar
13.
Wolfe F, Michaud K, Chakravarty EF. Rates and predictors of herpes zoster in patients with rheumatoid arthritis and non-inflammatory musculoskeletal disorders.  Rheumatology (Oxford). 2006;45(11):1370-137517003175PubMedGoogle ScholarCrossref
14.
Smitten AL, Choi HK, Hochberg MC,  et al.  The risk of herpes zoster in patients with rheumatoid arthritis in the United States and the United Kingdom.  Arthritis Rheum. 2007;57(8):1431-143818050184PubMedGoogle ScholarCrossref
15.
Zink A, Listing J, Kary S,  et al.  Treatment continuation in patients receiving biological agents or conventional DMARD therapy.  Ann Rheum Dis. 2005;64(9):1274-127915708884PubMedGoogle ScholarCrossref
16.
Lautenschlaeger J, Mau W, Kohlmann T,  et al.  Vergleichende Evaluation einer deutschen Version des Health Assessment Questionnaires (HAQ) und des Funktionsfragebogens Hannover (FFbH) [Comparative evaluation of a German version of the Health Assessment Questionnaire (HAQ) and the Hanover Functional Status Questionnaire (HFSQ)].  Z Rheumatol. 1997;56(3):144-1559340955PubMedGoogle ScholarCrossref
17.
 International Conference on Harmonisation. Clinical safety data mangement: definitions and standards for expedited reporting. European Medicines Agency Web site. http://www.emea.europa.eu/pdfs/human/ich/037795en.pdf. 1995. Accessed November 24, 2008
18.
Woodworth TG, Furst DE, Strand V,  et al.  Standardizing assessment of adverse effects in rheumatology clinical trials: status of OMERACT Toxicity Working Group March 2000: towards a common understanding of comparative toxicity/safety profiles for antirheumatic therapies.  J Rheumatol. 2001;28(5):1163-116911361207PubMedGoogle Scholar
19.
MedDRA Maintenance and Support Services Organization. http://www.meddramsso.com. 2007. Accessed November 24, 2008
20.
Wallis RS, Ehlers S. Tumor necrosis factor and granuloma biology: explaining the differential infection risk of etanercept and infliximab.  Semin Arthritis Rheum. 2005;34(5):(suppl1)  34-3815852254PubMedGoogle ScholarCrossref
21.
Andersen PK, Gill RD. Cox's regression model counting process:a large sample study.  Ann Stat. 1982;10:1100-1120Google ScholarCrossref
22.
Listing J, Strangfeld A, Rau R,  et al.  Clinical and functional remission: even though biologics are superior to conventional DMARDs overall success rates remain low—results from RABBIT, the German biologics register.  Arthritis Res Ther. 2006;8(3):R6616600016PubMedGoogle ScholarCrossref
23.
D’Agostino RB Jr. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group.  Stat Med. 1998;17(19):2265-22819802183PubMedGoogle ScholarCrossref
24.
Therneau TM, Grambsch PM. Modelling Survival Data. New York, NY: Springer; 2000
25.
Lin DY, Wei LJ. The robust inference for the Cox proportional hazards model.  J Am Stat Assoc. 1989;84:1074-1078Google ScholarCrossref
26.
Lipsky PE, van der Heijde DM, St Clair EW,  et al; Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group.  Infliximab and methotrexate in the treatment of rheumatoid arthritis.  N Engl J Med. 2000;343(22):1594-160211096166PubMedGoogle ScholarCrossref
27.
Maini RN, Breedveld FC, Kalden JR,  et al; Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group.  Sustained improvement over two years in physical function, structural damage, and signs and symptoms among patients with rheumatoid arthritis treated with infliximab and methotrexate.  Arthritis Rheum. 2004;50(4):1051-106515077287PubMedGoogle ScholarCrossref
28.
Keystone EC, Kavanaugh AF, Sharp JT,  et al.  Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti-tumor necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: a randomized, placebo-controlled, 52-week trial.  Arthritis Rheum. 2004;50(5):1400-141115146409PubMedGoogle ScholarCrossref
29.
Furst DE, Schiff MH, Fleischmann RM,  et al.  Adalimumab, a fully human anti tumor necrosis factor-alpha monoclonal antibody, and concomitant standard antirheumatic therapy for the treatment of rheumatoid arthritis: results of STAR (Safety Trial of Adalimumab in Rheumatoid Arthritis).  J Rheumatol. 2003;30(12):2563-257114719195PubMedGoogle Scholar
30.
Moreland LW, Weinblatt ME, Keystone EC,  et al.  Etanercept treatment in adults with established rheumatoid arthritis: 7 years of clinical experience.  J Rheumatol. 2006;33(5):854-86116541481PubMedGoogle Scholar
31.
Arvin AM. Varicella-zoster virus.  Clin Microbiol Rev. 1996;9(3):361-3818809466PubMedGoogle Scholar
32.
Gupta G, Lautenbach E, Lewis JD. Incidence and risk factors for herpes zoster among patients with inflammatory bowel disease.  Clin Gastroenterol Hepatol. 2006;4(12):1483-149017162240PubMedGoogle ScholarCrossref
33.
Wallis RS, Broder MS, Wong JY, Hanson ME, Beenhouwer DO. Granulomatous infectious diseases associated with tumor necrosis factor antagonists.  Clin Infect Dis. 2004;38(9):1261-126515127338PubMedGoogle ScholarCrossref
34.
Wallis RS, Broder M, Wong J, Beenhouwer D. Granulomatous infections due to tumor necrosis factor blockade: correction.  Clin Infect Dis. 2004;39(8):1254-125515486857PubMedGoogle ScholarCrossref
35.
Oxman MN, Levin MJ, Johnson GR,  et al; Shingles Prevention Study Group.  A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults.  N Engl J Med. 2005;352(22):2271-228415930418PubMedGoogle ScholarCrossref
36.
Kengsakul K, Sathirapongsasuti K, Punyagupta S. Fatal myeloencephalitis following yellow fever vaccination in a case with HIV infection.  J Med Assoc Thai. 2002;85(1):131-13412075714PubMedGoogle Scholar
37.
Schrauder A, Henke-Gendo C, Seidemann K,  et al.  Varicella vaccination in a child with acute lymphoblastic leukaemia.  Lancet. 2007;369(9568):123217416267PubMedGoogle ScholarCrossref
38.
Pham T, Claudepierre P, Deprez X,  et al; Club Rhumatismes et Inflammation, French Society of Rheumatology.  Anti-TNF alpha therapy and safety monitoring: clinical tool guide elaborated by the Club Rhumatismes et Inflammations (CRI), section of the French Society of Rheumatology (Societe Francaise de Rhumatologie, SFR).  Joint Bone Spine. 2005;72:(suppl 1)  S1-S5815978467PubMedGoogle ScholarCrossref
39.
 Vaccinations in the immunocompromised person—guidelines for the patient taking immunosuppressants, steroids and biologic therapies. British Society of Rheumatology Web site. http://www.rheumatology.org.uk/guidelines/guidelines_other/vaccinations/view. 2002. Accessed November 24, 2008
Original Contribution
February 18, 2009

Risk of Herpes Zoster in Patients With Rheumatoid Arthritis Treated With Anti–TNF-α Agents

Author Affiliations

Author Affiliations: German Rheumatism Research Centre, Berlin (Drs Strangfeld and Listing); and German Rheumatism Research Centre and Department of Rheumatology and Clinical Immunology, Charité- University Medicine, Berlin (Dr Zink). Drs Herzer, Liebhaber, Rockwitz, and Richter are rheumatologists in private practice in Germany.

JAMA. 2009;301(7):737-744. doi:10.1001/jama.2009.146
Abstract

Context The risk of bacterial infection is increased in patients treated with drugs that inhibit tumor necrosis factor α (TNF-α). Little is known about the reactivation of latent viral infections during treatment with TNF-α inhibitors.

Objective To investigate whether TNF-α inhibitors together as a class, or separately as either monoclonal anti–TNF-α antibodies (adalimumab, infliximab) or a fusion protein (etanercept), are related to higher rates of herpes zoster in patients with rheumatoid arthritis.

Design, Setting, and Patients Patients were enrolled in the German biologics register RABBIT, a prospective cohort, between May 2001 and December 2006 at the initiation of treatment with infliximab, etanercept, adalimumab, or anakinra, or when they changed conventional disease-modifying antirheumatic drug (DMARD). Treatment, clinical status, and adverse events were assessed by rheumatologists at fixed points during follow-up.

Main Outcome Measures Hazard ratio (HR) of herpes zoster episodes following anti–TNF-α treatment. Study aims were to detect a clinically significant difference (HR, 2.0) between TNF-α inhibitors as a class compared with DMARDs and to detect an HR of at least 2.5 for each of 2 types of TNF-α inhibitors, the monoclonal antibodies or the fusion protein, compared with conventional DMARDs.

Results Among 5040 patients receiving TNF-α inhibitors or conventional DMARDs, 86 episodes of herpes zoster occurred in 82 patients. Thirty-nine occurrences could be attributed to treatment with anti–TNF-α antibodies, 23 to etanercept, and 24 to conventional DMARDs. The crude incidence rate per 1000 patient-years was 11.1 (95% confidence interval [CI], 7.9-15.1) for the monoclonal antibodies, 8.9 (95% CI, 5.6-13.3) for etanercept, and 5.6 (95% CI, 3.6-8.3) for conventional DMARDs. Adjusted for age, rheumatoid arthritis severity, and glucocorticoid use, a significantly increased risk was observed for treatment with the monoclonal antibodies (HR, 1.82 [95% CI, 1.05-3.15]), although this risk was lower than the threshold for clinical significance. No significant associations were found for etanercept use (HR, 1.36 [95% CI, 0.73-2.55]) or for anti–TNF-α treatment (HR, 1.63 [95% CI, 0.97-2.74]) as a class.

Conclusion Treatment with monoclonal anti–TNF-α antibodies may be associated with increased risk of herpes zoster, but this requires further study.

×