Association Between Hospital-Reported Leapfrog Safe Practices Scores and Inpatient Mortality | Health Care Quality | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.175.212.130. Please contact the publisher to request reinstatement.
1.
Scanlon DP, Christianson JB, Ford EW. Hospital responses to the Leapfrog Group in local markets.  Med Care Res Rev. 2008;65(2):207-23118227235PubMedGoogle ScholarCrossref
2.
Callcut RA, Breslin TM. Shaping the future of surgery: the role of private regulation in determining quality standards.  Ann Surg. 2006;243(3):304-31216495692PubMedGoogle ScholarCrossref
3.
Manthous CA. Leapfrog and critical care: evidence- and reality-based intensive care for the 21st century.  Am J Med. 2004;116(3):188-19314749164PubMedGoogle ScholarCrossref
4.
 Factsheet: the Leapfrog safe practices score leap. Leapfrog Group Web site. http://www.leapfroggroup.org/media/file/Leapfrog-Safe_Practices_Score_Fact_Sheet.pdf. Accessed August 6, 2007
5.
Brooke BS, Perler BA, Dominici F, Makary MA, Pronovost PJ. Reduction of in-hospital mortality among California hospitals meeting Leapfrog evidence-based standards for abdominal aortic aneurysm repair.  J Vasc Surg. 2008;47(6):1155-1156, 1163-116418514832PubMedGoogle ScholarCrossref
6.
Goshima KR, Mills JL Sr, Awari K, Pike SL, Hughes  JD. Measure what matters: institutional outcome data are superior to the use of surrogate markers to define “center of excellence” for abdominal aortic aneurysm repair.  Ann Vasc Surg. 2008;22(3):328-33418411029PubMedGoogle ScholarCrossref
7.
Rodgers M, Jobe BA, O’Rourke RW, Sheppard B, Diggs B, Hunter JG. Case volume as a predictor of inpatient mortality after esophagectomy.  Arch Surg. 2007;142(9):829-83917875837PubMedGoogle ScholarCrossref
8.
Kilbridge PM, Welebob EM, Classen DC. Development of the Leapfrog methodology for evaluating hospital implemented inpatient computerized physician order entry systems.  Qual Saf Health Care. 2006;15(2):81-8416585104PubMedGoogle ScholarCrossref
9.
Welke KF, Barnett MJ, Sarrazin MS, Rosenthal GE. Limitations of hospital volume as a measure of quality of care for coronary artery bypass graft surgery.  Ann Thorac Surg. 2005;80(6):2114-211916305854PubMedGoogle ScholarCrossref
10.
Birkmeyer JD, Dimick JB. Potential benefits of the new Leapfrog standards: effect of process and outcomes measures.  Surgery. 2004;135(6):569-57515179361PubMedGoogle ScholarCrossref
11.
Young MP, Birkmeyer JD. Potential reduction in mortality rates using an intensivist model to manage intensive care units.  Eff Clin Pract. 2000;3(6):284-28911151525PubMedGoogle Scholar
12.
Jha AK, Orav EJ, Ridgway AB, Zheng J, Epstein AM. Does the Leapfrog program help identify high-quality hospitals?  Jt Comm J Qual Patient Saf. 2008;34(6):318-32518595377PubMedGoogle Scholar
13.
Leapfrog Safe Practices Score.  Leapfrog Group Web site. http://www.leapfroggroup.org/for_consumers/scoring_info/safe_practices_score. Accessed July 12, 2008
14.
Overview of the Nationwide Inpatient Sample (NIS).  Healthcare Cost and Utilization Project (HCUP) Web site. http://www.hcup-us.ahrq.gov/nisoverview.jsp. 2005. Accessibility verified February 26, 2009
15.
 Introduction to the HCUP Nationwide Inpatient Sample (NIS), 2005. Healthcare Cost and Utilization Project (HCUP) Web site. http://www.hcup-us.ahrq.gov/db/nation/nis/NIS_Introduction_2005.jsp. Accessed August 1, 2007
16.
 Overview of disease severity measures disseminated with the Nationwide Inpatient Sample (NIS) and Kids' Inpatient Database (KID): executive summary.  Healthcare Cost and Utilization Project (HCUP) Web site. http://www.hcup-us.ahrq.gov/db/nation/nis/severity_overview.jsp. March 10, 2006. Accessed September 10, 2008
17.
Romano PS, Chan BK. Risk-adjusting acute myocardial infarction mortality: are APR-DRGs the right tool?  Health Serv Res. 2000;34(7):1469-148910737448PubMedGoogle Scholar
18.
 All Patient Refined Diagnosis Related Groups (APR-DRGs) version 20.0: methodology overview. Agency for Healthcare Research and Quality Web site. http://www.hcup-us.ahrq.gov/db/nation/nis/APR-DRGsV20MethodologyOverviewandBibliography.pdf. Accessed September 10, 2008
19.
Breslow NE, Clayton DG. Approximate inference in generalized linear mixed models.  J Am Stat Assoc. 1993;88(421):9-25Google ScholarCrossref
20.
Meurer LN, Yang H, Guse CE, Russo C, Brasel KJ, Layde PM. Excess mortality caused by medical injury.  Ann Fam Med. 2006;4(5):410-41617003140PubMedGoogle ScholarCrossref
21.
Huerta TR, Ford EW, Peterson LT, Brigham KH. Testing the hospital value proposition: an empirical analysis of efficiency and quality.  Health Care Manage Rev. 2008;33(4):341-34918815499PubMedGoogle ScholarCrossref
22.
Olson JR, Belohlav JA, Cook LS, Hays JM. Examining quality improvement programs: the case of Minnesota hospitals.  Health Serv Res. 2008;43(5, pt 2):1787-180618761677PubMedGoogle ScholarCrossref
23.
 The Leapfrog Group: HAI prevention efforts still have a long way to go.  Healthcare Benchmarks Qual Improv. 2007;14(11):121-12517966231PubMedGoogle Scholar
24.
 Leapfrog Group releases its first “top hospitals” list.  Healthcare Benchmarks Qual Improv. 2007;14(1):1-417319380PubMedGoogle Scholar
25.
Thomas JW, Hofer TP. Accuracy of risk-adjusted mortality rate as a measure of hospital quality of care.  Med Care. 1999;37(1):83-9210413396PubMedGoogle ScholarCrossref
26.
Shojania KG, Forster AJ. Hospital mortality: when failure is not a good measure of success.  CMAJ. 2008;179(2):153-15718625987PubMedGoogle ScholarCrossref
27.
Krumholz HM, Rathore SS, Chen J, Wang Y, Radford MJ. Evaluation of a consumer-oriented internet health care report card: the risk of quality ratings based on mortality data.  JAMA. 2002;287(10):1277-128711886319PubMedGoogle ScholarCrossref
28.
Kohn LT, Corrigan J, Donaldson MS.Institute of Medicine, (U.S.) Committee on Quality of Health Care in America.  To Err Is Human: Building a Safer Health System. Washington, DC: National Academies Press; 1999
29.
Leonardi MJ, McGory ML, Ko CY. Publicly available hospital comparison web sites: determination of useful, valid, and appropriate information for comparing surgical quality.  Arch Surg. 2007;142(9):863-86917875841PubMedGoogle ScholarCrossref
Original Contribution
April 1, 2009

Association Between Hospital-Reported Leapfrog Safe Practices Scores and Inpatient Mortality

Author Affiliations

Author Affiliations: Divisions of Geriatrics (Drs Kernisan, Lee, Boscardin, and Landefeld) and Biostatistics (Dr Boscardin) and Philip R. Lee Institute for Health Policy Studies (Dr Dudley), University of California, San Francisco; National VA Quality Scholars Program (Drs Kernisan, Lee, and Landefeld) and Health Services Research Enhancement Award Program (Drs Lee, Boscardin, and Landefeld), San Francisco VA Medical Center, San Francisco, California; and Center for Advanced Study in the Behavioral Sciences (Dr Landefeld), Stanford University, Palo Alto, California.

JAMA. 2009;301(13):1341-1348. doi:10.1001/jama.2009.422
Abstract

Context The Leapfrog Hospital Survey allows hospitals to self-report the steps they have taken toward implementing the Safe Practices for Better Healthcare endorsed by the National Quality Forum. The Leapfrog Group currently ranks hospital performance on the safe practices initiative by quartiles and presents this information to the public on its Web site. It is unknown how well a hospital's resulting Safe Practices Score (SPS) correlates with outcomes such as inpatient mortality.

Objective To determine the relationship between hospitals' SPSs and risk-adjusted inpatient mortality rates.

Design, Setting, and Participants Observational analysis of discharge data for all urban US hospitals completing the 2006 safe practices initiative and identifiable in the Nationwide Inpatient Sample. Leapfrog provided an SPS for each hospital as well as 3 alternative scores based on shorter versions of the original survey. Hierarchical logistic regression was used to determine the relationship between quartiles of SPS and risk-adjusted inpatient mortality, after adjusting for hospital discharge volume and teaching status. Subgroup analyses were performed using data from patients older than 65 years and patients with 5% or greater expected mortality risk.

Main Outcome Measures Inpatient risk-adjusted mortality by quartiles of survey score.

Results Of 1075 hospitals completing the 2006 Safe Practices Survey, 155 (14%) were identifiable in the National Inpatient Sample (1 772 064 discharges). Raw observed mortality in the primary sample was 2.09%. Fully adjusted mortality rates by quartile of SPS, from lowest to highest, were 1.97% (95% confidence interval [CI], 1.78%-2.18%), 2.04% (95% CI, 1.84%-2.25%), 1.96% (95% CI, 1.77%-2.16%), and 2.00% (95% CI, 1.80%-2.22%) (P = .99 for linear trend). Results were similar in the subgroup analyses. None of the 3 alternative survey scores was associated with risk-adjusted inpatient mortality, although P values for linear trends were lower (.80, .20, and .11).

Conclusion In this sample of hospitals that completed the 2006 Safe Practices Survey, survey scores were not significantly associated with risk-adjusted inpatient mortality.

×