[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Brief Report
October 21, 2009

Implications of Hypertrophic Cardiomyopathy Transmitted by Sperm Donation

Author Affiliations

Author Affiliations: Hypertrophic Cardiomyopathy Center, Minneapolis Heart Institute Foundation and Abbott Northwestern Hospital, Minneapolis, Minnesota (Drs Maron, Lesser, and Harris); Partners Healthcare Center for Personalized Genetic Medicine, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts (Dr Rehm); and Divisions of Cardiology and Medical Genetics, University of California at San Francisco, San Francisco (Dr Schiller and Ms Brown).

JAMA. 2009;302(15):1681-1684. doi:10.1001/jama.2009.1507

Context Sperm donation is an increasingly common practice for achieving pregnancy in the absence of a male partner or when fertility is problematic. The unintended consequence in which genetic diseases are unwittingly transmitted to offspring is an underrecognized public health issue not previously prioritized by US Food and Drug Administration guidelines.

Objective To report the clinical circumstances and implication of hypertrophic cardiomyopathy (HCM) transmitted by sperm donation to recipients.

Setting Voluntary sperm donation through a US Food and Drug Administration–approved tissue bank.

Main Outcome Measure Incidence of genetically affected offspring and clinical outcomes to date.

Results An asymptomatic 23-year-old man who had no personal knowledge of underlying heart disease and who underwent standard testing that was negative for infectious diseases, repeatedly donated sperm over a 2-year period (1990-1991). The donor was later shown to be affected (in 2005) by a novel β-myosin heavy-chain mutation that caused HCM, after an offspring was clinically diagnosed with this disease. Of the 24 children known to be offspring of the donor, including 22 who were products of fertilization via sperm donation and 2 conceived by the donor's wife, a total of 9 genetically affected offspring, 2 to 16 years of age and 6 males, have been identified with HCM (2005-2009). Three of the 9 gene-positive children have currently expressed phenotypic evidence of HCM, including one who died at age 2 years due to progressive and unrelenting heart failure with marked hypertrophy, and also 2 survivors with extreme left ventricular hypertrophy at age 15 years. The latter 2 children and the donor are judged likely to be at increased risk for sudden death.

Conclusions This case series underscores the potential risk for transmission of inherited cardiovascular diseases through voluntary sperm donation, a problem largely unappreciated by the medical community and agencies regulating tissue donation. Recommendations include improved screening guidelines for donors to exclude cardiovascular diseases (eg, HCM) such as consideration for 12-lead electrocardiograms.