Propagation of Human Spermatogonial Stem Cells In Vitro | Allergy and Clinical Immunology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.226.234.102. Please contact the publisher to request reinstatement.
1.
Blatt J. Pregnancy outcome in long-term survivors of childhood cancer.  Med Pediatr Oncol. 1999;33(1):29-3310401494PubMedGoogle ScholarCrossref
2.
Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation.  Proc Natl Acad Sci U S A. 1994;91(24):11298-113027972053PubMedGoogle ScholarCrossref
3.
Schlatt S, Foppiani L, Rolf C, Weinbauer GF, Nieschlag E. Germ cell transplantation into X-irradiated monkey testes.  Hum Reprod. 2002;17(1):55-6211756362PubMedGoogle ScholarCrossref
4.
Honaramooz A, Behboodi E, Blash S, Megee SO, Dobrinski I. Germ cell transplantation in goats.  Mol Reprod Dev. 2003;64(4):422-42812589654PubMedGoogle ScholarCrossref
5.
Izadyar F, Den Ouden K, Stout TA,  et al.  Autologous and homologous transplantation of bovine spermatogonial stem cells.  Reproduction. 2003;126(6):765-77414748695PubMedGoogle ScholarCrossref
6.
Nagano M, McCarrey JR, Brinster RL. Primate spermatogonial stem cells colonize mouse testes.  Biol Reprod. 2001;64(5):1409-141611319145PubMedGoogle ScholarCrossref
7.
Creemers LB, Meng X, den Ouden K,  et al.  Transplantation of germ cells from glial cell line-derived neurotrophic factor-overexpressing mice to host testes depleted of endogenous spermatogenesis by fractionated irradiation.  Biol Reprod. 2002;66(6):1579-158412021034PubMedGoogle ScholarCrossref
8.
Izadyar F, Spierenberg GT, Creemers LB, den Ouden K, de Rooij DG. Isolation and purification of type A spermatogonia from the bovine testis.  Reproduction. 2002;124(1):85-9412090922PubMedGoogle ScholarCrossref
9.
van Pelt AM, Roepers-Gajadien HL, Gademan IS, Creemers LB, de Rooij DG, van Dissel-Emiliani FM. Establishment of cell lines with rat spermatogonial stem cell characteristics.  Endocrinology. 2002;143(5):1845-185011956167PubMedGoogle ScholarCrossref
10.
Nagano M, Patrizio P, Brinster RL. Long-term survival of human spermatogonial stem cells in mouse testes.  Fertil Steril. 2002;78(6):1225-123312477516PubMedGoogle ScholarCrossref
11.
Aponte PM, Soda T, Teerds KJ, Mizrak SC, van de Kant HJ, de Rooij DG. Propagation of bovine spermatogonial stem cells in vitro.  Reproduction. 2008;136(5):543-55718663014PubMedGoogle ScholarCrossref
12.
Kanatsu-Shinohara M, Muneto T, Lee J,  et al.  Long-term culture of male germline stem cells from hamster testes.  Biol Reprod. 2008;78(4):611-61718094355PubMedGoogle ScholarCrossref
13.
Hamra FK, Chapman KM, Nguyen DM, Williams-Stephens AA, Hammer RE, Garbers DL. Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture.  Proc Natl Acad Sci U S A. 2005;102(48):17430-1743516293688PubMedGoogle ScholarCrossref
14.
Kanatsu-Shinohara M, Ogonuki N, Inoue K,  et al.  Long-term proliferation in culture and germline transmission of mouse male germline stem cells.  Biol Reprod. 2003;69(2):612-61612700182PubMedGoogle ScholarCrossref
15.
van Pelt AM, Morena AR, van Dissel-Emiliani FM,  et al.  Isolation of the synchronized A spermatogonia from adult vitamin A-deficient rat testes.  Biol Reprod. 1996;55(2):439-4448828852PubMedGoogle ScholarCrossref
16.
Mizrak SC, Chikhovskaya JV, Sadri-Ardekani H,  et al.  Embryonic stem cell-like cells derived from adult human testis [published online ahead of print October 8, 2009].  Hum Reprod19815622PubMedGoogle Scholar
17.
Aponte PM, van Bragt MP, de Rooij DG, van Pelt AM. Spermatogonial stem cells: characteristics and experimental possibilities.  APMIS. 2005;113(11-12):727-74216480445PubMedGoogle ScholarCrossref
18.
Ebata KT, Yeh JR, Zhang X, Nagano MC. The application of biomarkers of spermatogonial stem cells for restoring male fertility.  Dis Markers. 2008;24(4-5):267-27618525121PubMedGoogle ScholarCrossref
19.
Avarbock MR, Brinster CJ, Brinster RL. Reconstitution of spermatogenesis from frozen spermatogonial stem cells.  Nat Med. 1996;2(6):693-6968640563PubMedGoogle ScholarCrossref
20.
Sullivan GJ, Bridger JM, Cuthbert AP, Newbold RF, Bickmore WA, McStay B. Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli.  EMBO J. 2001;20(11):2867-287411387219PubMedGoogle ScholarCrossref
21.
Kanatsu-Shinohara M, Miki H, Inoue K,  et al.  Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions.  Biol Reprod. 2005;72(4):985-99115601913PubMedGoogle ScholarCrossref
22.
Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells.  Proc Natl Acad Sci U S A. 2004;101(47):16489-1649415520394PubMedGoogle ScholarCrossref
23.
Meng X, Lindahl M, Hyvonen ME,  et al.  Regulation of cell fate decision of undifferentiated spermatogonia by GDNF.  Science. 2000;287(5457):1489-149310688798PubMedGoogle ScholarCrossref
24.
Huang YH, Chin CC, Ho HN,  et al.  Pluripotency of mouse spermatogonial stem cells maintained by IGF-1-dependent pathway.  FASEB J. 2009;23(7):2076-208719246485PubMedGoogle ScholarCrossref
25.
Kim J, Seandel M, Falciatori I, Wen D, Rafii S. CD34+ testicular stromal cells support long-term expansion of embryonic and adult stem and progenitor cells.  Stem Cells. 2008;26(10):2516-252218669907PubMedGoogle ScholarCrossref
26.
Béres J, Papp G, Pazonyi I, Czeizel E. Testicular volume variations from 0 to 28 years of age.  Int Urol Nephrol. 1989;21(2):159-1672744988PubMedGoogle ScholarCrossref
27.
Dobrinski I, Ogawa T, Avarbock MR, Brinster RL. Computer assisted image analysis to assess colonization of recipient seminiferous tubules by spermatogonial stem cells from transgenic donor mice.  Mol Reprod Dev. 1999;53(2):142-14810331452PubMedGoogle ScholarCrossref
28.
Nagano M, Avarbock MR, Brinster RL. Pattern and kinetics of mouse donor spermatogonial stem cell colonization in recipient testes.  Biol Reprod. 1999;60(6):1429-143610330102PubMedGoogle ScholarCrossref
29.
Nagano MC. Homing efficiency and proliferation kinetics of male germ line stem cells following transplantation in mice.  Biol Reprod. 2003;69(2):701-70712700185PubMedGoogle ScholarCrossref
30.
Orwig KE, Shinohara T, Avarbock MR, Brinster RL. Functional analysis of stem cells in the adult rat testis.  Biol Reprod. 2002;66(4):944-94911906912PubMedGoogle ScholarCrossref
31.
Kubota H, Brinster RL. Technology insight: in vitro culture of spermatogonial stem cells and their potential therapeutic uses.  Nat Clin Pract Endocrinol Metab. 2006;2(2):99-10816932264PubMedGoogle ScholarCrossref
32.
Kanatsu-Shinohara M, Ogonuki N, Iwano T,  et al.  Genetic and epigenetic properties of mouse male germline stem cells during long-term culture.  Development. 2005;132(18):4155-416316107472PubMedGoogle ScholarCrossref
33.
Geens M, Van de Velde H, De Block G, Goossens E, Van Steirteghem A, Tournaye H. The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients.  Hum Reprod. 2007;22(3):733-74217082221PubMedGoogle ScholarCrossref
34.
Fujita K, Tsujimura A, Miyagawa Y,  et al.  Isolation of germ cells from leukemia and lymphoma cells in a human in vitro model: potential clinical application for restoring human fertility after anticancer therapy.  Cancer Res. 2006;66(23):11166-1117117145860PubMedGoogle ScholarCrossref
35.
Conrad S, Renninger M, Hennenlotter J,  et al.  Generation of pluripotent stem cells from adult human testis.  Nature. 2008;456(7220):344-34918849962PubMedGoogle ScholarCrossref
36.
Kossack N, Meneses J, Shefi S,  et al.  Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells.  Stem Cells. 2009;27(1):138-14918927477PubMedGoogle ScholarCrossref
37.
Golestaneh N, Kokkinaki M, Pant D,  et al.  Pluripotent stem cells derived from adult human testes [published online ahead of print March 12, 2009].  Stem Cells Dev. 2009;19281326PubMedGoogle Scholar
Preliminary Communication
November 18, 2009

Propagation of Human Spermatogonial Stem Cells In Vitro

Author Affiliations

Author Affiliations: Center for Reproductive Medicine, Department of Obstetrics and Gynaecology (Drs Sadri-Ardekani, Mizrak, Koruji, van der Veen, de Rooij, Repping, and van Pelt and Mss van Daalen, Korver, Roepers-Gajadien, and Hovingh) and Department of Urology (Drs de Reijke and de la Rosette), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; and Reproductive Biotechnology Research Center, Avicenna Research Institute, Tehran, Iran (Dr Sadri-Ardekani).

JAMA. 2009;302(19):2127-2134. doi:10.1001/jama.2009.1689
Abstract

Context Young boys treated with high-dose chemotherapy are often confronted with infertility once they reach adulthood. Cryopreserving testicular tissue before chemotherapy and autotransplantation of spermatogonial stem cells at a later stage could theoretically allow for restoration of fertility.

Objective To establish in vitro propagation of human spermatogonial stem cells from small testicular biopsies to obtain an adequate number of cells for successful transplantation.

Design, Setting, and Participants Study performed from April 2007 to July 2009 using testis material donated by 6 adult men who underwent orchidectomy as part of prostate cancer treatment. Testicular cells were isolated and cultured in supplemented StemPro medium; germline stem cell clusters that arose were subcultured on human placental laminin–coated dishes in the same medium. Presence of spermatogonia was determined by reverse transcriptase polymerase chain reaction and immunofluorescence for spermatogonial markers. To test for the presence of functional spermatogonial stem cells in culture, xenotransplantation to testes of immunodeficient mice was performed, and migrated human spermatogonial stem cells after transplantation were detected by COT-1 fluorescence in situ hybridization. The number of colonized spermatogonial stem cells transplanted at early and later points during culture were counted to determine propagation.

Main Outcome Measures Propagation of spermatogonial stem cells over time.

Results Testicular cells could be cultured and propagated up to 15 weeks. Germline stem cell clusters arose in the testicular cell cultures from all 6 men and could be subcultured and propagated up to 28 weeks. Expression of spermatogonial markers on both the RNA and protein level was maintained throughout the entire culture period. In 4 of 6 men, xenotransplantation to mice demonstrated the presence of functional spermatogonial stem cells, even after prolonged in vitro culture. Spermatogonial stem cell numbers increased 53-fold within 19 days in the testicular cell culture and increased 18 450-fold within 64 days in the germline stem cell subculture.

Conclusion Long-term culture and propagation of human spermatogonial stem cells in vitro is achievable.

×