Association of Marine Omega-3 Fatty Acid Levels With Telomeric Aging in Patients With Coronary Heart Disease | Cardiology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Lee JH, O’Keefe JH, Lavie CJ, Marchioli R, Harris WS. Omega-3 fatty acids for cardioprotection.  Mayo Clin Proc. 2008;83(3):324-33218316000PubMedGoogle ScholarCrossref
2.
Marchioli R, Barzi F, Bomba E,  et al; GISSI-Prevenzione Investigators.  Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)–Prevenzione.  Circulation. 2002;105(16):1897-190311997274PubMedGoogle ScholarCrossref
3.
Burr ML, Fehily AM, Gilbert JF,  et al.  Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART).  Lancet. 1989;2(8666):757-7612571009PubMedGoogle ScholarCrossref
4.
Albert CM, Campos H, Stampfer MJ,  et al.  Blood levels of long-chain n-3 fatty acids and the risk of sudden death.  N Engl J Med. 2002;346(15):1113-111811948270PubMedGoogle ScholarCrossref
5.
Kris-Etherton PM, Harris WS, Appel LJ.American Heart Association Nutrition Committee.  Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease.  Circulation. 2002;106(21):2747-275712438303PubMedGoogle ScholarCrossref
6.
Harris WS, Miller M, Tighe AP, Davidson MH, Schaefer EJ. Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives.  Atherosclerosis. 2008;197(1):12-2418160071PubMedGoogle ScholarCrossref
7.
Blackburn EH. Switching and signaling at the telomere.  Cell. 2001;106(6):661-67311572773PubMedGoogle ScholarCrossref
8.
Blackburn EH. Structure and function of telomeres.  Nature. 1991;350(6319):569-5731708110PubMedGoogle ScholarCrossref
9.
Olovnikov AM. Telomeres, telomerase, and aging: origin of the theory.  Exp Gerontol. 1996;31(4):443-4489415101PubMedGoogle ScholarCrossref
10.
Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA. Association between telomere length in blood and mortality in people aged 60 years or older.  Lancet. 2003;361(9355):393-39512573379PubMedGoogle ScholarCrossref
11.
Brouilette S, Singh RK, Thompson JR, Goodall AH, Samani NJ. White cell telomere length and risk of premature myocardial infarction.  Arterioscler Thromb Vasc Biol. 2003;23(5):842-84612649083PubMedGoogle ScholarCrossref
12.
Farzaneh-Far R, Cawthon RM, Na B, Browner WS, Schiller NB, Whooley MA. Prognostic value of leukocyte telomere length in patients with stable coronary artery disease: data from the Heart and Soul Study.  Arterioscler Thromb Vasc Biol. 2008;28(7):1379-138418467646PubMedGoogle ScholarCrossref
13.
Aviv A, Chen W, Gardner JP,  et al.  Leukocyte telomere dynamics: longitudinal findings among young adults in the Bogalusa Heart Study.  Am J Epidemiol. 2009;169(3):323-32919056834PubMedGoogle ScholarCrossref
14.
Epel ES, Merkin SS, Cawthon R,  et al.  The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men.  Aging. 2008;1(1):81-88Google Scholar
15.
Whooley MA, de Jonge P, Vittinghoff E,  et al.  Depressive symptoms, health behaviors, and risk of cardiovascular events in patients with coronary heart disease.  JAMA. 2008;300(20):2379-238819033588PubMedGoogle ScholarCrossref
16.
Harris WS, Von Schacky C. The Omega-3 Index: a new risk factor for death from coronary heart disease?  Prev Med. 2004;39(1):212-22015208005PubMedGoogle ScholarCrossref
17.
Harris WS. The omega-3 index as a risk factor for coronary heart disease.  Am J Clin Nutr. 2008;87(6):1997S-2002S18541601PubMedGoogle Scholar
18.
Cawthon RM. Telomere measurement by quantitative PCR.  Nucleic Acids Res. 2002;30(10):e4712000852PubMedGoogle ScholarCrossref
19.
Gil ME, Coetzer TL. Real-time quantitative PCR of telomere length.  Mol Biotechnol. 2004;27(2):169-17215208457PubMedGoogle ScholarCrossref
20.
Lin J, Epel E, Cheon J,  et al.  Analyses and comparisons of telomerase activity and telomere length in human T and B cells: insights for epidemiology of telomere maintenance [published online ahead of print October 21, 2009].  J Immunol Methods19176217PubMedGoogle Scholar
21.
Hunt SC, Chen W, Gardner JP,  et al.  Leukocyte telomeres are longer in African Americans than in whites: the National Heart, Lung, and Blood Institute Family Heart Study and the Bogalusa Heart Study.  Aging Cell. 2008;7(4):451-45818462274PubMedGoogle ScholarCrossref
22.
Ruo B, Rumsfeld JS, Hlatky MA, Liu H, Browner WS, Whooley MA. Depressive symptoms and health-related quality of life: the Heart and Soul Study.  JAMA. 2003;290(2):215-22112851276PubMedGoogle ScholarCrossref
23.
Njajou OT, Hsueh WC, Blackburn EH,  et al.  Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition: a population-based cohort study.  J Gerontol A Biol Sci Med Sci. 2009;64(8):860-86419435951PubMedGoogle ScholarCrossref
24.
Valdes AM, Andrew T, Gardner JP,  et al.  Obesity, cigarette smoking, and telomere length in women.  Lancet. 2005;366(9486):662-66416112303PubMedGoogle ScholarCrossref
25.
Bekaert S, De Meyer T, Rietzschel ER,  et al; Asklepios Investigators.  Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease.  Aging Cell. 2007;6(5):639-64717874998PubMedGoogle ScholarCrossref
26.
Nordfjäll K, Svenson U, Norrback KF, Adolfsson R, Lenner P, Roos G. The individual blood cell telomere attrition rate is telomere length dependent.  PLoS Genet. 2009;5(2):e100037519214207PubMedGoogle ScholarCrossref
27.
Shrier I, Platt RW. Reducing bias through directed acyclic graphs.  BMC Med Res Methodol. 2008;8:7018973665PubMedGoogle ScholarCrossref
28.
Fuster JJ, Andres V. Telomere biology and cardiovascular disease.  Circ Res. 2006;99(11):1167-118017122447PubMedGoogle ScholarCrossref
29.
Richards JB, Valdes AM, Gardner JP,  et al.  Higher serum vitamin D concentrations are associated with longer leukocyte telomere length in women.  Am J Clin Nutr. 2007;86(5):1420-142517991655PubMedGoogle Scholar
30.
Xu Q, Parks CG, DeRoo LA, Cawthon RM, Sandler DP, Chen H. Multivitamin use and telomere length in women.  Am J Clin Nutr. 2009;89(6):1857-186319279081PubMedGoogle ScholarCrossref
31.
Furumoto K, Inoue E, Nagao N, Hiyama E, Miwa N. Age-dependent telomere shortening is slowed down by enrichment of intracellular vitamin C via suppression of oxidative stress.  Life Sci. 1998;63(11):935-9489747894PubMedGoogle ScholarCrossref
32.
Tanaka Y, Moritoh Y, Miwa N. Age-dependent telomere-shortening is repressed by phosphorylated alpha-tocopherol together with cellular longevity and intracellular oxidative-stress reduction in human brain microvascular endotheliocytes.  J Cell Biochem. 2007;102(3):689-70317407150PubMedGoogle ScholarCrossref
33.
Paul L, Cattaneo M, D’Angelo A,  et al.  Telomere length in peripheral blood mononuclear cells is associated with folate status in men.  J Nutr. 2009;139(7):1273-127819458030PubMedGoogle ScholarCrossref
34.
Aviv A. The epidemiology of human telomeres: faults and promises.  J Gerontol A Biol Sci Med Sci. 2008;63(9):979-98318840804PubMedGoogle ScholarCrossref
35.
Aviv A. Leukocyte telomere length: the telomere tale continues.  Am J Clin Nutr. 2009;89(6):1721-172219386739PubMedGoogle ScholarCrossref
36.
Brouilette SW, Moore JS, McMahon AD,  et al; West of Scotland Coronary Prevention Study Group.  Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study.  Lancet. 2007;369(9556):107-11417223473PubMedGoogle ScholarCrossref
37.
Satoh M, Minami Y, Takahashi Y, Tabuchi T, Itoh T, Nakamura M. Effect of intensive lipid-lowering therapy on telomere erosion in endothelial progenitor cells obtained from patients with coronary artery disease.  Clin Sci (Lond). 2009;116(11):827-83519090788PubMedGoogle ScholarCrossref
38.
Spyridopoulos I, Haendeler J, Urbich C,  et al.  Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells.  Circulation. 2004;110(19):3136-314215520325PubMedGoogle ScholarCrossref
39.
Visioli F, Hagen TM. Nutritional strategies for healthy cardiovascular aging: focus on micronutrients.  Pharmacol Res. 2007;55(3):199-20617317208PubMedGoogle ScholarCrossref
40.
Tomiyama H, Takazawa K, Osa S,  et al.  Do eicosapentaenoic acid supplements attenuate age-related increases in arterial stiffness in patients with dyslipidemia? a preliminary study.  Hypertens Res. 2005;28(8):651-65516392769PubMedGoogle ScholarCrossref
41.
Hamazaki K, Terashima Y, Itomura M,  et al.  The relationship between n-3 long-chain polyunsaturated fatty acids and pulse wave velocity in diabetic and non-diabetic patients under long-term hemodialysis: a horizontal study.  Clin Nephrol. 2009;71(5):508-51319473610PubMedGoogle Scholar
42.
Albanese E, Dangour AD, Uauy R,  et al.  Dietary fish and meat intake and dementia in Latin America, China, and India: a 10/66 Dementia Research Group population-based study.  Am J Clin Nutr. 2009;90(2):392-40019553298PubMedGoogle ScholarCrossref
43.
Tan JS, Wang JJ, Flood V, Mitchell P. Dietary fatty acids and the 10-year incidence of age-related macular degeneration: the Blue Mountains Eye Study.  Arch Ophthalmol. 2009;127(5):656-66519433717PubMedGoogle ScholarCrossref
44.
Jolly CA, Muthukumar A, Avula CP, Troyer D, Fernandes G. Life span is prolonged in food-restricted autoimmune-prone (NZB x NZW)F(1) mice fed a diet enriched with (n-3) fatty acids.  J Nutr. 2001;131(10):2753-276011584100PubMedGoogle Scholar
45.
Milne GL, Yin H, Morrow JD. Human biochemistry of the isoprostane pathway.  J Biol Chem. 2008;283(23):15533-1553718285331PubMedGoogle ScholarCrossref
46.
Epel ES. Psychological and metabolic stress: a recipe for accelerated cellular aging?  Hormones (Athens). 2009;8(1):7-2219269917PubMedGoogle Scholar
47.
Pepe S. Dietary polyunsaturated fatty acids and age-related membrane changes in the heart.  Ann N Y Acad Sci. 2007;1114:381-38817986599PubMedGoogle ScholarCrossref
48.
Romieu I, Garcia-Esteban R, Sunyer J,  et al.  The effect of supplementation with omega-3 polyunsaturated fatty acids on markers of oxidative stress in elderly exposed to PM(2.5).  Environ Health Perspect. 2008;116(9):1237-124218795169PubMedGoogle ScholarCrossref
49.
Gao L, Wang J, Sekhar KR,  et al.  Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3.  J Biol Chem. 2007;282(4):2529-253717127771PubMedGoogle ScholarCrossref
50.
Chan SR, Blackburn EH. Telomeres and telomerase.  Philos Trans R Soc Lond B Biol Sci. 2004;359(1441):109-12115065663PubMedGoogle ScholarCrossref
51.
Wong JM, Collins K. Telomere maintenance and disease.  Lancet. 2003;362(9388):983-98814511933PubMedGoogle ScholarCrossref
52.
Weng NP, Levine BL, June CH, Hodes RJ. Regulated expression of telomerase activity in human T lymphocyte development and activation.  J Exp Med. 1996;183(6):2471-24798676067PubMedGoogle ScholarCrossref
53.
Ornish D, Lin J, Daubenmier J,  et al.  Increased telomerase activity and comprehensive lifestyle changes: a pilot study.  Lancet Oncol. 2008;9(11):1048-105718799354PubMedGoogle ScholarCrossref
54.
Eitsuka T, Nakagawa K, Suzuki T, Miyazawa T. Polyunsaturated fatty acids inhibit telomerase activity in DLD-1 human colorectal adenocarcinoma cells: a dual mechanism approach.  Biochim Biophys Acta. 2005;1737(1):1-1016216547PubMedGoogle ScholarCrossref
55.
Nettleton JA, Diez-Roux A, Jenny NS, Fitzpatrick AL, Jacobs DR Jr. Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA).  Am J Clin Nutr. 2008;88(5):1405-141218996878PubMedGoogle Scholar
Original Contribution
January 20, 2010

Association of Marine Omega-3 Fatty Acid Levels With Telomeric Aging in Patients With Coronary Heart Disease

Author Affiliations

Author Affiliations: Division of Cardiology, San Francisco General Hospital (Dr Farzaneh-Far), Departments of Medicine (Drs Farzaneh-Far and Whooley), Biochemistry and Biophysics (Drs Lin and Blackburn), Psychiatry (Dr Epel), and Epidemiology and Biostatistics (Dr Whooley), University of California, San Francisco, and Veterans Affairs Medical Center (Dr Whooley), San Francisco; and Sanford Research/USD and Sanford School of Medicine, University of South Dakota, Sioux Falls (Dr Harris).

JAMA. 2010;303(3):250-257. doi:10.1001/jama.2009.2008
Abstract

Context Increased dietary intake of marine omega-3 fatty acids is associated with prolonged survival in patients with coronary heart disease. However, the mechanisms underlying this protective effect are poorly understood.

Objective To investigate the association of omega-3 fatty acid blood levels with temporal changes in telomere length, an emerging marker of biological age.

Design, Setting, and Participants Prospective cohort study of 608 ambulatory outpatients in California with stable coronary artery disease recruited from the Heart and Soul Study between September 2000 and December 2002 and followed up to January 2009 (median, 6.0 years; range, 5.0-8.1 years).

Main Outcome Measures We measured leukocyte telomere length at baseline and again after 5 years of follow-up. Multivariable linear and logistic regression models were used to investigate the association of baseline levels of omega-3 fatty acids (docosahexaenoic acid [DHA] and eicosapentaenoic acid [EPA]) with subsequent change in telomere length.

Results Individuals in the lowest quartile of DHA+EPA experienced the fastest rate of telomere shortening (0.13 telomere-to-single-copy gene ratio [T/S] units over 5 years; 95% confidence interval [CI], 0.09-0.17), whereas those in the highest quartile experienced the slowest rate of telomere shortening (0.05 T/S units over 5 years; 95% CI, 0.02-0.08; P < .001 for linear trend across quartiles). Levels of DHA+EPA were associated with less telomere shortening before (unadjusted β coefficient × 10−3 = 0.06; 95% CI, 0.02-0.10) and after (adjusted β coefficient × 10−3 = 0.05; 95% CI, 0.01-0.08) sequential adjustment for established risk factors and potential confounders. Each 1-SD increase in DHA+EPA levels was associated with a 32% reduction in the odds of telomere shortening (adjusted odds ratio, 0.68; 95% CI, 0.47-0.98).

Conclusion Among this cohort of patients with coronary artery disease, there was an inverse relationship between baseline blood levels of marine omega-3 fatty acids and the rate of telomere shortening over 5 years.

×