Effect of B-Vitamin Therapy on Progression of Diabetic Nephropathy: A Randomized Controlled Trial | Nephrology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.175.212.130. Please contact the publisher to request reinstatement.
1.
Chaturvedi N. The burden of diabetes and its complications: trends and implications for intervention.  Diabetes Res Clin Pract. 2007;76:(suppl 1)  S3-S1217343954PubMedGoogle ScholarCrossref
2.
Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010.  Diabet Med. 1997;14:(suppl 5)  S1-S859450510PubMedGoogle ScholarCrossref
3.
US Renal Data System.  USRDS 2009 Annual Data Report. http://www.USRDS.org. Accessed March 8, 2010
4.
Palmer AJ, Valentine WJ, Chen R,  et al.  A health economic analysis of screening and optimal treatment of nephropathy in patients with type 2 diabetes and hypertension in the USA.  Nephrol Dial Transplant. 2008;23(4):1216-122318359872PubMedGoogle ScholarCrossref
5.
Remuzzi G, Schieppati A, Ruggenenti P. Clinical practice. nephropathy in patients with type 2 diabetes.  N Engl J Med. 2002;346(15):1145-115111948275PubMedGoogle ScholarCrossref
6.
Bostom AG, Silbershatz H, Rosenberg IH,  et al.  Nonfasting plasma total homocysteine levels and all-cause and cardiovascular disease mortality in elderly Framingham men and women.  Arch Intern Med. 1999;159(10):1077-108010335684PubMedGoogle ScholarCrossref
7.
Refsum H, Nurk E, Smith AD,  et al.  The Hordaland homocysteine study: a community-based study of homocysteine, its determinants, and associations with disease.  J Nutr. 2006;136(6):(suppl)  1731S-1740S16702348PubMedGoogle Scholar
8.
Becker A, Smulders YM, van Guldener C, Stehouwer CD. Epidemiology of homocysteine as a risk factor in diabetes.  Metab Syndr Relat Disord. 2003;1(2):105-12018370632PubMedGoogle ScholarCrossref
9.
Looker HC, Fagot-Campagna A, Gunter EW,  et al.  Homocysteine as a risk factor for nephropathy and retinopathy in type 2 diabetes.  Diabetologia. 2003;46(6):766-77212774164PubMedGoogle ScholarCrossref
10.
Chambers JC, McGregor A, Jean-Marie J, Obeid OA, Kooner JS. Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinemia: an effect reversible with vitamin C therapy.  Circulation. 1999;99(9):1156-116010069782PubMedGoogle ScholarCrossref
11.
Chambers JC, Ueland PM, Obeid OA, Wrigley J, Refsum H, Kooner JS. Improved vascular endothelial function after oral B vitamins: an effect mediated through reduced concentrations of free plasma homocysteine.  Circulation. 2000;102(20):2479-248311076820PubMedGoogle ScholarCrossref
12.
National Kidney Foundation.  K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification.  Am J Kidney Dis. 2002;39(2):(suppl 1)  S1-S26611904577PubMedGoogle ScholarCrossref
13.
Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine.  Nephron. 1976;16(1):31-411244564PubMedGoogle ScholarCrossref
14.
Shemesh O, Golbetz H, Kriss JP, Myers BD. Limitations of creatinine as a filtration marker in glomerulopathic patients.  Kidney Int. 1985;28(5):830-8382418254PubMedGoogle ScholarCrossref
15.
Zaltzman JS, Whiteside C, Cattran DC, Lopez FM, Logan AG. Accurate measurement of impaired glomerular filtration using single-dose oral cimetidine.  Am J Kidney Dis. 1996;27(4):504-5118678060PubMedGoogle ScholarCrossref
16.
Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D.Modification of Diet in Renal Disease Study Group.  A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation.  Ann Intern Med. 1999;130(6):461-47010075613PubMedGoogle ScholarCrossref
17.
Toole JF, Malinow MR, Chambless LE,  et al.  Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial.  JAMA. 2004;291(5):565-57514762035PubMedGoogle ScholarCrossref
18.
Parving HH, Rossing P, Hommel E, Smidt UM. Angiotensin-converting enzyme inhibition in diabetic nephropathy: ten years' experience.  Am J Kidney Dis. 1995;26(1):99-1077611276PubMedGoogle ScholarCrossref
19.
Dayal S, Lentz SR. Murine models of hyperhomocysteinemia and their vascular phenotypes.  Arterioscler Thromb Vasc Biol. 2008;28(9):1596-160518556571PubMedGoogle ScholarCrossref
20.
McCully KS. Hyperhomocysteinemia and arteriosclerosis: historical perspectives.  Clin Chem Lab Med. 2005;43(10):980-98616197285PubMedGoogle ScholarCrossref
21.
Majors AK, Sengupta S, Willard B, Kinter MT, Pyeritz RE, Jacobsen DW. Homocysteine binds to human plasma fibronectin and inhibits its interaction with fibrin.  Arterioscler Thromb Vasc Biol. 2002;22(8):1354-135912171800PubMedGoogle ScholarCrossref
22.
Hajjar KA, Mauri L, Jacovina AT,  et al.  Tissue plasminogen activator binding to the annexin II tail domain: direct modulation by homocysteine.  J Biol Chem. 1998;273(16):9987-99939545344PubMedGoogle ScholarCrossref
23.
Poddar R, Sivasubramanian N, DiBello PM, Robinson K, Jacobsen DW. Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells: implications for vascular disease.  Circulation. 2001;103(22):2717-272311390343PubMedGoogle ScholarCrossref
24.
Homocysteine Studies Collaboration.  Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis.  JAMA. 2002;288(16):2015-202212387654PubMedGoogle ScholarCrossref
25.
Bønaa KH, Njolstad I, Ueland PM,  et al; NORVIT Trial Investigators.  Homocysteine lowering and cardiovascular events after acute myocardial infarction.  N Engl J Med. 2006;354(15):1578-158816531614PubMedGoogle ScholarCrossref
26.
Ebbing M, Bleie O, Ueland PM,  et al.  Mortality and cardiovascular events in patients treated with homocysteine-lowering B vitamins after coronary angiography: a randomized controlled trial.  JAMA. 2008;300(7):795-80418714059PubMedGoogle ScholarCrossref
27.
Lonn E, Yusuf S, Arnold MJ,  et al; Heart Outcomes Prevention Evaluation (HOPE) 2 Investigators.  Homocysteine lowering with folic acid and B vitamins in vascular disease.  N Engl J Med. 2006;354(15):1567-157716531613PubMedGoogle ScholarCrossref
28.
Albert CM, Cook NR, Gaziano JM,  et al.  Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: a randomized trial.  JAMA. 2008;299(17):2027-203618460663PubMedGoogle ScholarCrossref
29.
Mallett C, House AA, Spence JD, Fenster A, Parraga G. Longitudinal ultrasound evaluation of carotid atherosclerosis in one, two and three dimensions.  Ultrasound Med Biol. 2009;35(3):367-37518996639PubMedGoogle ScholarCrossref
30.
Spence JD. Homocysteine-lowering therapy: a role in stroke prevention?  Lancet Neurol. 2007;6(9):830-83817706567PubMedGoogle ScholarCrossref
31.
Imasa MS, Gomez NT, Nevado JB Jr. Folic acid-based intervention in non-ST elevation acute coronary syndromes.  Asian Cardiovasc Thorac Ann. 2009;17(1):13-2119515873PubMedGoogle ScholarCrossref
32.
Ebbing M, Bonaa KH, Nygard O,  et al.  Cancer incidence and mortality after treatment with folic acid and vitamin B12 JAMA. 2009;302(19):2119-212619920236PubMedGoogle ScholarCrossref
33.
Loscalzo J. Homocysteine trials: clear outcomes for complex reasons.  N Engl J Med. 2006;354(15):1629-163216531615PubMedGoogle ScholarCrossref
34.
Urquhart BL, Freeman DJ, Spence JD, House AA. Mesna as a nonvitamin intervention to lower plasma total homocysteine concentration: implications for assessment of the homocysteine theory of atherosclerosis.  J Clin Pharmacol. 2007;47(8):991-99717615252PubMedGoogle ScholarCrossref
Original Contribution
April 28, 2010

Effect of B-Vitamin Therapy on Progression of Diabetic Nephropathy: A Randomized Controlled Trial

Author Affiliations

Author Affiliations: Division of Nephrology (Dr House), Division of Clinical Pharmacology (Drs Dresser and Spence), and Robarts Research Institute (Dr Spence), University of Western Ontario, London, Ontario; Department of Community Health Sciences, Clinical Neurosciences, and Oncology, University of Calgary, Calgary, Alberta (Dr Eliasziw); Division of Nephrology, University of Toronto, Toronto, Ontario (Drs Cattran and Oliver); Division of Nephrology, McMaster University, Hamilton, Ontario (Dr Churchill); and Division of Nephrology, University of Manitoba, Winnipeg, Manitoba (Dr Fine), Canada.

JAMA. 2010;303(16):1603-1609. doi:10.1001/jama.2010.490
Abstract

Context Hyperhomocysteinemia is frequently observed in patients with diabetic nephropathy. B-vitamin therapy (folic acid, vitamin B6, and vitamin B12) has been shown to lower the plasma concentration of homocysteine.

Objective To determine whether B-vitamin therapy can slow progression of diabetic nephropathy and prevent vascular complications.

Design, Setting, and Participants A multicenter, randomized, double-blind, placebo-controlled trial (Diabetic Intervention with Vitamins to Improve Nephropathy [DIVINe]) at 5 university medical centers in Canada conducted between May 2001 and July 2007 of 238 participants who had type 1 or 2 diabetes and a clinical diagnosis of diabetic nephropathy.

Intervention Single tablet of B vitamins containing folic acid (2.5 mg/d), vitamin B6 (25 mg/d), and vitamin B12 (1 mg/d), or matching placebo.

Main Outcome Measures Change in radionuclide glomerular filtration rate (GFR) between baseline and 36 months. Secondary outcomes were dialysis and a composite of myocardial infarction, stroke, revascularization, and all-cause mortality. Plasma total homocysteine was also measured.

Results The mean (SD) follow-up during the trial was 31.9 (14.4) months. At 36 months, radionuclide GFR decreased by a mean (SE) of 16.5 (1.7) mL/min/1.73 m2 in the B-vitamin group compared with 10.7 (1.7) mL/min/1.73 m2 in the placebo group (mean difference, −5.8; 95% confidence interval [CI], −10.6 to −1.1; P = .02). There was no difference in requirement of dialysis (hazard ratio [HR], 1.1; 95% CI, 0.4-2.6; P = .88). The composite outcome occurred more often in the B-vitamin group (HR, 2.0; 95% CI, 1.0-4.0; P = .04). Plasma total homocysteine decreased by a mean (SE) of 2.2 (0.4) μmol/L at 36 months in the B-vitamin group compared with a mean (SE) increase of 2.6 (0.4) μmol/L in the placebo group (mean difference, −4.8; 95% CI, −6.1 to −3.7; P < .001, in favor of B vitamins).

Conclusion Among patients with diabetic nephropathy, high doses of B vitamins compared with placebo resulted in a greater decrease in GFR and an increase in vascular events.

Trial Registration isrctn.org Identifier: ISRCTN41332305

×