Clinical Outbreak of Linezolid-Resistant Staphylococcus aureus in an Intensive Care Unit | Critical Care Medicine | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
MacKenzie FM, Bruce J, Struelens MJ,  et al;  ARPAC Steering Group.  Antimicrobial drug use and infection control practices associated with the prevalence of methicillin-resistant Staphylococcus aureus in European hospitals.  Clin Microbiol Infect. 2007;13(3):269-27617391381PubMedGoogle ScholarCrossref
Klevens RM, Morrison MA, Nadle J,  et al; Active Bacterial Core surveillance (ABCs) MRSA Investigators.  Invasive methicillin-resistant Staphylococcus aureus infections in the United States.  JAMA. 2007;298(15):1763-177117940231PubMedGoogle ScholarCrossref
Alvarez-Lerma F, Palomar M, Olaechea P, Otal JJ,  et al; Grupo de Estudio de Vigilacia de Infección Nosocomial en UCI.  National study of control of nosocomial infection in intensive care units.  Med Intensiva. 2007;31(1):6-1717306135PubMedGoogle ScholarCrossref
Cabezas-Martín MH, De Castro-Martínez J, Maroto-Rodríguez B. Vigilancia epidemiológica de la infección/colonización por Staphylococcus aureus resistente a meticilina en una unidad de cuidados intensivos polivalente (1994-2004).  Med Intensiva. 2006;30:Abstract P282Google Scholar
American Thoracic Society; Infectious Diseases Society of America.  Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia.  Am J Respir Crit Care Med. 2005;171(4):388-41615699079PubMedGoogle ScholarCrossref
Diekema DJ, Jones RN. Oxazolidinone antibiotics.  Lancet. 2001;358(9297):1975-198211747939PubMedGoogle ScholarCrossref
Kollef MH, Rello J, Cammarata SK,  et al.  Clinical cure and survival in gram-positive ventilator-associated pneumonia.  Intensive Care Med. 2004;30(3):388-39414714107PubMedGoogle ScholarCrossref
Howden BP, Ward PB, Charles PG,  et al.  Treatment outcomes for serious infections caused by methicillin-resistant Staphylococcus aureus with reduced vancomycin susceptibility.  Clin Infect Dis. 2004;38(4):521-52814765345PubMedGoogle ScholarCrossref
Tsiodras S, Gold HS, Sakoulas G,  et al.  Linezolid resistance in a clinical isolate of Staphylococcus aureus.  Lancet. 2001;358(9277):207-20811476839PubMedGoogle ScholarCrossref
Kelly S, Collins J, Maguire M,  et al.  An outbreak of colonization with linezolid-resistant Staphylococcus epidermidis in an intensive therapy unit.  J Antimicrob Chemother. 2008;61(4):901-90718272512PubMedGoogle ScholarCrossref
Treviño M, Martinez-Lamas L, Romero-Jung PA,  et al.  Endemic linezolid-resistant Staphylococcus epidermidis in a critical care unit.  Eur J Clin Microbiol Infect Dis. 2009;28(5):527-53318985396PubMedGoogle ScholarCrossref
Burleson BS, Ritchie DJ, Micek ST, Dunne WM. Enterococcus faecalis resistant to linezolid.  Pharmacotherapy. 2004;24(9):1225-123115460184PubMedGoogle ScholarCrossref
Scheetz MH, Knechtel SA, Malczynski M,  et al.  Increasing incidence of linezolid-intermediate or -resistant, vancomycin-resistant Enterococcus faecium strains parallels increasing linezolid consumption.  Antimicrob Agents Chemother. 2008;52(6):2256-225918391028PubMedGoogle ScholarCrossref
Long KS, Poehlsgaard J, Kehrenberg C,  et al.  The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics.  Antimicrob Agents Chemother. 2006;50(7):2500-250516801432PubMedGoogle ScholarCrossref
Mendes RE, Deshpande LM, Castanheira M,  et al.  First report of cfr-mediated resistance to linezolid in human Staphylococcal clinical isolates recovered in the United States.  Antimicrob Agents Chemother. 2008;52(6):2244-224618391032PubMedGoogle ScholarCrossref
Schulte B, Heininger A, Autenrieth IB, Wolz C. Emergence of increasing linezolid-resistance in Enterococci in a post-outbreak situation with vancomycin-resistant Enterococcus faecium.  Epidemiol Infect. 2008;136(8):1131-113317892630PubMedGoogle ScholarCrossref
Rahim S, Pillai SK, Gold HS,  et al.  Linezolid-resistant, vancomycin-resistant Enterococcus faecium infection in patients without prior exposure to linezolid.  Clin Infect Dis. 2003;36(11):E146-E14812766857PubMedGoogle ScholarCrossref
Ruggero KA, Schroeder LK, Schreckenberger PC,  et al.  Nosocomial superinfections due to linezolid-resistant Enterococcus faecalis Diagn Microbiol Infect Dis. 2003;47(3):511-51314596970PubMedGoogle ScholarCrossref
Cuevas O, Cercenado E, Goyanes MJ,  et al; Grupo Español para el Estudio de Estafilococo.  Staphylococcus spp in Spain.  Enferm Infecc Microbiol Clin. 2008;26(5):269-27718479643PubMedGoogle ScholarCrossref
Jones RN, Kohno S, Ono Y,  et al.  ZAAPS International Surveillance Program (2007) for linezolid resistance.  Diagn Microbiol Infect Dis. 2009;64(2):191-20119500528PubMedGoogle ScholarCrossref
Jones RN, Ross JE, Castanheira M, Mendes RE. United States resistance surveillance results for linezolid (LEADER Program for 2007).  Diagn Microbiol Infect Dis. 2008;62(4):416-42619022153PubMedGoogle ScholarCrossref
Clinical and Laboratory Standards Institute.  Performance standards for antimicrobial susceptibility testing. In: 17th Informational Supplement Document; 2008
Murchan S, Kaufmann ME, Deplano A,  et al.  Harmonization of pulsed-field gel electrophoresis protocols for epidemiological typing of strains of methicillin-resistant Staphylococcus aureus J Clin Microbiol. 2003;41(4):1574-158512682148PubMedGoogle ScholarCrossref
Struelens MJ, Deplano A, Godard C,  et al.  Epidemiologic typing and delineation of genetic relatedness of methicillin-resistant Staphylococcus aureus by macrorestriction analysis of genomic DNA by using pulsed-field gel electrophoresis.  J Clin Microbiol. 1992;30(10):2599-26051328279PubMedGoogle Scholar
Tenover FC, Arbeit RD, Goering RV,  et al.  Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis.  J Clin Microbiol. 1995;33(9):2233-22397494007PubMedGoogle Scholar
Morales G, Picazo JJ, Baos E,  et al.  Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus Clin Infect Dis. 2010;50(6):821-82520144045PubMedGoogle ScholarCrossref
Vincent JL, Moreno R, Takala J,  et al; Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine.  The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure.  Intensive Care Med. 1996;22(7):707-7108844239PubMedGoogle ScholarCrossref
Paterson DL, Pasculle AW, McCurry K. Linezolid: the first oxazolidinone antimicrobial.  Ann Intern Med. 2003;139(10):863-86414623626PubMedGoogle ScholarCrossref
Meka VG, Pillai SK, Sakoulas G,  et al.  Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA.  J Infect Dis. 2004;190(2):311-31715216466PubMedGoogle ScholarCrossref
Meka VG, Gold HS, Cooke A,  et al.  Reversion to susceptibility in a linezolid-resistant clinical isolate of Staphylococcus aureus.  J Antimicrob Chemother. 2004;54(4):818-82015347637PubMedGoogle ScholarCrossref
Peeters MJ, Sarria JC. Clinical characteristics of linezolid-resistant Staphylococcus aureus infections.  Am J Med Sci. 2005;330(2):102-10416103790PubMedGoogle ScholarCrossref
Roberts SM, Freeman AF, Harrington SM,  et al.  Linezolid-resistant Staphylococcus aureus in two pediatric patients receiving low-dose linezolid therapy.  Pediatr Infect Dis J. 2006;25(6):562-56416732160PubMedGoogle ScholarCrossref
Kola A, Kirschner P, Gohrbandt B,  et al.  An infection with linezolid-resistant S. aureus in a patient with left ventricular assist system.  Scand J Infect Dis. 2007;39(5):463-46517464873PubMedGoogle ScholarCrossref
Hentschke M, Saager B, Horstkotte MA,  et al.  Emergence of linezolid resistance in a methicillin resistant Staphylococcus aureus strain.  Infection. 2008;36(1):85-8718165857PubMedGoogle ScholarCrossref
Wilson P, Andrews JA, Charlesworth R,  et al.  Linezolid resistance in clinical isolates of Staphylococcus aureus.  J Antimicrob Chemother. 2003;51(1):186-18812493812PubMedGoogle ScholarCrossref
Gales AC, Sader HS, Andrade SS,  et al.  Emergence of linezolid-resistant Staphylococcus aureus during treatment of pulmonary infection in a patient with cystic fibrosis.  Int J Antimicrob Agents. 2006;27(4):300-30216527459PubMedGoogle ScholarCrossref
Toh SM, Xiong L, Arias CA,  et al.  Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid.  Mol Microbiol. 2007;64(6):1506-151417555436PubMedGoogle ScholarCrossref
Miller K, O'Neill AJ, Wilcox MH,  et al.  Delayed development of linezolid resistance in Staphylococcus aureus following exposure to low levels of antimicrobial agents.  Antimicrob Agents Chemother. 2008;52(6):1940-194418378719PubMedGoogle ScholarCrossref
Caring for the Critically Ill Patient
June 9, 2010

Clinical Outbreak of Linezolid-Resistant Staphylococcus aureus in an Intensive Care Unit

Author Affiliations

Author Affiliations: Intensive Care Department (Drs Sánchez García, De la Torre, Tolón, Domingo, and Martínez Sagasti), Microbiology Service (Drs Morales, Candel, Arribi, and Picazo), and Preventive Medicine Service (Drs Peláez, Andrade, García, and Fereres), Hospital Clínico San Carlos and Universidad Complutense, Madrid, Spain.

JAMA. 2010;303(22):2260-2264. doi:10.1001/jama.2010.757

Context Linezolid resistance is extremely uncommon in Staphylococcus aureus.

Objective To report an outbreak with linezolid and methicillin-resistant S aureus (LRSA) in an intensive care department and the effective control measures taken.

Design, Setting, and Patients Outbreak study of consecutive critically ill patients colonized and/or infected with LRSA at an intensive care department of a 1000-bed tertiary care university teaching hospital in Madrid, Spain. Patients were placed under strict contact isolation. Daily updates of outbreak data and recommendations for the use of linezolid were issued. Extensive environmental sampling and screening of the hands of health care workers were performed.

Main Outcome Measures Linezolid use and clinical and epidemiological characteristics and outcomes using minimal inhibitory concentrations, pulsed-field gel electrophoresis, and polymerase chain reaction of LRSA isolates.

Results Between April 13 and June 26, 2008, 12 patients with LRSA were identified. In 6 patients, LRSA caused ventilator-associated pneumonia and in 3 patients it caused bacteremia. Isolates were susceptible to trimethoprim-sulfamethoxazole, glycopeptides, tigecycline, and daptomycin. Genotyping identified 1 predominant clone and 3 other types. Cfr-mediated linezolid resistance was demonstrated in all isolates. Potential hospital staff carriers and environmental samples were negative except for one. Six patients died, 5 of them in the intensive care unit, with 1 death attributed to LRSA infection. Linezolid use decreased from 202 defined daily doses in April 2008 to 25 defined daily doses in July 2008. Between July 2008 and April 2010, no new cases have been identified in the weekly surveillance cultures or diagnostic samples.

Conclusions The first clinical outbreak, to our knowledge, with LRSA mediated by the cfr gene developed at our center, was associated with nosocomial transmission and extensive usage of linezolid. Reduction of linezolid use and infection-control measures were associated with the termination of the outbreak.