Cerebral Palsy Among Term and Postterm Births | Neurology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Mesterman R, Leitner Y, Yifat R,  et al.  Cerebral palsy—long-term medical, functional, educational, and psychosocial outcomes.  J Child Neurol. 2010;25(1):36-4219502577PubMedGoogle ScholarCrossref
Krägeloh-Mann I, Cans C. Cerebral palsy update.  Brain Dev. 2009;31(7):537-54419386453PubMedGoogle ScholarCrossref
Pakula AT, Van Naarden Braun K, Yeargin-Allsopp M. Cerebral palsy: classification and epidemiology.  Phys Med Rehabil Clin N Am. 2009;20(3):425-45219643346PubMedGoogle ScholarCrossref
Rosenbaum P, Paneth N, Leviton A,  et al.  A report: the definition and classification of cerebral palsy April 2006.  Dev Med Child Neurol Suppl. 2007;109:8-1417370477PubMedGoogle Scholar
Nelson KB. Preventing cerebral palsy: paths not (yet) taken.  Dev Med Child Neurol. 2009;51(10):765-76619747279PubMedGoogle ScholarCrossref
Nelson KB. Causative factors in cerebral palsy.  Clin Obstet Gynecol. 2008;51(4):749-76218981800PubMedGoogle ScholarCrossref
Perlman JM. Intrapartum asphyxia and cerebral palsy: is there a link?  Clin Perinatol. 2006;33(2):335-35316765728PubMedGoogle ScholarCrossref
Moster D, Lie RT, Markestad T. Long-term medical and social consequences of preterm birth.  N Engl J Med. 2008;359(3):262-27318635431PubMedGoogle ScholarCrossref
Irgens LM. The Medical Birth Registry of Norway: epidemiological research and surveillance throughout 30 years.  Acta Obstet Gynecol Scand. 2000;79(6):435-43910857866PubMedGoogle ScholarCrossref
Skjaerven R, Gjessing HK, Bakketeig LS. Birthweight by gestational age in Norway.  Acta Obstet Gynecol Scand. 2000;79(6):440-44910857867PubMedGoogle ScholarCrossref
Rankin J, Cans C, Garne E,  et al.  Congenital anomalies in children with cerebral palsy: a population-based record linkage study.  Dev Med Child Neurol. 2010;52(4):345-35119737295PubMedGoogle ScholarCrossref
World Health Organization.  International Classification of Diseases (ICD). http://www.who.int/classifications/icd/en/. Accessed July 22, 2010
The Norwegian Labour and Welfare Administration.  Membership of the national insurance scheme. http://www.nav.no/English/Membership+in+The+National+Insurance+Scheme. Accessed July 22, 2010
Norwegian Ministry of Labour.  Survey: the Norwegian Social Insurance Scheme, January 2010. http://www.regjeringen.no/upload/AD/publikasjoner/veiledninger_brosjyrer/2010/DNT_2010_eng.pdf. Accessed July 22, 2010
Moster D, Lie RT, Irgens LM, Bjerkedal T, Markestad T. The association of Apgar score with subsequent death and cerebral palsy: a population-based study in term infants.  J Pediatr. 2001;138(6):798-80311391319PubMedGoogle ScholarCrossref
Blair E, Stanley F. The epidemiology of the cerebral palsies. In: Levene M, Chervenak F, eds. Fetal and Neonatal Neurology and Neurosurgery. 4th ed. Edinburgh, UK: Churchill Livingstone Elsevier; 2009:867-875
Paneth N. Establishing the diagnosis of cerebral palsy.  Clin Obstet Gynecol. 2008;51(4):742-74818981799PubMedGoogle ScholarCrossref
Statistics Norway.  This is Statistics Norway—an institution that counts. http://www.ssb.no/english/about_ssb/this_is_ssb. Accessed August 11, 2010
Lynch CD, Zhang J. The research implications of the selection of a gestational age estimation method.  Paediatr Perinat Epidemiol. 2007;21:(Suppl 2)  86-9617803622PubMedGoogle ScholarCrossref
Backe B. Routine ultrasonography in obstetric care in Norway, 1994.  Tidsskr Nor Laegeforen. 1997;117(16):2314-23159265273PubMedGoogle Scholar
Robertson CM, Watt MJ, Dinu IA. Outcomes for the extremely premature infant: what is new? And where are we going?  Pediatr Neurol. 2009;40(3):189-19619218032PubMedGoogle ScholarCrossref
Allen MC. Neurodevelopmental outcomes of preterm infants.  Curr Opin Neurol. 2008;21(2):123-12818317268PubMedGoogle ScholarCrossref
Hack M, Costello DW. Trends in the rates of cerebral palsy associated with neonatal intensive care of preterm children.  Clin Obstet Gynecol. 2008;51(4):763-77418981801PubMedGoogle ScholarCrossref
Himpens E, Van den Broeck C, Oostra A, Calders P, Vanhaesebrouck P. Prevalence, type, distribution, and severity of cerebral palsy in relation to gestational age: a meta-analytic review.  Dev Med Child Neurol. 2008;50(5):334-34018355333PubMedGoogle ScholarCrossref
Msall ME. The panorama of cerebral palsy after very and extremely preterm birth: evidence and challenges.  Clin Perinatol. 2006;33(2):269-28416765724PubMedGoogle ScholarCrossref
Yang S, Platt RW, Kramer MS. Variation in child cognitive ability by week of gestation among healthy term births.  Am J Epidemiol. 2010;171(4):399-40620080810PubMedGoogle ScholarCrossref
Nelson KB, Ellenberg JH. Antecedents of cerebral palsy, 1: univariate analysis of risks.  Am J Dis Child. 1985;139(10):1031-10384036890PubMedGoogle Scholar
Nelson KB, Ellenberg JH. Antecedents of cerebral palsy: multivariate analysis of risk.  N Engl J Med. 1986;315(2):81-863724803PubMedGoogle ScholarCrossref
Torfs CP, van den Berg B, Oechsli FW, Cummins S. Prenatal and perinatal factors in the etiology of cerebral palsy.  J Pediatr. 1990;116(4):615-6192181101PubMedGoogle ScholarCrossref
Walstab J, Bell R, Reddihough D, Brennecke S, Bessell C, Beischer N. Antenatal and intrapartum antecedents of cerebral palsy: a case-control study.  Aust N Z J Obstet Gynaecol. 2002;42(2):138-14612069139PubMedGoogle ScholarCrossref
Thorngren-Jerneck K, Herbst A. Perinatal factors associated with cerebral palsy in children born in Sweden.  Obstet Gynecol. 2006;108(6):1499-150517138786PubMedGoogle ScholarCrossref
Kamel RM. The onset of human parturition.  Arch Gynecol Obstet. 2010;281(6):975-98220127346PubMedGoogle ScholarCrossref
Chaudhari BP, Plunkett J, Ratajczak CK, Shen TT, DeFranco EA, Muglia LJ. The genetics of birth timing: insights into a fundamental component of human development.  Clin Genet. 2008;74(6):493-50119037974PubMedGoogle ScholarCrossref
Mannino F. Neonatal complications of postterm gestation.  J Reprod Med. 1988;33(3):271-2763361517PubMedGoogle Scholar
Shea KM, Wilcox AJ, Little RE. Postterm delivery: a challenge for epidemiologic research.  Epidemiology. 1998;9(2):199-2049504291PubMedGoogle ScholarCrossref
Jones KL. Trisomy 18 syndrome. In: Smith's Recognizable Patterns of Human Malformation. 6th ed. Philadelphia, PA: Elsevier Saunders; 2006:13-15
Weijerman ME, van Furth AM, Vonk Noordegraaf A, van Wouwe JP, Broers CJ, Gemke RJ. Prevalence, neonatal characteristics, and first-year mortality of Down syndrome: a national study.  J Pediatr. 2008;152(1):15-1918154890PubMedGoogle ScholarCrossref
Montenegro MA, Cendes F, Saito H,  et al.  Intrapartum complications associated with malformations of cortical development.  J Child Neurol. 2005;20(8):675-67816225814PubMedGoogle ScholarCrossref
Gülmezoglu AM, Crowther CA, Middleton P. Induction of labour for improving birth outcomes for women at or beyond term.  Cochrane Database Syst Rev. 2006;(4):CD00494517054226PubMedGoogle Scholar
Original Contribution
Clinician's Corner
September 1, 2010

Cerebral Palsy Among Term and Postterm Births

Author Affiliations

Author Affiliations: Department of Public Health and Primary Health Care (Drs Moster, Vollset, and Lie) and Department of Clinical Medicine, Section for Pediatrics (Dr Markestad), University of Bergen, Bergen, Norway; Department of Pediatrics, Haukeland University Hospital, Bergen, Norway (Drs Moster and Markestad); Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina (Dr Wilcox); and Medical Birth Registry of Norway, Norwegian Institute of Public Health, Bergen (Drs Vollset and Lie).

JAMA. 2010;304(9):976-982. doi:10.1001/jama.2010.1271

Context Although preterm delivery is a well-established risk factor for cerebral palsy (CP), preterm deliveries contribute only a minority of affected infants. There is little information on the relation of CP risk to gestational age in the term range, where most CP occurs.

Objective To determine whether timing of birth in the term and postterm period is associated with risk of CP.

Design, Setting, and Participants Population-based follow-up study using the Medical Birth Registry of Norway to identify 1 682 441 singleton children born in the years 1967-2001 with a gestational age of 37 through 44 weeks and no congenital anomalies. The cohort was followed up through 2005 by linkage to other national registries.

Main Outcome Measures Absolute and relative risk of CP for children surviving to at least 4 years of age.

Results Of the cohort of term and postterm children, 1938 were registered with CP in the National Insurance Scheme. Infants born at 40 weeks had the lowest risk of CP, with a prevalence of 0.99/1000 (95% confidence interval [CI], 0.90-1.08). Risk for CP was higher with earlier or later delivery, with a prevalence at 37 weeks of 1.91/1000 (95% CI, 1.58-2.25) and a relative risk (RR) of 1.9 (95% CI, 1.6-2.4), a prevalence at 38 weeks of 1.25/1000 (95% CI, 1.07-1.42) and an RR of 1.3 (95% CI, 1.1-1.6), a prevalence at 42 weeks of 1.36/1000 (95% CI, 1.19-1.53) and an RR of 1.4 (95% CI, 1.2-1.6), and a prevalence after 42 weeks of 1.44 (95% CI, 1.15-1.72) and an RR of 1.4 (95% CI, 1.1-1.8). These associations were even stronger in a subset with gestational age based on ultrasound measurements: at 37 weeks the prevalence was 1.17/1000 (95% CI, 0.30-2.04) and the relative risk was 3.7 (95% CI, 1.5-9.1). At 42 weeks the prevalence was 0.85/1000 (95% CI, 0.33-1.38) and the relative risk was 2.4 (95% CI, 1.1-5.3). Adjustment for infant sex, maternal age, and various socioeconomic measures had little effect.

Conclusion Compared with delivery at 40 weeks' gestation, delivery at 37 or 38 weeks or at 42 weeks or later was associated with an increased risk of CP.