Relationship Between Patient Panel Characteristics and Primary Care Physician Clinical Performance Rankings | Electronic Health Records | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.239.150.57. Please contact the publisher to request reinstatement.
1.
McGlynn EA, Asch SM, Adams J,  et al.  The quality of health care delivered to adults in the United States.  N Engl J Med. 2003;348(26):2635-264512826639PubMedGoogle ScholarCrossref
2.
Fisher ES, Wennberg DE, Stukel TA,  et al.  The implications of regional variations in Medicare spending, part 2: health outcomes and satisfaction with care.  Ann Intern Med. 2003;138(4):288-29812585826PubMedGoogle ScholarCrossref
3.
Fisher ES, Wennberg DE, Stukel TA,  et al.  The implications of regional variations in Medicare spending, part 1: the content, quality, and accessibility of care.  Ann Intern Med. 2003;138(4):273-28712585825PubMedGoogle ScholarCrossref
4.
Rosenthal MB, Landon BE, Normand SL,  et al.  Pay for performance in commercial HMOs.  N Engl J Med. 2006;355(18):1895-190217079763PubMedGoogle ScholarCrossref
5.
Rosenthal MB, Fernandopulle R, Song HR, Landon B. Paying for quality: providers' incentives for quality improvement.  Health Aff (Millwood). 2004;23(2):127-14115046137PubMedGoogle ScholarCrossref
6.
Chien AT, Chin MH, Davis AM, Casalino LP. Pay for performance, public reporting, and racial disparities in health care: how are programs being designed?  Med Care Res Rev. 2007;64(5):(suppl)  283S-304S17881629PubMedGoogle ScholarCrossref
7.
Rosenthal MB, Frank RG, Li Z, Epstein AM. Early experience with pay-for-performance: from concept to practice.  JAMA. 2005;294(14):1788-179316219882PubMedGoogle ScholarCrossref
8.
Werner RM, Asch DA. The unintended consequences of publicly reporting quality information.  JAMA. 2005;293(10):1239-124415755946PubMedGoogle ScholarCrossref
9.
Atlas SJ, Grant RW, Ferris TG, Chang Y, Barry MJ. Patient-physician connectedness and quality of primary care.  Ann Intern Med. 2009;150(5):325-33519258560PubMedGoogle ScholarCrossref
10.
Atlas SJ, Chang Y, Lasko TA,  et al.  Is this “my” patient? development and validation of a predictive model to link patients to primary care providers.  J Gen Intern Med. 2006;21(9):973-97816918744PubMedGoogle ScholarCrossref
11.
Murphy SN, Chueh HC. A security architecture for query tools used to access large biomedical databases.  Proc AMIA Symp. 2002;552-55612463885PubMedGoogle Scholar
12.
Smedley BD, Stith AY, Nelson AR. Unequal Treatment: Confronting Racial and Ethnic Disparities in Health Care. Washington, DC: Institute of Medicine; 2003
13.
Virnig BA, Lurie N, Huang Z,  et al.  Racial variation in quality of care among Medicare+Choice enrollees.  Health Aff (Millwood). 2002;21(6):224-23012442860PubMedGoogle ScholarCrossref
14.
Schneider EC, Zaslavsky AM, Epstein AM. Racial disparities in the quality of care for enrollees in medicare managed care.  JAMA. 2002;287(10):1288-129411886320PubMedGoogle ScholarCrossref
15.
Schneider EC, Cleary PD, Zaslavsky AM, Epstein AM. Racial disparity in influenza vaccination: does managed care narrow the gap between African Americans and whites?  JAMA. 2001;286(12):1455-146011572737PubMedGoogle ScholarCrossref
16.
McBean AM, Huang Z, Virnig BA, Lurie N, Musgrave D. Racial variation in the control of diabetes among elderly medicare managed care beneficiaries.  Diabetes Care. 2003;26(12):3250-325614633810PubMedGoogle ScholarCrossref
17.
Fiscella K, Franks P, Gold MR, Clancy CM. Inequality in quality: addressing socioeconomic, racial, and ethnic disparities in health care.  JAMA. 2000;283(19):2579-258410815125PubMedGoogle ScholarCrossref
18.
Martin LM, Calle EE, Wingo PA, Heath CW Jr. Comparison of mammography and Pap test use from the 1987 and 1992 National Health Interview Surveys: are we closing the gaps?  Am J Prev Med. 1996;12(2):82-908777072PubMedGoogle Scholar
19.
Pearlman DN, Rakowski W, Ehrich B, Clark MA. Breast cancer screening practices among black, Hispanic, and white women: reassessing differences.  Am J Prev Med. 1996;12(5):327-3378909641PubMedGoogle Scholar
20.
Higashi T, Wenger NS, Adams JL,  et al.  Relationship between number of medical conditions and quality of care.  N Engl J Med. 2007;356(24):2496-250417568030PubMedGoogle ScholarCrossref
21.
Zaslavsky AM, Epstein AM. How patients' sociodemographic characteristics affect comparisons of competing health plans in California on HEDIS quality measures.  Int J Qual Health Care. 2005;17(1):67-7415668313PubMedGoogle ScholarCrossref
22.
Mehta RH, Liang L, Karve AM,  et al.  Association of patient case-mix adjustment, hospital process performance rankings, and eligibility for financial incentives.  JAMA. 2008;300(16):1897-190318940976PubMedGoogle ScholarCrossref
23.
Fisher ES. Paying for performance—risks and recommendations.  N Engl J Med. 2006;355(18):1845-184717079757PubMedGoogle ScholarCrossref
24.
Karve AM, Ou FS, Lytle BL, Peterson ED. Potential unintended financial consequences of pay-for-performance on the quality of care for minority patients.  Am Heart J. 2008;155(3):571-57618294498PubMedGoogle ScholarCrossref
25.
Casalino LP, Elster A, Eisenberg A,  et al.  Will pay-for-performance and quality reporting affect health care disparities?  Health Aff (Millwood). 2007;26(3):w405-w41417426053PubMedGoogle ScholarCrossref
26.
Wharam JF, Paasche-Orlow MK, Farber NJ,  et al.  High quality care and ethical pay-for-performance: a Society of General Internal Medicine policy analysis.  J Gen Intern Med. 2009;24(7):854-85919294471PubMedGoogle ScholarCrossref
27.
Salem-Schatz S, Moore G, Rucker M, Pearson SD. The case for case-mix adjustment in practice profiling: when good apples look bad.  JAMA. 1994;272(11):871-8748078165PubMedGoogle ScholarCrossref
28.
Friedberg MW, Coltin KL, Safran DG,  et al.  Associations between structural capabilities of primary care practices and performance on selected quality measures.  Ann Intern Med. 2009;151(7):456-46319805769PubMedGoogle ScholarCrossref
29.
Poon EG, Wright A, Simon SR,  et al.  Relationship between use of electronic health record features and health care quality: results of a statewide survey.  Med Care. 2010;48(3):203-20920125047PubMedGoogle ScholarCrossref
30.
Reeves D, Campbell SM, Adams J,  et al.  Combining multiple indicators of clinical quality: an evaluation of different analytic approaches.  Med Care. 2007;45(6):489-49617515775PubMedGoogle ScholarCrossref
31.
Gandhi TK, Francis EC, Puopolo AL,  et al.  Inconsistent report cards: assessing the comparability of various measures of the quality of ambulatory care.  Med Care. 2002;40(2):155-16511802088PubMedGoogle ScholarCrossref
32.
Rosenthal GE. Weak associations between hospital mortality rates for individual diagnoses: implications for profiling hospital quality.  Am J Public Health. 1997;87(3):429-4339096547PubMedGoogle ScholarCrossref
33.
Wilson IB, Landon BE, Marsden PV,  et al.  Correlations among measures of quality in HIV care in the United States: cross sectional study.  BMJ. 2007;335(7629):108517967826PubMedGoogle ScholarCrossref
34.
Gonzalez ML. Socioeconomic Characteristics of Medical Practice 1997. Chicago, IL: American Medical Association; 1997
35.
Greenfield S, Kaplan SH, Kahn R, Ninomiya J, Griffith JL. Profiling care provided by different groups of physicians: effects of patient case-mix (bias) and physician-level clustering on quality assessment results.  Ann Intern Med. 2002;136(2):111-12111790062PubMedGoogle ScholarCrossref
36.
Kaplan SH, Griffith JL, Price LL, Pawlson LG, Greenfield S. Improving the reliability of physician performance assessment: identifying the “physician effect” on quality and creating composite measures.  Med Care. 2009;47(4):378-38719279511PubMedGoogle ScholarCrossref
Original Contribution
September 8, 2010

Relationship Between Patient Panel Characteristics and Primary Care Physician Clinical Performance Rankings

Author Affiliations

Author Affiliations: Schools of Medicine (Drs Hong, Atlas, Chang, Barry, and Grant) and Public Health (Dr Subramanian), Harvard University, Boston, Massachusetts; and General Medicine Division, Massachusetts General Hospital, Boston (Drs Hong, Atlas, Chang, Barry, and Grant, and Mr Ashburner).

JAMA. 2010;304(10):1107-1113. doi:10.1001/jama.2010.1287
Abstract

Context Physicians have increasingly become the focus of clinical performance measurement.

Objective To investigate the relationship between patient panel characteristics and relative physician clinical performance rankings within a large academic primary care network.

Design, Setting, and Participants Cohort study using data from 125 303 adult patients who had visited any of the 9 hospital-affiliated practices or 4 community health centers between January 1, 2003, and December 31, 2005, (162 primary care physicians in 1 physician organization linked by a common electronic medical record system in Eastern Massachusetts) to determine changes in physician quality ranking based on an aggregate of Health Plan Employer and Data Information Set (HEDIS) measures after adjusting for practice site, visit frequency, and patient panel characteristics.

Main Outcome Measures Composite physician clinical performance score based on 9 HEDIS quality measures (reported by percentile, with lower scores indicating higher quality).

Results Patients of primary care physicians in the top quality performance tertile compared with patients of primary care physicians in the bottom quality tertile were older (51.1 years [95% confidence interval {CI}, 49.6-52.6 years] vs 46.6 years [95% CI, 43.8-49.5 years], respectively; P < .001), had a higher number of comorbidities (0.91 [95% CI, 0.83-0.98] vs 0.80 [95% CI, 0.66-0.95]; P = .008), and made more frequent primary care practice visits (71.0% [95% CI, 68.5%-73.5%] vs 61.8% [95% CI, 57.3%-66.3%] with >3 visits/year; P = .003). Top tertile primary care physicians compared with the bottom tertile physicians had fewer minority patients (13.7% [95% CI, 10.6%-16.7%] vs 25.6% [95% CI, 20.2%-31.1%], respectively; P < .001), non–English-speaking patients (3.2% [95% CI, 0.7%-5.6%] vs 10.2% [95% CI, 5.5%-14.9%]; P <.001), and patients with Medicaid coverage or without insurance (9.6% [95% CI, 7.5%-11.7%] vs 17.2% [95% CI, 13.5%-21.0%]; P <.001). After accounting for practice site and visit frequency differences, adjusting for patient panel factors resulted in a relative mean change in physician rankings of 7.6 percentiles (95% CI, 6.6-8.7 percentiles) per primary care physician, with more than one-third (36%) of primary care physicians (59/162) reclassified into different quality tertiles.

Conclusion Among primary care physicians practicing within the same large academic primary care system, patient panels with greater proportions of underinsured, minority, and non–English-speaking patients were associated with lower quality rankings for primary care physicians.

×