Fructose-Rich Beverages and Risk of Gout in Women | Rheumatology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.175.212.130. Please contact the publisher to request reinstatement.
1.
Krishnan E, Baker JF, Furst DE, Schumacher HR. Gout and the risk of acute myocardial infarction.  Arthritis Rheum. 2006;54(8):2688-269616871533PubMedGoogle ScholarCrossref
2.
Choi HK, Curhan G. Independent impact of gout on mortality and risk for coronary heart disease.  Circulation. 2007;116(8):894-90017698728PubMedGoogle ScholarCrossref
3.
Roubenoff R, Klag MJ, Mead LA, Liang KY, Seidler AJ, Hochberg MC. Incidence and risk factors for gout in white men.  JAMA. 1991;266(21):3004-30071820473PubMedGoogle ScholarCrossref
4.
Choi HK, Atkinson K, Karlson EW, Willett WC, Curhan G. Purine-rich foods, dairy and protein intake, and the risk of gout in men.  N Engl J Med. 2004;350(11):1093-110315014182PubMedGoogle ScholarCrossref
5.
Lawrence RC, Felson DT, Helmick CG,  et al; National Arthritis Data Workgroup.  Estimates of the prevalence of arthritis and other rheumatic conditions in the United States, part II.  Arthritis Rheum. 2008;58(1):26-3518163497PubMedGoogle ScholarCrossref
6.
Arromdee E, Michet CJ, Crowson CS, O’Fallon WM, Gabriel SE. Epidemiology of gout: is the incidence rising?  J Rheumatol. 2002;29(11):2403-240612415600PubMedGoogle Scholar
7.
Apovian CM. Sugar-sweetened soft drinks, obesity, and type 2 diabetes.  JAMA. 2004;292(8):978-97915328331PubMedGoogle ScholarCrossref
8.
Stirpe F, Della Corte E, Bonetti E, Abbondanza A, Abbati A, De Stefano F. Fructose-induced hyperuricaemia.  Lancet. 1970;2(7686):1310-13114098798PubMedGoogle ScholarCrossref
9.
Emmerson BT. Effect of oral fructose on urate production.  Ann Rheum Dis. 1974;33(3):276-2804843132PubMedGoogle ScholarCrossref
10.
Perheentupa J, Raivio K. Fructose-induced hyperuricaemia.  Lancet. 1967;2(7515):528-5314166890PubMedGoogle ScholarCrossref
11.
Raivio KO, Becker A, Meyer LJ, Greene ML, Nuki G, Seegmiller JE. Stimulation of human purine synthesis de novo by fructose infusion.  Metabolism. 1975;24(7):861-869166270PubMedGoogle ScholarCrossref
12.
Gibson T, Rodgers AV, Simmonds HA, Court-Brown F, Todd E, Meilton V. A controlled study of diet in patients with gout.  Ann Rheum Dis. 1983;42(2):123-1276847259PubMedGoogle ScholarCrossref
13.
Choi HK, Curhan G. Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study.  BMJ. 2008;336(7639):309-31218244959PubMedGoogle ScholarCrossref
14.
Galipeau D, Verma S, McNeill JH. Female rats are protected against fructose-induced changes in metabolism and blood pressure.  Am J Physiol Heart Circ Physiol. 2002;283(6):H2478-H248412427595PubMedGoogle Scholar
15.
Choi JW, Ford ES, Gao X, Choi HK. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: the Third National Health and Nutrition Examination Survey.  Arthritis Rheum. 2008;59(1):109-11618163396PubMedGoogle ScholarCrossref
16.
Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals.  Am J Epidemiol. 1992;135(10):1114-11261632423PubMedGoogle Scholar
17.
Willett WC, Sampson L, Stampfer MJ,  et al.  Reproducibility and validity of a semiquantitative food frequency questionnaire.  Am J Epidemiol. 1985;122(1):51-654014201PubMedGoogle Scholar
18.
Choi HK, Atkinson K, Karlson EW, Willett WC, Curhan G. Alcohol intake and risk of incident gout in men: a prospective study.  Lancet. 2004;363(9417):1277-128115094272PubMedGoogle ScholarCrossref
19.
Choi HK, Atkinson K, Karlson EW, Curhan G. Obesity, weight change, hypertension, diuretic use, and risk of gout in men: the health professionals follow-up study.  Arch Intern Med. 2005;165(7):742-74815824292PubMedGoogle ScholarCrossref
20.
US Department of Agriculture.  Composition of Foods—Raw, Processed, and Prepared. Washington, DC: US Dept of Agriculture; 1993
21.
Park YK, Yetley EA. Intakes and food sources of fructose in the United States.  Am J Clin Nutr. 1993;58(5):(suppl)  737S-747S8213605PubMedGoogle Scholar
22.
Feskanich D, Rimm EB, Giovannucci EL,  et al.  Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire.  J Am Diet Assoc. 1993;93(7):790-7968320406PubMedGoogle ScholarCrossref
23.
Schulze MB, Manson JE, Ludwig DS,  et al.  Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women.  JAMA. 2004;292(8):927-93415328324PubMedGoogle ScholarCrossref
24.
Wallace SL, Robinson H, Masi AT, Decker JL, McCarty DJ, Yü TF. Preliminary criteria for the classification of the acute arthritis of primary gout.  Arthritis Rheum. 1977;20(3):895-900856219PubMedGoogle ScholarCrossref
25.
Hu FB, Stampfer MJ, Manson JE,  et al.  Dietary fat intake and the risk of coronary heart disease in women.  N Engl J Med. 1997;337(21):1491-14999366580PubMedGoogle ScholarCrossref
26.
Hu FB, Stampfer MJ, Manson JE,  et al.  Dietary protein and risk of ischemic heart disease in women.  Am J Clin Nutr. 1999;70(2):221-22710426698PubMedGoogle Scholar
27.
Willett W. Nutritional Epidemiology. 2nd ed. New York, NY: Oxford University Press; 1998
28.
Fox IH, Kelley WN. Studies on the mechanism of fructose-induced hyperuricemia in man.  Metabolism. 1972;21(8):713-7215047915PubMedGoogle ScholarCrossref
29.
Vasudevan H, Xiang H, McNeill JH. Differential regulation of insulin resistance and hypertension by sex hormones in fructose-fed male rats.  Am J Physiol Heart Circ Physiol. 2005;289(4):H1335-H134215951347PubMedGoogle ScholarCrossref
30.
Horton TJ, Gayles EC, Prach PA, Koppenhafer TA, Pagliassotti MJ. Female rats do not develop sucrose-induced insulin resistance.  Am J Physiol. 1997;272(5 Pt 2):R1571-R15769176349PubMedGoogle Scholar
31.
Gao X, Qi L, Qiao N,  et al.  Intake of added sugar and sugar-sweetened drink and serum uric acid concentration in US men and women.  Hypertension. 2007;50(2):306-31217592072PubMedGoogle ScholarCrossref
32.
Choi HK, Ford ES, Li C, Curhan G. Prevalence of the metabolic syndrome in patients with gout: the Third National Health and Nutrition Examination Survey.  Arthritis Rheum. 2007;57(1):109-11517266099PubMedGoogle ScholarCrossref
33.
Choi HK, Mount DB, Reginato AM.American College of Physicians; American Physiological Society.  Pathogenesis of gout.  Ann Intern Med. 2005;143(7):499-51616204163PubMedGoogle ScholarCrossref
34.
Fox IH. Metabolic basis for disorders of purine nucleotide degradation.  Metabolism. 1981;30(6):616-6346262603PubMedGoogle ScholarCrossref
35.
Nakagawa T, Tuttle KR, Short RA, Johnson RJ. Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome.  Nat Clin Pract Nephrol. 2005;1(2):80-8616932373PubMedGoogle ScholarCrossref
36.
Wu T, Giovannucci E, Pischon T,  et al.  Fructose, glycemic load, and quantity and quality of carbohydrate in relation to plasma C-peptide concentrations in US women.  Am J Clin Nutr. 2004;80(4):1043-104915447918PubMedGoogle Scholar
37.
Thorburn AW, Storlien LH, Jenkins AB, Khouri S, Kraegen EW. Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats.  Am J Clin Nutr. 1989;49(6):1155-11632658534PubMedGoogle Scholar
38.
Beck-Nielsen H, Pedersen O, Lindskov HO. Impaired cellular insulin binding and insulin sensitivity induced by high-fructose feeding in normal subjects.  Am J Clin Nutr. 1980;33(2):273-2786986758PubMedGoogle Scholar
39.
Fam AG. Gout, diet, and the insulin resistance syndrome.  J Rheumatol. 2002;29(7):1350-135512136887PubMedGoogle Scholar
40.
Osler W. Gout. In: Principles and Practice of Medicine. 2nd ed. New York, NY: Appleton; 1893:287-295
Citations 0
Original Contribution
November 24, 2010

Fructose-Rich Beverages and Risk of Gout in Women

Author Affiliations

Authors Affiliations: Section of Rheumatology and Clinical Epidemiology Unit, Boston University School of Medicine (Dr Choi), Channing Laboratory (Drs Choi, Willett, and Curhan), Department of Epidemiology, Harvard School of Public Health (Drs Willett and Curhan), and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School (Dr Curhan), Boston, Massachusetts.

JAMA. 2010;304(20):2270-2278. doi:10.1001/jama.2010.1638
Abstract

Context Fructose-rich beverages such as sugar-sweetened soda and orange juice can increase serum uric acid levels and, thus, the risk of gout, but prospective data on the relationship are limited.

Objective To examine the relationship between intake of fructose-rich beverages and fructose and the risk of incident gout among women.

Design, Setting, and Participants In the Nurses' Health Study, a US prospective cohort study spanning 22 years (1984-2006), we analyzed data from 78 906 women with no history of gout at baseline who provided information on intake of beverages and fructose through validated food frequency questionnaires.

Main Outcome Measure Incident cases that met the American College of Rheumatology survey criteria for gout.

Results During 22 years of follow-up, we documented 778 confirmed incident cases of gout. Increasing intake of sugar-sweetened soda was independently associated with increasing risk of gout. Compared with consumption of less than 1 serving per month of sugar-sweetened soda, the multivariate relative risk of gout for 1 serving per day was 1.74 (95% confidence interval [CI], 1.19-2.55) and for 2 or more servings per day was 2.39 (95% CI, 1.34-4.26) (P<.001 for trend). The corresponding relative risks for orange juice were 1.41 (95% CI, 1.03-1.93) and 2.42 (95% CI, 1.27-4.63) (P = .02 for trend). The absolute risk differences corresponding to these relative risks were 36 and 68 cases per 100 000 person-years for sugar-sweetened soda and 14 and 47 cases per 100 000 person-years for orange juice, respectively. Diet soft drinks were not associated with the risk of gout (P = .27 for trend). Compared with the lowest quintile of fructose intake, the multivariate relative risk of gout in the top quintile was 1.62 (95% CI, 1.20-2.19; P = .004 for trend) (risk difference of 28 cases per 100 000 person-years).

Conclusion Among this cohort of women, consumption of fructose-rich beverages is associated with an increased risk of incident gout, although the contribution of these beverages to the risk of gout in the population is likely modest given the low incidence rate among women.

×