Association of Troponin T Detected With a Highly Sensitive Assay and Cardiac Structure and Mortality Risk in the General Population | Cardiology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.239.150.57. Please contact the publisher to request reinstatement.
1.
Anderson JL, Adams CD, Antman EM,  et al.  ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-Elevation myocardial infarction.  J Am Coll Cardiol. 2007;50(7):e1-e15717692738PubMedGoogle ScholarCrossref
2.
Morrow DA, Cannon CP, Jesse RL,  et al.  National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: clinical characteristics and utilization of biochemical markers in acute coronary syndromes.  Clin Chem. 2007;53(4):552-57417384001PubMedGoogle ScholarCrossref
3.
Konstantinides S, Geibel A, Olschewski M,  et al.  Importance of cardiac troponins I and T in risk stratification of patients with acute pulmonary embolism.  Circulation. 2002;106(10):1263-126812208803PubMedGoogle ScholarCrossref
4.
Peacock WF IV, De Marco T, Fonarow GC,  et al.  Cardiac troponin and outcome in acute heart failure.  N Engl J Med. 2008;358(20):2117-212618480204PubMedGoogle ScholarCrossref
5.
Eggers KM, Lagerqvist B, Venge P,  et al.  Persistent cardiac troponin I elevation in stabilized patients after an episode of acute coronary syndrome predicts long-term mortality.  Circulation. 2007;116(17):1907-191417909103PubMedGoogle ScholarCrossref
6.
Horwich TB, Patel J, MacLellan WR, Fonarow GC. Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure.  Circulation. 2003;108(7):833-83812912820PubMedGoogle ScholarCrossref
7.
Apple FS, Murakami MM, Pearce LA, Herzog CA. Predictive value of cardiac troponin I and T for subsequent death in end-stage renal disease.  Circulation. 2002;106(23):2941-294512460876PubMedGoogle ScholarCrossref
8.
Wallace TW, Abdullah SM, Drazner MH,  et al.  Prevalence and determinants of troponin T elevation in the general population.  Circulation. 2006;113(16):1958-196516618821PubMedGoogle ScholarCrossref
9.
Daniels LB, Laughlin GA, Clopton P,  et al.  Minimally elevated cardiac troponin T and elevated N-terminal pro-B-type natriuretic peptide predict mortality in older adults.  J Am Coll Cardiol. 2008;52(6):450-45918672166PubMedGoogle ScholarCrossref
10.
Zethelius B, Johnston N, Venge P. Troponin I as a predictor of coronary heart disease and mortality in 70-year-old men.  Circulation. 2006;113(8):1071-107816490824PubMedGoogle ScholarCrossref
11.
Blankenberg S, Zeller T, Saarela O,  et al.  Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts.  Circulation. 2010;121(22):2388-239720497981PubMedGoogle ScholarCrossref
12.
Reichlin T, Hochholzer W, Bassetti S,  et al.  Early diagnosis of myocardial infarction with sensitive cardiac troponin assays.  N Engl J Med. 2009;361(9):858-86719710484PubMedGoogle ScholarCrossref
13.
Latini R, Masson S, Anand IS,  et al.  Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure.  Circulation. 2007;116(11):1242-124917698733PubMedGoogle ScholarCrossref
14.
Omland T, de Lemos JA, Sabatine MS,  et al.  A sensitive cardiac troponin T assay in stable coronary artery disease.  N Engl J Med. 2009;361(26):2538-254719940289PubMedGoogle ScholarCrossref
15.
Victor RG, Haley RW, Willett DL,  et al.  The Dallas Heart Study: a population-based probability sample for the multidisciplinary study of ethnic differences in cardiovascular health.  Am J Cardiol. 2004;93(12):1473-148015194016PubMedGoogle ScholarCrossref
16.
de Lemos JA, McGuire DK, Khera A,  et al.  Screening the population for left ventricular hypertrophy and left ventricular systolic dysfunction using natriuretic peptides.  Am Heart J. 2009;157(4):746-75319332205PubMedGoogle ScholarCrossref
17.
Khera A, McGuire DK, Murphy SA,  et al.  Race and gender differences in C-reactive protein levels.  J Am Coll Cardiol. 2005;46(3):464-46916053959PubMedGoogle ScholarCrossref
18.
Giannitsis E, Kurz K, Hallermayer K,  et al.  Analytical validation of a high-sensitivity cardiac troponin T assay.  Clin Chem. 2010;56(2):254-26119959623PubMedGoogle ScholarCrossref
19.
Das SR, Drazner MH, Dries DL,  et al.  Impact of body mass and body composition on circulating levels of natriuretic peptides: results from the Dallas Heart Study.  Circulation. 2005;112(14):2163-216816203929PubMedGoogle ScholarCrossref
20.
Drazner MH, Dries DL, Peshock RM,  et al.  Left ventricular hypertrophy is more prevalent in blacks than whites in the general population: the Dallas Heart Study.  Hypertension. 2005;46(1):124-12915939807PubMedGoogle ScholarCrossref
21.
Abdullah SM, Khera A, Das SR,  et al.  Relation of coronary atherosclerosis determined by electron beam computed tomography and plasma levels of N-terminal pro-brain natriuretic peptide in a multiethnic population-based sample (the Dallas Heart Study).  Am J Cardiol. 2005;96(9):1284-128916253599PubMedGoogle ScholarCrossref
22.
National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III).  Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report.  Circulation. 2002;106(25):3143-342112485966PubMedGoogle Scholar
23.
See R, Lindsey JB, Patel MJ,  et al.  Application of the screening for Heart Attack Prevention and Education Task Force recommendations to an urban population.  Arch Intern Med. 2008;168(10):1055-106218504333PubMedGoogle ScholarCrossref
24.
Lloyd-Jones D, Adams RJ, Brown TM,  et al.  Heart disease and stroke statistics—2010 update: a report from the American Heart Association [published correction appears in Circulation. 2010;121(12):e260].  Circulation. 2010;121(7):e46-e21520019324PubMedGoogle ScholarCrossref
25.
Jonckheere AR, Bower GH. Non-parametric trend tests for learning data.  Br J Math Stat Psychol. 1967;20(2):163-1865591507PubMedGoogle ScholarCrossref
26.
Colosimo E, Ferreira F, Oliveira M, Sousa C. Empirical comparisons between Kaplan-Meier and Nelson-Aalen survival function estimators.  J Stat Computation Computing. 2002;72(4):299-308Google ScholarCrossref
27.
Antolini L, Boracchi P, Biganzoli E. A time-dependent discrimination index for survival data.  Stat Med. 2005;24(24):3927-394416320281PubMedGoogle ScholarCrossref
28.
Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker.  Stat Med. 2008;27(2):157-172, 207-21217569110PubMedGoogle ScholarCrossref
29.
Eggers KM, Lind L, Ahlström H,  et al.  Prevalence and pathophysiological mechanisms of elevated cardiac troponin I levels in a population-based sample of elderly subjects.  Eur Heart J. 2008;29(18):2252-225818606612PubMedGoogle ScholarCrossref
30.
Apple FS, Quist HE, Doyle PJ,  et al.  Plasma 99th percentile reference limits for cardiac troponin and creatine kinase MB mass for use with European Society of Cardiology/American College of Cardiology consensus recommendations.  Clin Chem. 2003;49(8):1331-133612881449PubMedGoogle ScholarCrossref
31.
Eggers KM, Lagerqvist B, Oldgren J, Venge P, Wallentin L, Lindahl B. Pathophysiologic mechanisms of persistent cardiac troponin I elevation in stabilized patients after an episode of acute coronary syndrome.  Am Heart J. 2008;156(3):588-59418760145PubMedGoogle ScholarCrossref
32.
Wong GC, Morrow DA, Murphy S,  et al.  Elevations in troponin T and I are associated with abnormal tissue level perfusion: a TACTICS-TIMI 18 substudy.  Circulation. 2002;106(2):202-20712105159PubMedGoogle ScholarCrossref
33.
Morrow DA, Cannon CP, Rifai N,  et al.  Ability of minor elevations of troponins I and T to predict benefit from an early invasive strategy in patients with unstable angina and non-ST elevation myocardial infarction.  JAMA. 2001;286(19):2405-241211712935PubMedGoogle ScholarCrossref
34.
Lindahl B, Diderholm E, Lagerqvist B, Venge P, Wallentin L. Mechanisms behind the prognostic value of troponin T in unstable coronary artery disease: a FRISC II substudy.  J Am Coll Cardiol. 2001;38(4):979-98611583868PubMedGoogle ScholarCrossref
35.
Morrow DA, de Lemos JA. Benchmarks for the assessment of novel cardiovascular biomarkers.  Circulation. 2007;115(8):949-95217325253PubMedGoogle ScholarCrossref
36.
Keller T, Zeller T, Peetz D,  et al.  Sensitive troponin I assay in early diagnosis of acute myocardial infarction.  N Engl J Med. 2009;361(9):868-87719710485PubMedGoogle ScholarCrossref
37.
Morrow DA, Antman EM. Evaluation of high-sensitivity assays for cardiac troponin.  Clin Chem. 2009;55(1):5-819028812PubMedGoogle ScholarCrossref
Original Contribution
December 8, 2010

Association of Troponin T Detected With a Highly Sensitive Assay and Cardiac Structure and Mortality Risk in the General Population

Author Affiliations

Author Affiliations: Donald W. Reynolds Cardiovascular Clinical Research Center and Division of Cardiology (Drs de Lemos, Drazner, Khera, Rohatgi, Berry, Das, and McGuire and Mr Ayers) and Department of Pathology (Dr Hashim), University of Texas Southwestern Medical Center, Dallas; Division of Medicine, Akershus University Hospital and Center for Heart Failure Research, University of Oslo, Oslo, Norway (Dr Omland); and Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts (Dr Morrow).

JAMA. 2010;304(22):2503-2512. doi:10.1001/jama.2010.1768
Abstract

Context Detectable levels of cardiac troponin T (cTnT) are strongly associated with structural heart disease and increased risk of death and adverse cardiovascular events; however, cTnT is rarely detectable in the general population using standard assays.

Objectives To determine the prevalence and determinants of detectable cTnT in the population using a new highly sensitive assay and to assess whether cTnT levels measured with the new assay associate with pathological cardiac phenotypes and subsequent mortality.

Design, Setting, and Participants Cardiac troponin T levels were measured using both the standard and the highly sensitive assays in 3546 individuals aged 30 to 65 years enrolled between 2000 and 2002 in the Dallas Heart Study, a multiethnic, population-based cohort study. Mortality follow-up was complete through 2007. Participants were placed into 5 categories based on cTnT levels.

Main Outcome Measures Magnetic resonance imaging measurements of cardiac structure and function and mortality through a median of 6.4 (interquartile range, 6.0-6.8) years of follow-up.

Results In Dallas County, the prevalence of detectable cTnT (≥0.003 ng/mL) was 25.0% (95% confidence interval [CI], 22.7%-27.4%) with the highly sensitive assay vs 0.7% (95% CI, 0.3%-1.1%) with the standard assay. Prevalence was 37.1% (95% CI, 33.3%-41.0%) in men vs 12.9% (95% CI, 10.6%-15.2%) in women and 14.0% (95% CI, 11.2%-16.9%) in participants younger than 40 years vs 57.6% (95% CI, 47.0%-68.2%) in those 60 years and older. Prevalence of left ventricular hypertrophy increased from 7.5% (95% CI, 6.4%-8.8%) in the lowest cTnT category (<0.003 ng/mL) to 48.1% (95% CI, 36.7%-59.6%) in the highest (≥0.014 ng/mL) (P < .001); prevalence of left ventricular systolic dysfunction and chronic kidney disease also increased across categories (P < .001 for each). During a median follow-up of 6.4 years, there were 151 total deaths, including 62 cardiovascular disease deaths. All-cause mortality increased from 1.9% (95% CI, 1.5%-2.6%) to 28.4% (95% CI, 21.0%-37.8%) across higher cTnT categories (P < .001). After adjustment for traditional risk factors, C-reactive protein level, chronic kidney disease, and N-terminal pro-brain-type natriuretic peptide level, cTnT category remained independently associated with all-cause mortality (adjusted hazard ratio, 2.8 [95% CI, 1.4-5.2] in the highest category). Adding cTnT categories to the fully adjusted mortality model modestly improved model fit (P = .02) and the integrated discrimination index (0.010 [95% CI, 0.002-0.018]; P = .01).

Conclusion In this population-based cohort, cTnT detected with a highly sensitive assay was associated with structural heart disease and subsequent risk for all-cause mortality.

×