Cocaine-Induced Cerebral Vasoconstriction Detected in Humans With Magnetic Resonance Angiography | Addiction Medicine | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Substance Abuse and Mental Health Services Administration.  Preliminary Estimates From the 1995 National Household Survey on Drug Abuse.  Washington, DC: US Dept of Health and Human Services; August 1996. Advanced Report No. 18.
Lange RA, Cigarroa RG, Yancy Jr CW.  et al.  Cocaine-induced coronary-artery vasoconstriction.  N Engl J Med.1989;321:1557-1562.Google Scholar
Brogan WC, Lange RA, Glamann DB, Hillis LD. Recurrent coronary vasoconstriction caused by intranasal cocaine: possible role for metabolites.  Ann Intern Med.1992;116:556-561.Google Scholar
Moliterno DJ, Willard JE, Lange RA.  et al.  Coronary-artery vasoconstriction induced by cocaine, cigarette smoking, or both.  N Engl J Med.1994;330:454-459.Google Scholar
Jacobs IG, Roszler MH, Kelly JK, Klein MA, Kling GA. Cocaine abuse: neurovascular complications.  Radiology.1989;170:223-227.Google Scholar
Peterson PL, Roszler M, Jacobs I, Wilner HI. Neurovascular complications of cocaine abuse.  J Neuropsychiatry Clin Neurosci.1991;3:143-149.Google Scholar
Mody C, Miller B, McIntyre H, Cobb S, Goldberg M. Neurologic complications of cocaine abuse.  Neurology.1988;38:1189-1193.Google Scholar
Klonoff D, Andrews B, Obana W. Stroke associated with cocaine use.  Arch Neurol.1989;46:989-993.Google Scholar
Levine SR, Brust JCM, Futrell N.  et al.  Cerebrovascular complications of the use of the ‘crack' form of alkaloidal cocaine.  N Engl J Med.1990;323:699-704.Google Scholar
Konzen JP, Levine SR, Garcia JH. Vasospasm and thrombus formation as possible mechanisms of stroke related to alkaloidal cocaine.  Stroke.1995;26:1114-1118.Google Scholar
Daras M. Neurologic complications of cocaine. In: Majewska MD, ed. Neurotoxicity and Neuropathology Associated With Cocaine Abuse. Washington, DC: US Dept of Health and Human Services; 1996:43-65. Publication No. (NIH) 96-4019.
Levine SR, Brust JCM, Futrell N.  et al.  A comparative study of the cerebrovascular complications of cocaine: alkaloidal versus hydrochloride—a review.  Neurology.1991;41:1173-1177.Google Scholar
Nolte KB, Brass LM, Fletterick CF. Intracranial hemorrhage associated with cocaine abuse: a prospective autopsy study.  Neurology.1996;46:1291-1296.Google Scholar
Aggarwal SK, Williams V, Levine SR, Cassin BJ, Garcia JH. Cocaine-associated intracranial hemorrhage: absence of vasculitis in 14 cases.  Neurology.1996;46:1741-1743.Google Scholar
Volkow ND, Mullani N, Gould KL, Adler S, Krajewski K. Cerebral blood flow in chronic cocaine users: a study with positron emission tomography.  Br J Psychiatry.1988;152:641-648.Google Scholar
Holman BL, Carvalho PA, Mendelson JH.  et al.  Brain perfusion is abnormal in cocaine-dependent polydrug users: a study using technetium-99m-HMPAO and ASPECT.  J Nucl Med.1991;32:1206-1210.Google Scholar
Strickland TL, Mena I, Villanueva-Meyer J.  et al.  Cerebral perfusion and neuropsychological consequences of chronic cocaine use.  J Neuropsychiatry Clin Neurosci.1993;5:419-427.Google Scholar
Levin JM, Mendelson JH, Holman BL.  et al.  Improved regional cerebral blood flow in chronic cocaine polydrug users treated with buprenorphine.  J Nucl Med.1995;36:1211-1215.Google Scholar
Berry J, van Gorp WG, Herzberg DS.  et al.  Neuropsychological deficits in abstinent cocaine abusers: preliminary findings after two weeks of abstinence.  Drug Alcohol Depend.1993;32:231-237.Google Scholar
Hoff AL, Riordan H, Morris L.  et al.  Effects of crack cocaine on neurocognitive function.  Psychiatry Res.1996;60:167-176.Google Scholar
Madden JA, Powers RH. Effect of cocaine and cocaine metabolites on cerebral arteries in vitro.  Life Sci.1990;47:1109-1114.Google Scholar
Kurth C, Monitto C, Albuquerque M.  et al.  Cocaine and its metabolites constrict cerebral arterioles in newborn pigs.  J Pharmacol Exp Ther.1993;265:587-591.Google Scholar
He G-Q, Zhang A, Altura B, Altura B. Cocaine-induced cerebrovasospasm and its possible mechanism of action.  J Pharmacol Exp Ther.1994;268:1532-1539.Google Scholar
Madden JA, Konkol RJ, Keller PA, Alvarez TA. Cocaine and benzoylecgonine constrict cerebral arteries by different mechanisms.  Life Sci.1995;56:679-686.Google Scholar
Horikoshi T, Fukamachi A, Nishi H, Yagi S-I, Fukasawa I. Observation of vasospasm after subarachnoid hemorrhage by magnetic resonance angiography.  Neurol Med Chir (Tokyo).1995;35:298-304.Google Scholar
Black KS, Mirsky P, Kalina P.  et al.  Angiographic demonstration of reversible cerebral vasospasm in porphyric encephalopathy.  AJNR Am J Neuroradiol.1995;16:1650-1652.Google Scholar
American Psychiatric Association.  Diagnostic and Statistical Manual of Mental Disorders.  4th ed. Washington, DC: American Psychiatric Association; 1994:222-223.
Foltin RW, Fischman MW. Smoked and intravenous cocaine in humans: acute tolerance, cardiovascular and subjective effects.  J Pharmacol Exp Ther.1991;257:247-261.Google Scholar
Teoh SK, Mendelson JH, Mello NK.  et al.  Acute interactions of buprenorphine with intravenous cocaine and morphine: an investigational new drug phase I safety evaluation.  J Clin Psychopharmacol.1993;13:87-99.Google Scholar
Evans SM, Cone EJ, Henningfield JE. Arterial and venous cocaine plasma concentrations in humans: relationship to route of administration, cardiovascular effects and subjective effects.  J Pharmacol Exp Ther.1996;279:1345-1356.Google Scholar
Fleiss JL, Cohen J. The equivalence of weighted kappa and the intraclass correlation co-efficient as measures of reliability.  Educ Psychol Meas.1973;33:613-619.Google Scholar
Agresti AA. Categorical Data Analysis.  New York, NY: John Wiley & Sons; 1990.
Verebey K, Gold MS. From coca leaves to crack: the effects of dose and routes of administration in abuse liability.  Psychiatr Ann.1988;18:513-520.Google Scholar
Davis SM, Andrews JT, Lichtenstein M.  et al.  Correlations between cerebral arterial velocities, blood flow, and delayed ischemia after subarachnoid hemorrhage.  Stroke.1992;23:492-497.Google Scholar
Sekhon LHS, Morgan MK, Spence I, Weber NC. Chronic cerebral hypoperfusion and impaired neuronal function in rats.  Stroke.1994;25:1022-1027.Google Scholar
Ardila A, Rosselli M, Strumwasser S. Neuropsychological deficits in chronic cocaine abusers.  Int J Neurosci.1991;57:73-79.Google Scholar
O'Malley S, Adamse M, Heaton RK, Gawin FH. Neuropsychological impairment in chronic cocaine abusers.  Am J Drug Alcohol Abuse.1992;18:131-144.Google Scholar
Weiss RD, Gawin FH. Protracted elimination of cocaine metabolites in long-term, high-dose cocaine abusers.  Am J Med.1988;85:879-880.Google Scholar
Mena I, Giombetti RJ, Miller BL.  et al.  Cerebral blood flow changes with acute cocaine intoxication: clinical correlation with SPECT, CT and MRI. In: Sorer H, Rapaka RS, eds. Imaging Techniques in Medications Development: Preclinical and Clinical Aspects. Washington, DC: US Dept of Health and Human Services; 1994:161-173. Publication No. (NIH) 94-3728.
Wahlgren NG, Hellström G, Lindquist C, Rudehill A. Sympathetic nerve stimulation in humans increases middle cerebral artery blood flow velocity.  Cerebrovasc Dis.1992;2:359-364.Google Scholar
Hellström G, Wahlgren NG. Physical exercise increases middle cerebral artery blood flow velocity.  Neurosurg Rev.1993;16:151-156.Google Scholar
Clinical Investigation
February 4, 1998

Cocaine-Induced Cerebral Vasoconstriction Detected in Humans With Magnetic Resonance Angiography

Author Affiliations

From the Brain Imaging Center (Drs Kaufman, Levin, Ross, Lange, Cohen, and Renshaw and Mss Rose and Kukes) and Alcohol & Drug Abuse Research Center (Drs Kaufman, Levin, Ross, Mendelson, and Lukas), McLean Hospital, Consolidated Department of Psychiatry, Harvard Medical School, Belmont, Mass.

JAMA. 1998;279(5):376-380. doi:10.1001/jama.279.5.376

Context.— Clinical observations and case reports suggest that there are important cerebrovascular complications of cocaine use, but no studies have documented a direct link.

Objective.— To determine whether low-dose cocaine administration induces cerebral vasoconstriction in healthy cocaine users.

Design.— Randomized controlled trial.

Subjects.— Twenty-four healthy and neurologically normal men (mean age, 29 years) reporting median cocaine use of 8 lifetime exposures (range, 3 to >40).

Intervention.— Double-blind intravenous administration of cocaine (0.4 or 0.2 mg/kg) or placebo, with cerebral magnetic resonance angiography performed at baseline and 20 minutes following infusion.

Main Outcome Measure.— Cocaine-induced angiographic change indicative of vasoconstriction, as independently and concordantly rated by 2 reviewers blind to treatment condition.

Results.— Cocaine-induced cerebral vasoconstriction in a dose-related fashion (P=.03), with angiograms indicative of vasoconstriction found in 5 of 8 and 3 of 9 subjects receiving 0.4- and 0.2-mg/kg cocaine, respectively, compared with 1 of 7 subjects administered placebo. Outcome stratification by frequency of self-reported lifetime cocaine use (3-10 times, 11-40 times, or >40 times) revealed a statistically stronger dose-related effect (P<.001), suggesting that greater lifetime cocaine use was associated with a greater likelihood of vasoconstriction.

Conclusions.— Cocaine administration induced dose-related cerebral vasoconstriction on magnetic resonance angiograms. These changes occurred at low cocaine doses and in the absence of other risk factors, including polydrug abuse, hypertension, or cerebrovascular disease. Outcome stratification by prior cocaine use statistically strengthened the relationship between cocaine administration and vasoconstriction, suggesting that cocaine may have a cumulative residual effect in promoting cerebrovascular dysfunction.