Association Between Intensification of Metformin Treatment With Insulin vs Sulfonylureas and Cardiovascular Events and All-Cause Mortality Among Patients With Diabetes | Clinical Pharmacy and Pharmacology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Inzucchi  SE, Bergenstal  RM, Buse  JB,  et al; American Diabetes Association (ADA); European Association for the Study of Diabetes (EASD).  Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD).  Diabetes Care. 2012;35(6):1364-1379.PubMedGoogle ScholarCrossref
Weng  J, Li  Y, Xu  W,  et al.  Effect of intensive insulin therapy on beta-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes: a multicentre randomised parallel-group trial.  Lancet. 2008;371(9626):1753-1760.PubMedGoogle ScholarCrossref
Harrison  LB, Adams-Huet  B, Raskin  P, Lingvay  I.  β-Cell function preservation after 3.5 years of intensive diabetes therapy.  Diabetes Care. 2012;35(7):1406-1412.PubMedGoogle ScholarCrossref
Alvarsson  M, Sundkvist  G, Lager  I,  et al.  Effects of insulin vs glibenclamide in recently diagnosed patients with type 2 diabetes: a 4-year follow-up.  Diabetes Obes Metab. 2008;10(5):421-429.PubMedGoogle ScholarCrossref
Centers for Disease Control and Prevention. Adults with diabetes by diabetes medication status: United States, 1997–2011. Accessed November 25, 2013.
Cohen  FJ, Neslusan  CA, Conklin  JE, Song  X.  Recent antihyperglycemic prescribing trends for US privately insured patients with type 2 diabetes.  Diabetes Care. 2003;26(6):1847-1851.PubMedGoogle ScholarCrossref
Holden  SE, Poole  CD, Morgan  CL, Currie  CJ.  Evaluation of the incremental cost to the National Health Service of prescribing analogue insulin.  BMJ Open. 2011;1(2):e000258.PubMedGoogle ScholarCrossref
Holman  RR, Paul  SK, Bethel  MA, Matthews  DR, Neil  HA.  10-Year follow-up of intensive glucose control in type 2 diabetes.  N Engl J Med. 2008;359(15):1577-1589.PubMedGoogle ScholarCrossref
Hung  AM, Roumie  CL, Greevy  RA,  et al.  Comparative effectiveness of incident oral antidiabetic drugs on kidney function.  Kidney Int. 2012;81(7):698-706.PubMedGoogle ScholarCrossref
Arnold  N, Hines  D, Stroupe  K. Comparison of VA Outpatient Prescriptions in the DSS Datasets and the PBM Database. Hines, IL: Edward Hines, Jr VA Hospital; 2006.
National Center for Health Statistics.  International Classification of Diseases, Ninth Revision, Clinical Modification. Washington, DC: Public Health Service, US Dept of Health & Human Services; 1988.
Humensky  J, Carretta  H, de Groot  K, Brown  MM, Tarlov  E, Hynes  D.  Service utilization of veterans dually eligible for VA and Medicare fee-for-service: 1999–2004.  Medicare Medicaid Res Rev. 2012;2(3).Google Scholar
Hynes  DM, Koelling  K, Stroupe  K,  et al.  Veterans’ access to and use of Medicare and Veterans Affairs health care.  Med Care. 2007;45(3):214-223.PubMedGoogle ScholarCrossref
McCarthy  JF, Valenstein  M, Kim  HM, Ilgen  M, Zivin  K, Blow  FC.  Suicide mortality among patients receiving care in the Veterans Health Administration health system.  Am J Epidemiol. 2009;169(8):1033-1038.PubMedGoogle ScholarCrossref
Greevy  RA  Jr, Huizinga  MM, Roumie  CL,  et al.  Comparisons of persistence and durability among three oral antidiabetic therapies using electronic prescription-fill data: the impact of adherence requirements and stockpiling.  Clin Pharmacol Ther. 2011;90(6):813-819.PubMedGoogle ScholarCrossref
Niesner  K, Murff  HJ, Griffin  MR,  et al.  Validation of VA administrative data algorithms for identifying cardiovascular disease hospitalization.  Epidemiology. 2013;24(2):334-335.PubMedGoogle ScholarCrossref
Sohn  MW, Arnold  N, Maynard  C, Hynes  DM.  Accuracy and completeness of mortality data in the Department of Veterans Affairs.  Popul Health Metr. 2006;4:2.PubMedGoogle ScholarCrossref
Ray  WA, Meredith  S, Thapa  PB, Meador  KG, Hall  K, Murray  KT.  Antipsychotics and the risk of sudden cardiac death.  Arch Gen Psychiatry. 2001;58(12):1161-1167.PubMedGoogle ScholarCrossref
Office of Minority Health, Department of Health and Human Services.  Heart disease and African Americans. Accessed February 19, 2014.
Yuan  YC.  Multiple Imputation for Missing Data: Concepts and New Development (Version 9.0). SAS; 2011.
Parsons  L. Reducing Bias in a Propensity Score Matched-Pair Sample Using Greedy Matching Techniques. Accessed November 21, 2011.
D'Agostino  R, Rubin  D. Estimating and using propensity scores with partially missing data.  J Am Stat Assoc. 2000;95(451):749-759.Google ScholarCrossref
Robins  JM, Hernán  MA, Brumback  B.  Marginal structural models and causal inference in epidemiology.  Epidemiology. 2000;11(5):550-560.PubMedGoogle ScholarCrossref
Hernán  MA, Brumback  B, Robins  JM.  Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men.  Epidemiology. 2000;11(5):561-570.PubMedGoogle ScholarCrossref
Schneeweiss  S, Glynn  RJ, Tsai  EH, Avorn  J, Solomon  DH.  Adjusting for unmeasured confounders in pharmacoepidemiologic claims data using external information: the example of COX2 inhibitors and myocardial infarction.  Epidemiology. 2005;16(1):17-24.PubMedGoogle ScholarCrossref
 Optmatch: Functions for Optimal Matching [computer program]. Version R package 0.9-1. 2010.
 RItools: Randomization Inference Tools [computer program]. Version: R package 0.1-11. 2010.
Selby  JV, Uratsu  CS, Fireman  B,  et al.  Treatment intensification and risk factor control: toward more clinically relevant quality measures.  Med Care. 2009;47(4):395-402.PubMedGoogle ScholarCrossref
Kerr  EA, Gerzoff  RB, Krein  SL,  et al.  Diabetes care quality in the Veterans Affairs Health Care System and commercial managed care: the TRIAD study.  Ann Intern Med. 2004;141(4):272-281.PubMedGoogle ScholarCrossref
UK Prospective Diabetes Study (UKPDS) Group.  Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).  Lancet. 1998;352(9131):837-853.PubMedGoogle ScholarCrossref
Gerstein  HC, Miller  ME, Byington  RP,  et al; Action to Control Cardiovascular Risk in Diabetes Study Group.  Effects of intensive glucose lowering in type 2 diabetes.  N Engl J Med. 2008;358(24):2545-2559.PubMedGoogle ScholarCrossref
Bonds  DE, Miller  ME, Bergenstal  RM,  et al.  The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study.  BMJ. 2010;340:b4909.PubMedGoogle ScholarCrossref
Bonds  DE, Miller  ME, Dudl  J,  et al.  Severe hypoglycemia symptoms, antecedent behaviors, immediate consequences and association with glycemia medication usage: secondary analysis of the ACCORD clinical trial data.  BMC Endocr Disord. 2012;12:5.PubMedGoogle ScholarCrossref
Gerstein  HC, Bosch  J, Dagenais  GR,  et al; ORIGIN Trial Investigators.  Basal insulin and cardiovascular and other outcomes in dysglycemia.  N Engl J Med. 2012;367(4):319-328.PubMedGoogle ScholarCrossref
Gamble  JM, Simpson  SH, Eurich  DT, Majumdar  SR, Johnson  JA.  Insulin use and increased risk of mortality in type 2 diabetes: a cohort study.  Diabetes Obes Metab. 2010;12(1):47-53.PubMedGoogle ScholarCrossref
Currie  CJ, Poole  CD, Evans  M, Peters  JR, Morgan  CL.  Mortality and other important diabetes-related outcomes with insulin vs other antihyperglycemic therapies in type 2 diabetes.  J Clin Endocrinol Metab. 2013;98(2):668-677.PubMedGoogle ScholarCrossref
Peyrot  M, Rubin  RR, Khunti  K.  Addressing barriers to initiation of insulin in patients with type 2 diabetes.  Prim Care Diabetes. 2010;4(suppl 1):S11-S18.PubMedGoogle ScholarCrossref
Roumie  CL, Huizinga  MM, Liu  X,  et al.  The effect of incident antidiabetic regimens on lipid profiles in veterans with type 2 diabetes: a retrospective cohort.  Pharmacoepidemiol Drug Saf. 2011;20(1):36-44.PubMedGoogle ScholarCrossref
Roumie  CL, Hung  AM, Greevy  RA,  et al.  Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: a cohort study.  Ann Intern Med. 2012;157(9):601-610.PubMedGoogle ScholarCrossref
Roumie  CL, Liu  X, Choma  NN,  et al.  Initiation of sulfonylureas versus metformin is associated with higher blood pressure at one year.  Pharmacoepidemiol Drug Saf. 2012;21(5):515-523.PubMedGoogle ScholarCrossref
Original Investigation
June 11, 2014

Association Between Intensification of Metformin Treatment With Insulin vs Sulfonylureas and Cardiovascular Events and All-Cause Mortality Among Patients With Diabetes

Author Affiliations
  • 1Veterans Health Administration–Tennessee Valley Healthcare System Geriatric Research Education Clinical Center, HSR&D Center, Nashville, Tennessee
  • 2Department of Medicine, Vanderbilt University, Nashville, Tennessee
  • 3Department of Biostatistics, Vanderbilt University, Nashville, Tennessee
  • 4Department of Health Policy, Vanderbilt University, Nashville, Tennessee
JAMA. 2014;311(22):2288-2296. doi:10.1001/jama.2014.4312

Importance  Preferred second-line medication for diabetes treatment after metformin failure remains uncertain.

Objective  To compare time to acute myocardial infarction (AMI), stroke, or death in a cohort of metformin initiators who added insulin or a sulfonylurea.

Design, Setting, and Participants  Retrospective cohort constructed with national Veterans Health Administration, Medicare, and National Death Index databases. The study population comprised veterans initially treated with metformin from 2001 through 2008 who subsequently added either insulin or sulfonylurea. Propensity score matching on characteristics was performed, matching each participant who added insulin to 5 who added a sulfonylurea. Patients were followed through September 2011 for primary analyses or September 2009 for cause-of-death analyses.

Main Outcomes and Measures  Risk of a composite outcome of AMI, stroke hospitalization, or all-cause death was compared between therapies with marginal structural Cox proportional hazard models adjusting for baseline and time-varying demographics, medications, cholesterol level, hemoglobin A1c level, creatinine level, blood pressure, body mass index, and comorbidities.

Results  Among 178 341 metformin monotherapy patients, 2948 added insulin and 39 990 added a sulfonylurea. Propensity score matching yielded 2436 metformin + insulin and 12 180 metformin + sulfonylurea patients. At intensification, patients had received metformin for a median of 14 months (IQR, 5-30), and hemoglobin A1c level was 8.1% (IQR, 7.2%-9.9%). Median follow-up after intensification was 14 months (IQR, 6-29 months). There were 172 vs 634 events for the primary outcome among patients who added insulin vs sulfonylureas, respectively (42.7 vs 32.8 events per 1000 person-years; adjusted hazard ratio [aHR], 1.30; 95% CI, 1.07-1.58; P = .009). Acute myocardial infarction and stroke rates were statistically similar, 41 vs 229 events (10.2 and 11.9 events per 1000 person-years; aHR, 0.88; 95% CI, 0.59-1.30; P = .52), whereas all-cause death rates were 137 vs 444 events, respectively (33.7 and 22.7 events per 1000 person-years; aHR, 1.44; 95% CI, 1.15-1.79; P = .001). There were 54 vs 258 secondary outcomes: AMI, stroke hospitalizations, or cardiovascular deaths (22.8 vs 22.5 events per 1000 person-years; aHR, 0.98; 95% CI, 0.71-1.34; P = .87).

Conclusions and Relevance  Among patients with diabetes who were receiving metformin, the addition of insulin vs a sulfonylurea was associated with an increased risk of a composite of nonfatal cardiovascular outcomes and all-cause mortality. These findings require further investigation to understand risks associated with insulin use in these patients.