Physical Activity and Risk of Stroke in Women | Cerebrovascular Disease | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.170.64.36. Please contact the publisher to request reinstatement.
1.
Gillum RF, Mussolino ME, Ingram DD. Physical activity and stroke incidence in women and men: the NHANES I Epidemiological Follow-up Study.  Am J Epidemiol.1996;143:860-869.Google Scholar
2.
Abbott RD, Rodriguez BL, Burchfiel CM, Curb JD. Physical activity in older middle-aged men and reduced risk of stroke: the Honolulu Heart Program.  Am J Epidemiol.1994;139:881-893.Google Scholar
3.
Bijnen FCH, Caspersen CJ, Feskens EJM, Saris WH, Mosterd WL, Kromhout D. Physical activity and 10-year mortality from cardiovascular diseases and all causes.  Arch Intern Med.1998;158:1499-1505.Google Scholar
4.
Sacco RL, Gan R, Boden-Albala B.  et al.  Leisure-time physical activity and ischemic stroke risk: the Northern Manhattan Stroke Study.  Stroke.1998;29:380-387.Google Scholar
5.
Lee I-M, Hennekens CH, Berger K, Buring JE, Manson JE. Exercise and risk of stroke in male physicians.  Stroke.1999;30:1-6.Google Scholar
6.
Lee I-M, Paffenbarger Jr RS. Physical activity and stroke incidence: the Harvard Alumni Health Study.  Stroke.1998;29:2049-2054.Google Scholar
7.
Paffenbarger Jr RS. Factors predisposing to fatal stroke in longshoremen.  Prev Med.1972;1:522-527.Google Scholar
8.
Menotti A, Keys A, Blackburn H.  et al.  Twenty-year stroke mortality and prediction in twelve cohorts of the Seven Countries Study.  Int J Epidemiol.1990;19:295-301.Google Scholar
9.
Lindsted KD, Tonstad S, Kuzma JW. Self-report of physical activity and patterns of mortality in Seventh-Day Adventist men.  J Clin Epidemiol.1991;44:355-364.Google Scholar
10.
Ellekjaer EF, Wyller TB, Sverre JM, Holmen J. Lifestyle factors and risk of cerebral infarction.  Stroke.1992;23:829-834.Google Scholar
11.
Wannamethee G, Shaper AG. Physical activity and stroke in British middle aged men.  BMJ.1992;304:597-601.Google Scholar
12.
Kiely DK, Wolf PA, Cupples LA, Beiser AS, Kannel WB. Physical activity and stroke risk: the Framingham Study.  Am J Epidemiol.1994;140:608-620.Google Scholar
13.
Pate R, Pratt M, Blair S.  et al.  Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine.  JAMA.1995;273:402-407.Google Scholar
14.
NIH Consensus Development Panel on Physical Activity and Cardiovascular Health.  Physical activity and cardiovascular health.  JAMA.1996;276:241-246.Google Scholar
15.
Ziegel PZ, Brackbill RM, Heath GW. The epidemiology of walking for exercise: implications for promoting activity among sedentary groups.  Am J Public Health.1995;85:706-710.Google Scholar
16.
Colditz GA, Willett WC, Stampfer MJ.  et al.  Weight as a risk factor for clinical diabetes in women.  Am J Epidemiol.1990;132:501-513.Google Scholar
17.
Ainsworth BE, Haskell WL, Leon AS.  et al.  Compendium of physical activities: classification of energy costs of human physical activities.  Med Sci Sports Exerc.1993;25:71-80.Google Scholar
18.
Wolf AM, Hunter DJ, Colditz GA.  et al.  Reproducibility and validity of a self-administered physical activity questionnaire.  Int J Epidemiol.1994;23:991-999.Google Scholar
19.
Jacobs Jr DR, Ainsworth BE, Hartman TJ, Leon AS. A simultaneous evaluation of 10 commonly used physical activity questionnaires.  Med Sci Sports Exerc.1993;25:81-91.Google Scholar
20.
Walker AE, Robins M, Weinfeld FD. The National Survey of Stroke: clinical findings.  Stroke.1981;12(suppl I):I13-I44.Google Scholar
21.
Anderson CS, Jamrozik KD, Burvill PW, Chakera TMH, Johnson GA, Stewart-Waynne EG. Determining the incidence of different subtypes of stroke: results from the Perth Community Stroke Study, 1989-1990.  Med J Aust.1993;158:85-89.Google Scholar
22.
Stampfer MJ, Willett WC, Speizer FE.  et al.  Test of the National Death Index.  Am J Epidemiol.1984;119:837-839.Google Scholar
23.
Hu FB, Stampfer MJ, Manson JE.  et al.  Dietary fat intake and risk of coronary heart disease in women.  N Engl J Med.1997;337:1491-1499.Google Scholar
24.
Greenland S. Dose-response and trend analysis in epidemiology: alternatives to categorical analysis.  Epidemiology.1995;6:356-365.Google Scholar
25.
D'Agostino RB, Lee M-L, Belanger AJ, Cupples LA, Anderson K, Kannel WB. Relation of pooled logistic regression to time-dependent Cox regression analysis: the Framingham Heart Study.  Stat Med.1990;9:1501-1515.Google Scholar
26.
Joshipura KJ, Ascherio A, Manson JE.  et al.  Fruit and vegetable intake in relation to risk of ischemic stroke.  JAMA.1999;282:1233-1239.Google Scholar
27.
Manson JE, Hu FB, Rich-Edwards JW.  et al.  A prospective study of walking compared with vigorous exercise in the prevention of coronary heart disease in women.  N Engl J Med.1999;341:650-658.Google Scholar
28.
US Department of Health and Human Services.  Physical Activity and Health: A Report of the Surgeon GeneralAtlanta, Ga: US Dept of Health and Human Services; 1996:1-8, 85-172, 175-207.
29.
Hu FB, Sigal RJ, Rich-Edwards JW.  et al.  Walking compared with vigorous physical activity and risk of type 2 diabetes in women: a prospective study.  JAMA.1999;282:1433-1439.Google Scholar
30.
Hakim AA, Curb JD, Petrovitch H.  et al.  Effects of walking on coronary heart disease in elderly men: the Honolulu Heart Program.  Circulation.1999;100:9-13.Google Scholar
31.
Hakim AA, Petrovitch H, Burchfiel CM.  et al.  Effects of walking on mortality among nonsmoking retired men.  N Engl J Med.1998;338:94-99.Google Scholar
32.
Gorelick PB, Sacco RL, Smith DB.  et al.  Prevention of a first stroke: a review of guidelines and a multidisciplinary consensus statement from the National Stroke Association.  JAMA.1999;281:1112-1120.Google Scholar
33.
Blair SN. Evidence for success of exercise in weight loss and control.  Ann Intern Med.1993;119(7 pt 2):702-706.Google Scholar
34.
Devlin JT. Effects of exercise on insulin sensitivity in humans.  Diabetes Care.1992;15:1690-1693.Google Scholar
35.
Henriksson J. Influence of exercise on insulin sensitivity.  J Cardiovasc Risk.1995;2:303-309.Google Scholar
36.
Manson JE, Spelsberg A. Primary prevention of non-insulin-dependent diabetes mellitus.  Am J Prev Med.1994;10:172-184.Google Scholar
37.
Ainsworth BE, Leon AS, Richardson MT, Jacobs DR, Paffenbarger Jr RS. Accuracy of the College Alumnus Physical Activity Questionnaire.  J Clin Epidemiol.1993;46:1403-1411.Google Scholar
Original Contribution
June 14, 2000

Physical Activity and Risk of Stroke in Women

Author Affiliations

Author Affiliations: Departments of Nutrition (Drs Hu, Stampfer, Ascherio, and Willett) and Epidemiology (Drs Stampfer, Colditz, Ascherio, Willett, and Manson), Harvard School of Public Health, Channing Laboratory (Drs Stampfer, Colditz, Willett, and Manson) and the Division of Preventive Medicine (Drs Rexrode and Manson), Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Mass.

JAMA. 2000;283(22):2961-2967. doi:10.1001/jama.283.22.2961
Abstract

Context Persuasive evidence has demonstrated that increased physical activity is associated with substantial reduction in risk of coronary heart disease. However, the role of physical activity in the prevention of stroke is less well established.

Objective To examine the association between physical activity and risk of total stroke and stroke subtypes in women.

Design and Setting The Nurses' Health Study, a prospective cohort study of subjects residing in 11 US states.

Subjects A total of 72,488 female nurses aged 40 to 65 years who did not have diagnosed cardiovascular disease or cancer at baseline in 1986 and who completed detailed physical activity questionnaires in 1986, 1988, and 1992.

Main Outcome Measure Incident stroke occurring between baseline and June 1, 1994, compared among quintiles of physical activity level as measured by metabolic equivalent tasks (METs) in hours per week.

Results During 8 years (560,087 person-years) of follow-up, we documented 407 incident cases of stroke (258 ischemic strokes, 67 subarachnoid hemorrhages, 42 intracerebral hemorrhages, and 40 strokes of unknown type). In multivariate analyses controlling for age, body mass index, history of hypertension, and other covariates, increasing physical activity was strongly inversely associated with risk of total stroke. Relative risks (RRs) in the lowest to highest MET quintiles were 1.00, 0.98, 0.82, 0.74, and 0.66 (P for trend=.005). The inverse gradient was seen primarily for ischemic stroke (RRs across increasing MET quintiles, 1.00, 0.87, 0.83, 0.76, and 0.52; P for trend=.003). Physical activity was not significantly associated with subarachnoid hemorrhage or intracerebral hemorrhage. After multivariate adjustment, walking was associated with reduced risk of total stroke (RRs across increasing walking MET quintiles, 1.00, 0.76, 0.78, 0.70, and 0.66; P for trend=.01) and ischemic stroke (RRs across increasing walking MET quintiles, 1.00, 0.77, 0.75, 0.69, and 0.60; P for trend=.02). Brisk or striding walking pace was associated with lower risk of total and ischemic stroke compared with average or casual pace.

Conclusion These data indicate that physical activity, including moderate-intensity exercise such as walking, is associated with substantial reduction in risk of total and ischemic stroke in a dose-response manner.

×