Validation of Clinical Classification Schemes for Predicting Stroke: Results From the National Registry of Atrial Fibrillation | Atrial Fibrillation | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.170.64.36. Please contact the publisher to request reinstatement.
1.
Kopecky SL, Gersh BJ, McGoon MD.  et al.  Lone atrial fibrillation in elderly persons: a marker for cardiovascular risk.  Arch Intern Med.1999;159:1118-1122.Google Scholar
2.
Atrial Fibrillation Investigators.  Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation.  Arch Intern Med.1994;154:1449-1157.Google Scholar
3.
Stroke Prevention Atrial Fibrillation III Writing Committee.  Patients with nonvalvular atrial fibrillation at low risk of stroke during treatment with aspirin: Stroke Prevention in Atrial Fibrillation III Study.  JAMA.1998;279:1273-1277.Google Scholar
4.
Stroke Prevention in Atrial Fibrillation Investigators.  Predictors of thromboembolism in atrial fibrillation, I: clinical features of patients at risk.  Ann Intern Med.1992;116:1-5.Google Scholar
5.
van Latum JC, Koudstaal PJ, Venables GS, van Gijn J, Kappelle LJ, Algra A.for the European Atrial Fibrillation Trial (EAFT) Study Group.  Predictors of major vascular events in patients with a transient ischemic attack or minor ischemic stroke and with nonrheumatic atrial fibrillation.  Stroke.1995;26:801-806.Google Scholar
6.
Hart RG, Benavente O, McBride R, Pearce LA. Antithrombotic therapy to prevent stroke in patients with atrial fibrillation: a meta-analysis.  Ann Intern Med.1999;131:492-501.Google Scholar
7.
The European Atrial Fibrillation Trial Study Group.  Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke.  Lancet.1993;342:1255-1262.Google Scholar
8.
Laupacis A, Boysen G, Connolly S.  et al.  The efficacy of aspirin in patients with atrial fibrillation: analysis of pooled data from 3 randomized trials.  Arch Intern Med.1997;157:1237-1240.Google Scholar
9.
Gage BF, Cardinalli AB, Albers GW, Owens DK. Cost-effectiveness of warfarin and aspirin for prophylaxis of stroke in patients with nonvalvular atrial fibrillation.  JAMA.1995;274:1839-1845.Google Scholar
10.
Laupacis A, Albers G, Dalen J, Dunn MI, Jacobson AK, Singer DE. Antithrombotic therapy in atrial fibrillation.  Chest.1998;114:579S-589S.Google Scholar
11.
Go AS, Hylek EM, Phillips KA.  et al.  Implications of stroke risk criteria on the anticoagulation decision in nonvalvular atrial fibrillation: the anticoagulation and risk factors in the Atrial Fibrillation (ATRIA) study.  Circulation.2000;102:11-13.Google Scholar
12.
Hart RG. Warfarin in atrial fibrillation: underused in the elderly, often inappropriately used in the young [editorial].  Heart.1999;82:539-540.Google Scholar
13.
Pearce LA, Hart RG, Halperin JL. Assessment of three schemes for stratifying stroke risk in patients with nonvalvular atrial fibrillation.  Am J Med.2000;109:45-51.Google Scholar
14.
Atrial Fibrillation Investigators.  Echocardiographic predictors of stroke in patients with atrial fibrillation: a prospective study of 1066 patients from 3 clinical trials.  Arch Intern Med.1998;158:1316-1320.Google Scholar
15.
Stroke Prevention in Atrial Fibrillation Investigators.  Risk factors for thromboembolism during aspirin therapy in patients with atrial fibrillation: The Stroke Prevention in Atrial Fibrillation study.  J Stroke Cerebrovasc Dis.1995;5:147-157.Google Scholar
16.
Sudlow M, Thomson R, Thwaites B, Rodgers H, Kenny RA. Prevalence of atrial fibrillation and eligibility for anticoagulants in the community.  Lancet.1998;352:1167-1171.Google Scholar
17.
Harrell Jr FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors.  Stat Med.1996;15:361-387.Google Scholar
18.
Hart RG, Pearce LA, McBride R, Rothbart RM, Asinger RW.for The Stroke Prevention in Atrial Fibrillation (SPAF) Investigators.  Factors associated with ischemic stroke during aspirin therapy in atrial fibrillation: analysis of 2012 participants in the SPAF I-III clinical trials.  Stroke.1999;30:1223-1229.Google Scholar
19.
Feinberg WM, Kronmal RA, Newman AB.  et al.  Stroke risk in an elderly population with atrial fibrillation.  J Gen Intern Med.1999;14:56-59.Google Scholar
20.
D'Agostino RB, Wolf PA, Belanger AJ, Kannel WB. Stroke risk profile: adjustment for antihypertensive medication: the Framingham Study.  Stroke.1994;25:40-43.Google Scholar
21.
Flegel KM, Hanley J. Risk factors for stroke and other embolic events in patients with non-rheumatic atrial fibrillation.  Stroke.1989;20:1000-1004.Google Scholar
22.
Yuan Z, Bowlin S, Einstadter D, Cebul R, Conners A, Rimm A. Atrial fibrillation as a risk factor for stroke: a retrospective cohort study of hospitalized Medicare beneficiaries.  Am J Public Health.1998;88:395-400.Google Scholar
23.
Stroke Prevention in Atrial Fibrillation Investigators.  Predictors of thromboembolism in atrial fibrillation, II: Echocardiographic features of patients at risk.  Ann Intern Med.1992;116:6-12.Google Scholar
24.
Moulton AW, Singer DE, Hass JS. Risk factors for stroke in patients with nonrheumatic atrial fibrillation: a case-control study.  Am J Med.1991;91:156-161.Google Scholar
25.
Jencks SF, Wilensky GR. The Health Care Quality Improvement Initiative: a new approach to quality assurance in Medicare.  JAMA.1992;268:900-903.Google Scholar
26.
Benesch C, Witter DMJ, Wilder AL, Duncan PW, Samsa GP, Matchar DB. Inaccuracy of the International Classification of Diseases (ICD-9-CM) in identifying the diagnosis of ischemic cerebrovascular disease.  Neurology.1997;49:660-664.Google Scholar
27.
Lee E. Statistical Methods for Survival Data Analysis2nd ed. New York, NY: John Wiley & Sons; 1992.
28.
Allison PD. Survival Analysis Using the SAS System: A Practical GuideCary, NC: SAS Institute Inc; 1995.
29.
Rothman KJ, Greenland S. Modern Epidemiology2nd ed. Philadelphia, Pa: Lippincott-Raven Publishers; 1998.
30.
Mooney CZ, Duval RD. Bootstrapping: A Nonparametric Approach to Statistical InferenceNewbury Park, Calif: Sage Publications Inc; 1993.
31.
Stroke Prevention in Atrial Fibrillation Investigators.  Adjusted-dose warfarin versus low-intensity, fixed-dose warfarin plus aspirin for high-risk patients with atrial fibrillation: Stroke Prevention in Atrial Fibrillation III randomised clinical trial.  Lancet.1996;348:633-638.Google Scholar
32.
Hellemons BS, Langenberg M, Lodder J.  et al.  Primary prevention of arterial thromboembolism in non-rheumatic atrial fibrillation in primary care: randomised controlled trial comparing two intensities of coumarin with aspirin.  BMJ.1999;319:958-964.Google Scholar
33.
Kearon C, Hirsh J. Management of anticoagulation before and after elective surgery.  N Engl J Med.1997;336:1506-1511.Google Scholar
34.
Gage BF, Cardinalli AB, Owens DK. The effect of stroke and stroke prophylaxis with aspirin or warfarin on quality of life.  Arch Intern Med.1996;156:1829-1836.Google Scholar
35.
Howitt A, Armstrong D. Implementing evidence based medicine in general practice: audit and qualitative study of antithrombotic treatment for atrial fibrillation.  BMJ.1999;318:1324-1327.Google Scholar
36.
Gage BF, Cardinalli AB, Owens DK. Cost-effectiveness of preference-based antithrombotic therapy for patients with nonvalvular atrial fibrillation.  Stroke.1998;29:1083-1091.Google Scholar
37.
Man-Son-Hing M, Laupacis A, O'Connor AM.  et al.  A patient decision aid regarding antithrombotic therapy for stroke prevention in atrial fibrillation: a randomized controlled trial.  JAMA.1999;282:737-743.Google Scholar
38.
Foulkes MA, Sacco RL, Mohr JP, Hier DB, Price TR, Wolf PA. Parametric modeling of stroke recurrence.  Neuroepidemiology.1994;13:19-27.Google Scholar
Original Contribution
June 13, 2001

Validation of Clinical Classification Schemes for Predicting Stroke: Results From the National Registry of Atrial Fibrillation

Author Affiliations

Author Affiliations: Divisions of General Medical Sciences (Drs Gage, Waterman, and Shannon) and Cardiology (Dr Rich), Washington University School of Medicine, St Louis, Mo; Innovative Emergency Management Inc, Baton Rouge, La (Dr Boechler); and Center for Outcomes Research and Evaluation, Yale–New Haven Hospital, New Haven, Conn (Dr Radford).

JAMA. 2001;285(22):2864-2870. doi:10.1001/jama.285.22.2864
Abstract

Context Patients who have atrial fibrillation (AF) have an increased risk of stroke, but their absolute rate of stroke depends on age and comorbid conditions.

Objective To assess the predictive value of classification schemes that estimate stroke risk in patients with AF.

Design, Setting, and Patients Two existing classification schemes were combined into a new stroke-risk scheme, the CHADS2 index, and all 3 classification schemes were validated. The CHADS2 was formed by assigning 1 point each for the presence of congestive heart failure, hypertension, age 75 years or older, and diabetes mellitus and by assigning 2 points for history of stroke or transient ischemic attack. Data from peer review organizations representing 7 states were used to assemble a National Registry of AF (NRAF) consisting of 1733 Medicare beneficiaries aged 65 to 95 years who had nonrheumatic AF and were not prescribed warfarin at hospital discharge.

Main Outcome Measure Hospitalization for ischemic stroke, determined by Medicare claims data.

Results During 2121 patient-years of follow-up, 94 patients were readmitted to the hospital for ischemic stroke (stroke rate, 4.4 per 100 patient-years). As indicated by a c statistic greater than 0.5, the 2 existing classification schemes predicted stroke better than chance: c of 0.68 (95% confidence interval [CI], 0.65-0.71) for the scheme developed by the Atrial Fibrillation Investigators (AFI) and c of 0.74 (95% CI, 0.71-0.76) for the Stroke Prevention in Atrial Fibrillation (SPAF) III scheme. However, with a c statistic of 0.82 (95% CI, 0.80-0.84), the CHADS2 index was the most accurate predictor of stroke. The stroke rate per 100 patient-years without antithrombotic therapy increased by a factor of 1.5 (95% CI, 1.3-1.7) for each 1-point increase in the CHADS2 score: 1.9 (95% CI, 1.2-3.0) for a score of 0; 2.8 (95% CI, 2.0-3.8) for 1; 4.0 (95% CI, 3.1-5.1) for 2; 5.9 (95% CI, 4.6-7.3) for 3; 8.5 (95% CI, 6.3-11.1) for 4; 12.5 (95% CI, 8.2-17.5) for 5; and 18.2 (95% CI, 10.5-27.4) for 6.

Conclusion The 2 existing classification schemes and especially a new stroke risk index, CHADS2, can quantify risk of stroke for patients who have AF and may aid in selection of antithrombotic therapy.

×