Policy Analysis of Cervical Cancer Screening Strategies in Low-Resource Settings: Clinical Benefits and Cost-effectiveness | Cancer Screening, Prevention, Control | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.226.234.102. Please contact the publisher to request reinstatement.
1.
Pisani P, Parkin DM, Bray F, Ferlay J. Estimates of the worldwide mortality from 25 cancers in 1990.  Int J Cancer.1999;83:18-29.Google Scholar
2.
Parkin DM, Pisani P, Ferlay J. Estimates of the worldwide incidence of 25 major cancers in 1990.  Int J Cancer.1999;80:827-841.Google Scholar
3.
Kitchener HC, Symonds P. Detection of cervical intraepithelial neoplasia in developing countries.  Lancet.1999;353:856-857.Google Scholar
4.
Sitas F, Bezwoda WR, Levin V.  et al.  Association between human immunodeficiency virus type 1 infection and cancer in the black population of Johannesburg and Soweto, South Africa.  Br J Cancer.1997;75:1704-1707.Google Scholar
5.
Parkin DM, Wabinga H, Nambooze S, Wabwire-Mangen F. AIDS-related cancers in Africa.  AIDS.1999;13:2563-2570.Google Scholar
6.
International Agency for Research on Cancer.  IARC monographs on the evaluation of carcinogenic risks to humans. Vol 64.  Human Papillomaviruses.Lyon, France: IARC; 1995.Google Scholar
7.
Wright Jr TC, Denny L, Kuhn L, Pollack A, Lorincz A. HPV DNA testing of self-collected vaginal samples compared with cytologic screening to detect cervical cancer.  JAMA.2000;283:81-86.Google Scholar
8.
Sankaranarayanan R, Wesley R, Somanathan T.  et al.  Visual inspection of the uterine cervix after the application of acetic acid in the detection of cervical carcinoma and its precursors.  Cancer.1998;83:2150-2156.Google Scholar
9.
 Visual inspection with acetic acid for cervical-cancer screening.  Lancet.1999;353:869-873.Google Scholar
10.
Womack SD, Chirenje ZM, Gaffikin L.  et al.  HPV-based cervical cancer screening in a population at high risk for HIV infection.  Int J Cancer.2000;85:206-210.Google Scholar
11.
Denny L, Kuhn L, Pollack A.  et al.  Evaluation of alternative methods of cervical cancer screening for resource-poor settings.  Cancer.2000;89:826-833.Google Scholar
12.
Schiffman M, Hildesheim A, Herrero R, Bratti C. Human papillomavirus testing as a screening tool for cervical cancer.  JAMA.2000;283:2525-2526.Google Scholar
13.
Gold MR, Siegel JE, Russel LB, Weinstein MC. Cost-Effectiveness in Health and MedicineNew York, NY: Oxford University Press; 1996.
14.
Ho GY, Bierman R, Beardsley L.  et al.  Natural history of cervicovaginal papillomavirus infection in young women.  N Engl J Med.1998;338:423-428.Google Scholar
15.
Ho GY, Burk RD, Klein S.  et al.  Persistent genital human papillomavirus infection as a risk factor for persistent cervical dysplasia.  J Natl Cancer Inst.1995;87:1365-1371.Google Scholar
16.
Remmink A, Walboomers J, Helmerhorst T.  et al.  The presence of persistent high-risk HPV genotypes in dysplastic cervical lesions is associated with progressive disease.  Int J Cancer.1995;61:306-311.Google Scholar
17.
Sun XW, Kuhn L, Ellerbrock TV.  et al.  Human papillomavirus infection in women infected with the human immunodeficiency virus.  N Engl J Med.1997;337:1343-1349.Google Scholar
18.
Nobbenhuis MA, Walboomers JM, Helmerhorst TJ.  et al.  Relation of human papillomavirus status to cervical lesions and consequences for cervical-cancer screening.  Lancet.1999;354:20-25.Google Scholar
19.
Moscicki AB, Shiboski S, Broering J.  et al.  The natural history of human papillomavirus infection as measured by repeated DNA testing in adolescent and young women.  J Pediatrics.1998;132:277-284.Google Scholar
20.
Londesborough P, Ho L, Terry G.  et al.  Human papillomavirus genotype as a predictor of persistence and development of high-grade lesions in women with minor cervical abnormalities.  Int J Cancer.1996;69:364-368.Google Scholar
21.
Hildesheim A, Schiffman MH, Gravitt PE.  et al.  Persistence of type-specific human papillomavirus infection among cytologically normal women.  J Infect Dis.1994;169:235-240.Google Scholar
22.
Rozendaal L, Walboomers JM, van der Linden JC.  et al.  PCR-based high-risk HPV test in cervical cancer screening gives objective risk assessment of women with cytomorphologically normal cervical smears.  Int J Cancer.1996;68:766-769.Google Scholar
23.
Wallin KL, Wiklund F, Angstrom T.  et al.  Type-specific persistence of human papillomavirus DNA before the development of invasive cervical cancer.  N Engl J Med.1999;341:1633-1638.Google Scholar
24.
Herrero R, Hildesheim A, Bratti C.  et al.  Population-based study of human papillomavirus infection and cervical neoplasia in rural Costa Rica.  J Natl Cancer Inst.2000;92:464-474.Google Scholar
25.
Palefsky JM, Minkoff H, Kalish LA.  et al.  Cervicovaginal human papillomavirus infection in human immunodeficiency virus-1 (HIV)-positive and high-risk HIV-negative women.  J Natl Cancer Inst.1999;91:226-236.Google Scholar
26.
Andersen ES, Husth M. Cryosurgery for cervical intraepithelial neoplasia: 10-year follow-up.  Gynecol Oncol.1992;45:240-242.Google Scholar
27.
Creasman WT, Hinshaw WM, Clarke-Pearson DL. Cryosurgery in the management of cervical intraepithelial neoplasia.  Obstet Gynecol.1984;63:145-149.Google Scholar
28.
Olatunbosun OA, Okonofua FE, Ayangade SO. Outcome of cryosurgery for cervical intraepithelial neoplasia in a developing country.  Int J Gynaecol Obstet.1992;38:305-310.Google Scholar
29.
Mitchell MF, Tortolero-Luna G, Cook E.  et al.  A randomized clinical trial of cryotherapy, laser vaporization, and loop electrosurgical excision for treatment of squamous intraepithelial lesions of the cervix.  Obstet Gynecol.1998;92:737-744.Google Scholar
30.
Denny L. An Evaluation of Alternative Strategies for the Prevention of Cervical Cancer in Low Resource Settings [thesis]. Cape Town, South Africa: University of Cape Town and Groote Schuur Hospital; May 2000.
31.
Cuzick J, Sasieni P, Davies P.  et al.  A systematic review of the role of human papillomavirus testing within a cervical screening programme.  Health Technol Assess.1999;3:1-204.Google Scholar
32.
Holowaty P, Miller AB, Rohan T, To T. Natural history of dysplasia of the uterine cervix.  J Natl Cancer Inst.1999;91:252-258.Google Scholar
33.
Ostor AG. Natural history of cervical intraepithelial neoplasia: a critical review.  Int J Gynecol Pathol.1993;12:186-192.Google Scholar
34.
McCrory D, Mather D, Bastain L.  et al.  Evaluation of Cervical Cytology. Evidence Report/Technology Assessment No.5 (Prepared by Duke University under Contract No. 290-97-0014). Rockville, Md: Agency for Health Care Policy and Research. February 1999. AHCPR Pub No. 99-E010.
35.
Ponten J, Adami HO, Bergstrom R.  et al.  Strategies for global control of cervical cancer.  Int J Cancer.1995;60:1-26.Google Scholar
36.
Myers ER, McCrory DC, Nanda K, Bastian L, Matchar DB. Mathematical model for the natural history of human papillomavirus infection and cervical carcinogenesis.  Am J Epidemiol.2000;151:1158-1171.Google Scholar
37.
Sherlaw-Johnson C, Gallivan S, Jenkins D. Evaluating cervical cancer screening programmes for developing countries.  Int J Cancer.1997;72:210-216.Google Scholar
38.
Syrjanen K, Kataja V, Yliskoski M.  et al.  Natural history of cervical human papillomavirus lesions does not substantiate the biologic relevance of the Bethesda system.  Obstet Gynecol.1992;79:675-682.Google Scholar
39.
Koutsky L, Holmes K, Critchlow C.  et al.  A cohort study of the risk of cervical intraepithelial neoplasia grade 2 or 3 in relation to human papillomavirus infection.  N Engl J Med.1992;327:1272-1278.Google Scholar
40.
Jenkins D, Sherlaw-Johnson C, Gallivan S. Can papilloma virus testing be used to improve cervical cancer screening?  Int J Cancer.1996;65:768-773.Google Scholar
41.
Kuhn L, Denny L, Pollack A, Lorincz A, Richart RM, Wright TC. Human papillomavirus DNA testing for cervical cancer screening in low- resource settings.  J Natl Cancer Inst.2000;92:818-825.Google Scholar
42.
Fahey MT, Irwig L, Macaskill P. Meta-analysis of Pap test accuracy.  Am J Epidemiol.1995;141:680-689.Google Scholar
43.
Nanda K, McCrory DC, Myers ER.  et al.  Accuracy of the Papanicolaou test in screening for and follow-up of cervical cytologic abnormalities.  Ann Intern Med.2000;132:810-819.Google Scholar
44.
Nene BM, Deshpande S, Jayant K.  et al.  Early detection of cervical cancer by visual inspection.  Int J Cancer.1996;68:770-773.Google Scholar
45.
Cuzick J, Beverley E, Ho L.  et al.  HPV testing in primary screening of older women.  Br J Cancer.1999;81:554-558.Google Scholar
46.
Clavel C, Masure M, Bory JP.  et al.  Hybrid Capture II-based human papillomavirus detection, a sensitive test to detect in routine high-grade cervical lesions.  Br J Cancer.1999;80:1306-1311.Google Scholar
47.
Hillemanns P, Kimmig R, Huttemann U.  et al.  Screening for cervical neoplasia by self-assessment for human papillomavirus DNA.  Lancet.1999;354:1970.Google Scholar
48.
Sellors JW, Lorincz AT, Mahony JB.  et al.  Comparison of self-collected vaginal, vulvar and urine samples with physician-collected cervical samples for humanpapillomavirus testing to detect high-grade squamous intraepithelial lesions.  CMAJ.2000;163:513-518.Google Scholar
49.
Harper D, Hildesheim A, Cobb J, Greenberg M, Vaught J, Lorincz A. Collection devices for human papillomavirus.  J Fam Pract.1999;48:531-535.Google Scholar
50.
Denny L, Kuhn L, Risi L.  et al.  Two-stage cervical cancer screening.  Am J Obstet Gynecol.2000;183:383-388.Google Scholar
51.
Sankaranarayanan R, Black RJ, Swaminathan R, Parkin DM. An overview of cancer survival in developing countries.  IARC Sci Publ.1998;145:135-173.Google Scholar
52.
Rogo KO, Omany J, Onyango JN, Ojwang SB, Stendahl U. Carcinoma of the cervix in the African setting.  Int J Gynaecol Obstet.1990;33:249-255.Google Scholar
53.
Pettersson F, Bjorkholm E, Naslund I. Evaluation of screening for cervical cancer in Sweden.  Int J Epidemiol.1985;14:521-527.Google Scholar
54.
 Surveillance, Epidemiology, End Results (SEER) Cancer Statistics Review, 1973-1994.  Bethesda, Md: US DHHS, PHS, NIH, NCI. Available at: http://www-seer.ims.nci.nih.gov/: National Cancer Institute; 1997. Accessibility verified June 4, 2001.
55.
Longini I, Clark W, Byers R.  et al.  Statistical analysis of the stages of HIV infection using a Markov model.  Stat Med.1989;8:831-843.Google Scholar
56.
Enger C, Graham N, Peng Y.  et al.  Survival from early, intermediate, and late stages of HIV infection.  JAMA.1996;275:1329-1334.Google Scholar
57.
Freedberg K, Scharfstein J, Seage G.  et al.  The cost-effectiveness of preventing AIDS-related complications.  JAMA.1997;279:130-136.Google Scholar
58.
 The 1988 Bethesda System for reporting cervical/vaginal cytological diagnoses. National Cancer Institute Workshop.  JAMA.1989;262:931-934.Google Scholar
59.
Ellerbrock TV, Chiasson MA, Bush TJ.  et al.  Incidence of cervical squamous intraepithelial lesions in HIV-infected women.  JAMA.2000;283:1031-1037.Google Scholar
60.
Serwadda D, Wawer MJ, Shah KV.  et al.  Use of a hybrid capture assay of self-collected vaginal swabs in rural Uganda for detection of human papillomavirus.  J Infect Dis.1999;180:1316-1319.Google Scholar
61.
Pecorelli S, Benedet JL, Creasman WT, Shepherd JH. FIGO staging of gynecologic cancer.  Int J Gynaecol Obstet.1999;65:243-249.Google Scholar
62.
Goldie SJ, Weinstein MC, Kuntz KM, Freedberg KA. The costs, clinical benefits, and cost-effectiveness of screening for cervical cancer in HIV-infected women.  Ann Intern Med.1999;130:97-107.Google Scholar
63.
Medical Association of South Africa.  1999 Guide to Fees for Medical ServicesPinelands, South Africa: MASA Multimedia; 1999.
64.
Central Statistical Service, Republic of South Africa.  South Africa Living Standards and Development SurveyStatistical Release; 1997. Pretoria, South Africa: Government Printer; 1997.
65.
Central Statistical Service, Republic of South Africa.  1994 Household Survey. Statistical Release; 1997. Pretoria, South Africa: Government Printer; 1994.
66.
 Public priorities in a global epidemic: confronting AIDS. World Bank AIDS Economics; 2000. Available at: http://www.worldbank.org/aids-econ/confront/confrontfull/tables.html. Accessibility verified June 4, 2001.
67.
Central Statistical Service, Republic of South Africa.  Consumer Price IndexStatistical Release; 1997. Pretoria, South Africa: Government Printer; 1997.
68.
Mandelblatt J, Fryback D, Weinstein M.  et al.  Assessing the effectiveness of health interventions for cost-effectiveness analysis.  J Gen Intern Med.1997;12:551-557.Google Scholar
69.
Bailie RS, Selvey CE, Bourne D, Bradshaw D. Trends in cervical cancer mortality in South Africa.  Int J Epidemiol.1996;25:488-493.Google Scholar
70.
Mathers C, Sadana R, Salomon J, Murray C, Lopez A. Estimates of DALE for 191 Countries: Methods and results, Global Programme on Evidence for Health Policy Working Paper No.16. World Health Organization, June 2000. Available at: http://www-nt.who.int/whosis/statistics/menu.cfm. Accessed May 29, 2001.
71.
Lopez A, Salomon J, Ahmad O, Murray C. Lifetables for 191 countries. World Health Organization, Geneva, 2000. Available at: http://www-nt.who.int/whosis/statistics/menu.cfm. Accessed May 29, 2001.
72.
Dorrington R, Bradshaw D, Wegner T. Estimates of the level and shape of mortality rates in South Africa around 1985 and 1990 derived by applying indirect demographic techniques to reported deaths. Parow, South Africa: Centre for Epidemiological Research in Southern Africa Medical Research Council; 1999 Technical Report.
73.
Grant A, Djomand G, DeCock K. Natural history and spectrum of disease in adults with HIV/AIDS in Africa.  AIDS.1997;11(suppl B):S43-S54.Google Scholar
74.
Ballegooijen M, Koopmanschap M, Tjokrowardojo Subandono A, Oortmarssen G. Care and costs of advanced cervical cancer.  Eur J Cancer.1992;28A:1703-1708.Google Scholar
75.
 Cost-comparison study of several medical procedures and radiation therapy at the University of Cape Town. Cape Town, South Africa: Dept of Radiation Therapy, University of Cape Town; 1993. Internal Report.
76.
Peters D, Elmendorf A, Kandola K, Chellaraj G. Benchmarks for health expenditures, services and outcomes in Africa during the 1990's.  Bull World Health Organ.2000;78:761-769.Google Scholar
77.
Sitas F. Histologically diagnosed cancers in South Africa, 1988.  S Afr Med J.1994;84:344-348.Google Scholar
78.
World Bank.  World Bank development report 1993: investing in health. New York, NY: Oxford University press 1993. From: World Bank. Confronting AIDS: Public Priorities in a Global Epidemic. New York, NY: Oxford University Press, 1997.
79.
Gilson L, Mkanje R, Grosskurth H.  et al.  Cost-effectiveness of improved treatment services for sexually transmitted diseases in preventing HIV-1 infection in Mwanza Region, Tanzania.  Lancet.1997;350:1805-1809.Google Scholar
Original Contribution
June 27, 2001

Policy Analysis of Cervical Cancer Screening Strategies in Low-Resource Settings: Clinical Benefits and Cost-effectiveness

Author Affiliations

Author Affiliations: From the Department of Health Policy and Management Harvard School of Public Health, Boston, Mass (Dr Goldie); Department of Obstetrics and Gynecology, University of Cape Town, South Africa (Dr Denny); Gertrude H. Sergievsky Center, College of Physicians and Surgeons, and Division of Epidemiology, Joseph L. Mailman School of Public Health, Columbia University, New York, NY (Dr Kuhn); EngenderHealth, New York, NY, (Dr Pollack); Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, NY, (Dr Wright).

JAMA. 2001;285(24):3107-3115. doi:10.1001/jama.285.24.3107
Abstract

Context Cervical cancer is a leading cause of cancer-related death among women in developing countries. In such low-resource settings, cytology-based screening is difficult to implement, and less complex strategies may offer additional options.

Objective To assess the cost-effectiveness of several cervical cancer screening strategies using population-specific data.

Design and Setting Cost-effectiveness analysis using a mathematical model and a hypothetical cohort of previously unscreened 30-year-old black South African women. Screening tests included direct visual inspection (DVI) of the cervix, cytologic methods, and testing for high-risk types of human papillomavirus (HPV) DNA. Strategies differed by number of clinical visits, screening frequency, and response to a positive test result. Data sources included a South African screening study, national surveys and fee schedules, and published literature.

Main Outcome Measures Years of life saved (YLS), lifetime costs in US dollars, and incremental cost-effectiveness ratios (cost per YLS).

Results When analyzing all strategies performed as a single lifetime screen at age 35 years compared with no screening, HPV testing followed by treatment of screen-positive women at a second visit, cost $39/YLS (27% cancer incidence reduction); DVI, coupled with immediate treatment of screen-positive women at the first visit was next most effective (26% cancer incidence reduction) and was cost saving; cytology, followed by treatment of screen-positive women at a second visit was least effective (19% cancer incidence reduction) at a cost of $81/YLS. For any given screening frequency, when strategies were compared incrementally, HPV DNA testing generally was more effective but also more costly than DVI, and always was more effective and less costly than cytology. When comparing all strategies simultaneously across screening frequencies, DVI was the nondominated strategy up to a frequency of every 3 years (incremental cost-effectiveness ratio, $460/YLS), and HPV testing every 3 years (incremental cost-effectiveness ratio, $11 500/YLS) was the most effective strategy.

Conclusion Cervical cancer screening strategies that incorporate DVI or HPV DNA testing and eliminate colposcopy may offer attractive alternatives to cytology-based screening programs in low-resource settings.

×