Biochemical Diagnosis of Pheochromocytoma: Which Test Is Best? | Endocrinology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Bravo EL. Evolving concepts in the pathophysiology, diagnosis, and treatment of pheochromocytoma.  Endocr Rev.1994;15:356-368.Google Scholar
Manger WM, Gifford Jr RW. Pheochromocytoma: current diagnosis and management.  Cleve Clin J Med.1993;60:365-378.Google Scholar
Mannelli M. Diagnostic problems in pheochromocytoma.  J Endocrinol Invest.1989;12:739-757.Google Scholar
Bravo EL, Tarazi RC, Gifford RW, Stewart BH. Circulating and urinary catecholamines in pheochromocytoma.  N Engl J Med.1979;301:682-686.Google Scholar
Duncan MW, Compton P, Lazarus L, Smythe GA. Measurement of norepinephrine and 3,4-dihydroxyphenylglycol in urine and plasma for the diagnosis of pheochromocytoma.  N Engl J Med.1988;319:136-142.Google Scholar
Young MJ, Dmuchowski C, Wallis JW, Barnas GP, Shapiro B. Biochemical tests for pheochromocytoma: strategies in hypertensive patients.  J Gen Intern Med.1989;4:273-276.Google Scholar
Peaston RT, Lai LC. Biochemical detection of phaechromocytoma.  J Clin Pathol.1993;46:734-737.Google Scholar
Gerlo EA, Sevens C. Urinary and plasma catecholamines and urinary catecholamine metabolites in pheochromocytoma.  Clin Chem.1994;40:250-256.Google Scholar
Lenders JW, Keiser HR, Goldstein DS.  et al.  Plasma metanephrines in the diagnosis of pheochromocytoma.  Ann Intern Med.1995;123:101-109.Google Scholar
Heron E, Chatellier G, Billaud E, Foos E, Plouin PF. The urinary metanephrine-to-creatinine ratio for the diagnosis of pheochromocytoma.  Ann Intern Med.1996;125:300-303.Google Scholar
Eisenhofer G, Lenders JW, Linehan WM, Walther MM, Goldstein DS, Keiser HR. Plasma normetanephrine and metanephrine for detecting pheochromocytoma in von Hippel-Lindau disease and multiple endocrine neoplasia type 2.  N Engl J Med.1999;340:1872-1879.Google Scholar
Mannelli M, Ianni L, Cilotti A, Conti A. Pheochromocytoma in Italy: a multicentric retrospective study.  Eur J Endocrinol.1999;141:619-624.Google Scholar
Witteles RM, Kaplan EL, Roizen MF. Sensitivity of diagnostic and localization tests for pheochromocytoma in clinical practice.  Arch Intern Med.2000;160:2521-2524.Google Scholar
Raber W, Raffesberg W, Bischof M.  et al.  Diagnostic efficacy of unconjugated plasma metanephrines for the detection of pheochromocytoma.  Arch Intern Med.2000;160:2957-2963.Google Scholar
Hernandez FC, Sanchez M, Alvarez A.  et al.  A five-year report on experience in the detection of pheochromocytoma.  Clin Biochem.2000;33:649-655.Google Scholar
Gardet V, Gatta B, Simonnet G.  et al.  Lessons from an unpleasant surprise.  J Hypertens.2001;19:1029-1035.Google Scholar
Eisenhofer G, Goldstein DS, Stull R.  et al.  Simultaneous liquid-chromatographic determination of 3,4-dihydroxyphenylglycol, catecholamines, and 3,4-dihydroxyphenylalanine in plasma, and their responses to inhibition of monoamine oxidase.  Clin Chem.1986;32:2030-2033.Google Scholar
van der Hoorn FAJ, Boomsma F, Man in't Veld AJ, Schalekamp MADH. Determination of catecholamines in human plasma by high-performance liquid chromatography.  J Chromatogr.1989;487:17-28.Google Scholar
Lenders JWM, Eisenhofer G, Armando I, Keiser HR, Goldstein DS, Kopin IJ. Determination of plasma metanephrines by liquid chromatography with electrochemical detection.  Clin Chem.1993;39:97-103.Google Scholar
Pisano JJ. A simple analysis of normetanephrine and metanephrine in urine.  Clin Chim Acta.1960;5:406-414.Google Scholar
Pisano JJ, Crout R, Abraham D. Determination of 3-methoxy-4-hydroxymandelic acid in urine.  Clin Chim Acta.1962;7:285-289.Google Scholar
Moyer TP, Jiang NS, Tyce GM, Sheps SG. Analysis for urinary catecholamines by liquid chromatography with amperometric detection.  Clin Chem.1979;25:256-263.Google Scholar
Beck JR, Shultz EK. The use of relative operating characteristic (ROC) curves in test performance evaluation.  Arch Pathol Lab Med.1986;110:13-20.Google Scholar
Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases.  Radiology.1983;148:839-843.Google Scholar
Eisenhofer G, Friberg P, Pacak K.  et al.  Plasma metadrenalines.  Clin Sci (Colch).1995;88:533-542.Google Scholar
Eisenhofer G, Rundqvist B, Aneman A.  et al.  Regional release and removal of catecholamines and extraneuronal metabolism to metanephrines.  J Clin Endocrinol Metab.1995;80:3009-3017.Google Scholar
Eisenhofer G, Keiser H, Friberg P.  et al.  Plasma metanephrines are markers of pheochromocytoma produced by catechol-O-methyltransferase within tumors.  J Clin Endocrinol Metab.1998;83:2175-2185.Google Scholar
Eisenhofer G, Huynh T-T, Hiroi M, Pacak K. Understanding catecholamine metabolism as a guide to the biochemical diagnosis of pheochromocytoma.  Rev Endocr Metab Disord.2001;2:297-311.Google Scholar
Eisenhofer G, Aneman A, Hooper D, Rundqvist B, Friberg P. Mesenteric organ production, hepatic metabolism, and renal elimination of norepinephrine and its metabolites in humans.  J Neurochem.1996;66:1565-1573.Google Scholar
Eisenhofer G. Free or total metanephrines for diagnosis of pheochromocytoma: what is the difference?  Clin Chem.2001;47:988-989.Google Scholar
Walther MM, Reiter R, Keiser HR.  et al.  Clinical and genetic characterization of pheochromocytoma in von Hippel-Lindau families.  J Urol.1999;162:659-664.Google Scholar
Pauker SG, Kopelman RI. Interpreting hoofbeats.  N Engl J Med.1992;327:1009-1013.Google Scholar
Bravo EL, Tarazi RC, Fouad FM, Vidt DG, Gifford Jr RW. Clonidine-suppression test.  N Engl J Med.1981;305:623-626.Google Scholar
Grossman E, Goldstein DS, Hoffman A, Keiser HR. Glucagon and clonidine testing in the diagnosis of pheochromocytoma.  Hypertension.1991;17:733-741.Google Scholar
Pacak K, Linehan WM, Eisenhofer G, Walther MM, Goldstein DS. Recent advances in genetics, diagnosis, localization, and treatment of pheochromocytoma.  Ann Intern Med.2001;134:315-329.Google Scholar
Goldstein DS, Stull R, Markey SP, Marks ES, Keiser HR. Dihydrocaffeic acid: a common contaminant in the liquid chromatographic-electrochemical measurement of plasma catecholamines in man.  J Chromatogr.1984;311:148-153.Google Scholar
Toward Optimal Laboratory Use
March 20, 2002

Biochemical Diagnosis of Pheochromocytoma: Which Test Is Best?

Author Affiliations

Author Affiliations: Department of Internal Medicine, St Radboud University Medical Center, Nijmegen, the Netherlands (Dr Lenders); Department of Clinical Pathophysiology, University of Florence, Florence, Italy (Dr Mannelli); Department of Clinical Physiology, Sahlgren's University Hospital, Göteborg, Sweden (Dr Friberg); Pediatric and Reproductive Endocrinology Branch, National Institute of Child Health and Human Development (Dr Pacak), Urologic Oncology Branch, National Cancer Institute (Drs Walther and Linehan), Hypertension Endocrine Branch, National Heart, Lung, and Blood Institute (Dr Keiser), and Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke (Drs Goldstein and Eisenhofer), National Institutes of Health, Bethesda, Md.

JAMA. 2002;287(11):1427-1434. doi:10.1001/jama.287.11.1427

Context Diagnosis of pheochromocytoma depends on biochemical evidence of catecholamine production by the tumor. However, the best test to establish the diagnosis has not been determined.

Objective To determine the biochemical test or combination of tests that provides the best method for diagnosis of pheochromocytoma.

Design, Setting, and Participants Multicenter cohort study of patients tested for pheochromocytoma at 4 referral centers between 1994 and 2001. The analysis included 214 patients in whom the diagnosis of pheochromocytoma was confirmed and 644 patients who were determined to not have the tumor.

Main Outcome Measures Test sensitivity and specificity, receiver operating characteristic curves, and positive and negative predictive values at different pretest prevalences using plasma free metanephrines, plasma catecholamines, urinary catecholamines, urinary total and fractionated metanephrines, and urinary vanillylmandelic acid.

Results Sensitivities of plasma free metanephrines (99% [95% confidence interval {CI}, 96%-100%]) and urinary fractionated metanephrines (97% [95% CI, 92%-99%]) were higher than those for plasma catecholamines (84% [95% CI, 78%-89%]), urinary catecholamines (86% [95% CI, 80%-91%]), urinary total metanephrines (77% [95% CI, 68%-85%]), and urinary vanillylmandelic acid (64% [95% CI, 55%-71%]). Specificity was highest for urinary vanillylmandelic acid (95% [95% CI, 93%-97%]) and urinary total metanephrines (93% [95% CI, 89%-97%]); intermediate for plasma free metanephrines (89% [95% CI, 87%-92%]), urinary catecholamines (88% [95% CI, 85%-91%]), and plasma catecholamines (81% [95% CI, 78%-84%]); and lowest for urinary fractionated metanephrines (69% [95% CI, 64%-72%]). Sensitivity and specificity values at different upper reference limits were highest for plasma free metanephrines using receiver operating characteristic curves. Combining different tests did not improve the diagnostic yield beyond that of a single test of plasma free metanephrines.

Conclusion Plasma free metanephrines provide the best test for excluding or confirming pheochromocytoma and should be the test of first choice for diagnosis of the tumor.