Dairy Consumption, Obesity, and the Insulin Resistance Syndrome in Young Adults: The CARDIA Study | Obesity | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Reaven GM. Role of insulin resistance in human disease (syndrome X): an expanded definition.  Annu Rev Med.1993;44:121-131.Google Scholar
Stern MP. Diabetes and cardiovascular disease: the "common soil" hypothesis?  Diabetes.1995;44:369-374.Google Scholar
Reaven GM. Role of insulin resistance in human disease.  Diabetes.1988;37:1595-1607.Google Scholar
Mokdad AH, Serdula MK, Dietz WH, Bowman BA, Marks JS, Koplan JP. The spread of the obesity epidemic in the United States, 1991-1998.  JAMA.1999;282:1519-1522.Google Scholar
Troiano RP, Flegal KM, Kuczmarski RJ, Campbell SM, Johnson CL. Overweight prevalence and trends for children and adolescents.  Arch Pediatr Adolesc Med.1995;149:1085-1091.Google Scholar
Burke JP, Williams K, Gaskill SP.  et al.  Rapid rises in the incidence of type 2 diabetes from 1987 to 1996: results from the San Antonio Heart Study.  Arch Intern Med.1999;159:1450-1456.Google Scholar
 Trends in the prevalence and incidence of self-reported diabetes mellitus: US 1980-84.  MMWR Morb Mortal Wkly Rep.1997;46:1014-1018.Google Scholar
Ludwig DS, Ebbeling CB. Type 2 diabetes mellitus in children: primary care and public health considerations.  JAMA.2001;286:1427-1430.Google Scholar
Arslanian S, Suprasongsin C. Insulin sensitivity, lipids, and body composition in childhood: is "syndrome X" present?  J Clin Endocrinol Metab.1996;81:1058-1062.Google Scholar
Bao W, Srinivasan SR, Wattigney WA, Berenson GS. Persistence of multiple cardiovascular risk clustering related to syndrome X from childhood to young adulthood: the Bogalusa Heart Study.  Arch Intern Med.1994;154:1842-1847.Google Scholar
Young-Hyman D, Schlundt DG, Herman L, De Luca F, Counts D. Evaluation of the insulin resistance syndrome in 5- to 10-year-old overweight/obese African American children.  Diabetes Care.2001;24:1359-1364.Google Scholar
Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey.  JAMA.2002;287:356-359.Google Scholar
Rosamond WD, Chambless LE, Folsom AR.  et al.  Trends in the incidence of myocardial infarction and in mortality due to coronary heart disease, 1987-1994.  N Engl J Med.1998;339:861-887.Google Scholar
Reaven GM. Diet and syndrome X.  Curr Atheroscler Rep.2000;2:503-507.Google Scholar
Abbasi F, McLaughlin T, Lamendola C.  et al.  High carbohydrate diets, triglyceride-rich lipoproteins, and coronary heart disease risk.  Am J Cardiol.2000;85:45-48.Google Scholar
Jeppesen J, Hein HO, Suadicani P, Gyntelberg F. Relation of high TG-Low HDL cholesterol and LDL cholesterol to the incidence of ischemic heart disease.  Arterioscler Thromb Vasc Biol.1997;17:1114-1120.Google Scholar
Jeppesen J, Schaaf P, Jones C. Effects of low-fat, high-carbohydrate diets on risk factors for ischemic heart disease in postmenopausal women.  Am J Clin Nutr.1997;65:1027-1033.Google Scholar
Blades B, Garg A. Mechanisms of increase in plasma triacylglycerol concentrations as a result of high carbohydrate intakes in patients with non-insulin-dependent diabetes mellitus.  Am J Clin Nutr.1995;62:996-1002.Google Scholar
Nelson GJ, Schmidt PC, Kelley DS. Low-fat diets do not lower plasma cholesterol levels in healthy men compared to high-fat diets with similar fatty acid composition at constant caloric intake.  Lipids.1995;30:969-976.Google Scholar
Ludwig DS, Pereira MA, Kroenke CH.  et al.  Dietary fiber, weight gain, and cardiovascular risk disease factors in young adults.  JAMA.1999;282:1539-1546.Google Scholar
Fukagawa NK, Anderson JW, Hageman G, Young VR, Minaker KL. High-carbohydrate, high-fiber diets increase peripheral insulin sensitivity in healthy young and old adults.  Am J Clin Nutr.1990;52:524-528.Google Scholar
Liu S, Willett WC, Stampfer MJ.  et al.  A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women.  Am J Clin Nutr.2000;71:1455-1461.Google Scholar
Salmeron J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women.  JAMA.1997;277:472-477.Google Scholar
Frost G, Leeds AA, Dore CJ, Madeiros S, Brading S, Dornhorst A. Glycaemic index as a determinant of serum HDL-cholesterol concentration.  Lancet.1999;353:1045-1048.Google Scholar
Cavadini C, Siega-Riz AM, Popkin BM. US adolescent food intake trends from 1965 to 1996.  Arch Dis Child.2000;83:18-24.Google Scholar
Harnack L, Stang J, Story M. Soft drink consumption among US children and adolescents: nutritional consequences.  J Am Diet Assoc.1999;99:436-441.Google Scholar
Popkin BM, Haines PS, Patterson RE. Dietary changes in older Americans 1977-1987.  Am J Clin Nutr.1992;55:823-830.Google Scholar
Carruth BR, Skinner JD. The role of calcium and other nutrients in moderating body fat in preschool children.  Int J Obes Relat Metab Disord.2001;25:559-566.Google Scholar
Lin YC, Lyle RM, McCabe LD, McCabe GP, Weaver CM, Teegarden D. Dairy calcium is related to changes in body composition during a two-year exercise intervention in young women.  J Am Coll Nutr.2000;19:754-760.Google Scholar
Zemel M, Shi H, Greer B, Dirienzo D, Zemel PC. Regulation of adiposity by dietary calcium.  FASEB J.2000;14:1132-1138.Google Scholar
Davies KM, Heaney RP, Recker RR.  et al.  Calcium intake and body weight.  J Clin Endocrinol Metab.2000;85:4635-4638.Google Scholar
Ascherio A, Hennekens C, Willett WC.  et al.  Prospective study of nutritional factors, blood pressure, and hypertension among US women.  Hypertension.1996;27:1065-1072.Google Scholar
Witteman JC, Willett WC, Stampfer MJ.  et al.  A prospective study of nutritional factors and hypertension among US women.  Circulation.1989;80:1320-1327.Google Scholar
Mennen LI, Balkau B, Vol S.  et al.  Tissue-type plasminogen activator antigen and consumption of dairy products. The DESIR Study.  Thromb Res.1999;94:381-388.Google Scholar
Bostick RM, Kushi LH, Wu Y, Meyer KA, Sellers TA, Folsom AR. Relation of calcium, vitamin D, and dairy food intake to ischemic heart disease mortality among postmenopausal women.  Am J Epidemiol.1999;149:151-161.Google Scholar
Ness AR, Smith GD, Hart C. Milk, coronary heart disease and mortality.  J Epidemiol Community Health.2001;55:379-382.Google Scholar
Abbott RD, Curb JD, Rodriguez BL, Sharp DS, Burchfiel CM, Yano K. Effect of dietary calcium and milk consumption on risk of thromboembolic stroke in older middle-aged men: the Honolulu Heart Program.  Stroke.1996;27:813-818.Google Scholar
Iso H, Stampfer MJ, Manson JE.  et al.  Prospective study of calcium, potassium, and magnesium intake and risk of stroke in women.  Stroke.1999;30:1772-1779.Google Scholar
Mennen LI, Lafay L, Feskens EJM.  et al.  Possible protective effect of bread and dairy products on the risk of the metabolic syndrome.  Nutr Res.2000;20:335-347.Google Scholar
Friedman GD, Cutter GR, Donahue RP.  et al.  CARDIA: study design, recruitment, and some characteristics of the examined subjects.  J Clin Epidemiol.1988;41:1105-1116.Google Scholar
Jacobs Jr DR, Hahn LP, Haskell WL, Pirie P, Sidney S. Reliability and validity of a short physical activity history.  J Cardiopulm Rehabil.1989;9:448-459.Google Scholar
McDonald A, Van Horn L, Slattery M.  et al.  The CARDIA dietary history: development, implementation, and evaluation.  J Am Diet Assoc.1991;91:1104-1112.Google Scholar
Liu K, Slattery M, Jacobs Jr D.  et al.  A study of the reliability and comparative validity of the cardia dietary history.  Ethn Dis.1994;4:15-27.Google Scholar
 NCC Nutrient [database tape 10]. Minneapolis: NCC Nutrition Coordinating Center, University of Minnesota; August 1984.
 NCC Nutrient [database tape 20]. Minneapolis: NCC Nutrition Coordinating Center, University of Minnesota; October 1991.
Korotkov NS. A contribution to the problem of methods for the determination of the blood pressure [English translation]. In: Ruskin A, ed. Classics in Arterial Hypertension. Springfield, Ill: Charles C Thomas; 1956:127-133.
Warnick GR, Benderson J, Albers JJ. Dextran sulfate-Mg2+ precipitation procedure for quantitation of high-density lipoprotein cholesterol.  Clin Chem.1982;28:1379-1388.Google Scholar
 The sixth report of the Joint National Committee on prevention, detection, evaluation and treatment of high blood pressure.  Arch Intern Med.1997;157:2413-2446.Google Scholar
Kleinbaum DG, Kupper LL, Muller KE. Applied Regression Analysis and Other Multivariable Methods2nd ed. Belmont, Calif: Wadsworth Publishing Co; 1988.
Hu FB, Stampfer MJ, Rimm E.  et al.  Dietary fat and coronary heart disease: a comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements.  Am J Epidemiol.1999;149:531-540.Google Scholar
Ascherio A, Rimm EB, Hernan MA.  et al.  Intake of potassium, magnesium, calcium, and fiber and risk of stroke among US men.  Circulation.1998;98:1198-1204.Google Scholar
Ma J, Folsom AR, Melnick SL.  et al.  Associations of serum and dietary magnesium with cardiovascular disease, hypertension, diabetes, insulin, and carotid arterial wall thickness: the ARIC Study.  J Clin Epidemiol.1995;48:927-940.Google Scholar
Barr SI, McCarron DA, Heaney RP.  et al.  Effects of increased consumption of fluid milk on energy and nutrient intake, body weight, and cardiovascular risk factors in healthy older adults.  J Am Diet Assoc.2000;100:810-817.Google Scholar
Jahns L, Siega-Riz AM, Popkin BM. The increasing prevalence of snacking among US children from 1977 to 1996.  J Pediatr.2001;138:493-498.Google Scholar
Appel LJ, Moore TJ, Obarzanek E.  et al. for the DASH Collaborative Research Group.  A clinical trial of the effects of dietary patterns on blood pressure.  N Engl J Med.1997;336:1117-1124.Google Scholar
Krauss RN, Eckel RH, Howard B.  et al.  AHA Dietary Guidelines: revision 2000: a statement for healthcare professionals from the Nutrition Committee of the American Heart Association.  Circulation.2000;102:2284-2399.Google Scholar
Original Contribution
April 24, 2002

Dairy Consumption, Obesity, and the Insulin Resistance Syndrome in Young Adults: The CARDIA Study

Author Affiliations

Author Affiliations: Department of Medicine, Children's Hospital, and Department of Pediatrics, Harvard Medical School (Drs Pereira and Ludwig), and Clinical Research Program, Children's Hospital (Dr Kartashov), Boston, Mass; Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis, and Institute for Nutrition Research, University of Oslo, Oslo, Norway (Dr Jacobs); Department of Preventive Medicine, Northwestern University Medical School, Chicago, Ill (Dr Van Horn); University of Utah Medical School, Salt Lake City (Dr Slattery).

JAMA. 2002;287(16):2081-2089. doi:10.1001/jama.287.16.2081

Context Components of the insulin resistance syndrome (IRS), including obesity, glucose intolerance, hypertension, and dyslipidemia, are major risk factors for type 2 diabetes and heart disease. Although diet has been postulated to influence IRS, the independent effects of dairy consumption on development of this syndrome have not been investigated.

Objective To examine associations between dairy intake and incidence of IRS, adjusting for confounding lifestyle and dietary factors.

Design The Coronary Artery Risk Development in Young Adults (CARDIA) study, a population-based prospective study.

Setting and Participants General community sample from 4 US metropolitan areas of 3157 black and white adults aged 18 to 30 years who were followed up from 1985-1986 to 1995-1996.

Main Outcome Measure Ten-year cumulative incidence of IRS and its association with dairy consumption, measured by diet history interview.

Results Dairy consumption was inversely associated with the incidence of all IRS components among individuals who were overweight (body mass index ≥25 kg/m2) at baseline but not among leaner individuals (body mass index <25 kg/m2). The adjusted odds of developing IRS (2 or more components) were 72% lower (odds ratio, 0.28; 95% confidence interval, 0.14-0.58) among overweight individuals in the highest (≥35 times per week, 24/102 individuals) compared with the lowest (<10 times per week, 85/190 individuals) category of dairy consumption. Each daily occasion of dairy consumption was associated with a 21% lower odds of IRS (odds ratio, 0.79; 95% confidence interval, 0.70-0.88). These associations were similar for blacks and whites and for men and women. Other dietary factors, including macronutrients and micronutrients, did not explain the association between dairy intake and IRS.

Conclusions Dietary patterns characterized by increased dairy consumption have a strong inverse association with IRS among overweight adults and may reduce risk of type 2 diabetes and cardiovascular disease.