Impact of Electron Beam Tomography, With or Without Case Management, on Motivation, Behavioral Change, and Cardiovascular Risk Profile: A Randomized Controlled Trial | Radiology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.236.187.155. Please contact the publisher to request reinstatement.
1.
Grundy SM, Balady GJ, Criqui MH.  et al.  Primary prevention of coronary heart disease: guidance from Framingham.  Circulation.1998;97:1876-1887.Google Scholar
2.
Stamler J, Stamler R, Neaton JD.  et al.  Low risk factor profile and long-term cardiovascular and noncardiovascular mortality and life expectancy: findings for 5 large cohorts of young adult and middle-aged men and women.  JAMA.1999;282:2012-2018.Google Scholar
3.
Robertson I, Phillips A, Mant D.  et al.  Motivational effect of cholesterol measurement in general practice health checks.  Br J Gen Pract.1992;42:469-472.Google Scholar
4.
Elton PJ, Ryman A, Hammer M, Page F. Randomised controlled trial in northern England of the effect of a person knowing their own serum cholesterol concentration.  J Epidemiol Community Health.1994;48:22-25.Google Scholar
5.
Barratt A, Reznik R, Irwig L.  et al.  Work-site cholesterol screening and dietary intervention: the Staff Healthy Heart Project.  Am J Public Health.1994;84:779-782.Google Scholar
6.
Family Heart Study Group.  Randomised controlled trial evaluating cardiovascular screening and intervention in general practice: principal results of British Family Heart Study.  BMJ.1994;308:313-320.Google Scholar
7.
Murray DM, Luepker RV, Pirie PL.  et al.  Systematic risk factor screening and education: a community-wide approach to prevention of coronary heart disease.  Prev Med.1986;15:661-672.Google Scholar
8.
Engberg M, Christensen B, Karlsmose B, Lous J, Lauritzen T. General health screenings to improve cardiovascular risk profiles: a randomized controlled trial in general practice with 5-year follow-up.  J Fam Pract.2002;51:546-552.Google Scholar
9.
Havas S, Reisman J, Hsu L, Koumjian L. Does cholesterol screening result in negative labeling effects? results of the Massachusetts Model Systems for Blood Cholesterol Screening Project.  Arch Intern Med.1991;151:113-119.Google Scholar
10.
Feldman W. How serious are the adverse effects of screening?  J Gen Intern Med.1990;5(suppl):S50-S53.Google Scholar
11.
Fryback DG, Dasbach EJ, Klein R.  et al.  The Beaver Dam Health Outcomes Study: initial catalog of health-state quality factors.  Med Decis Making.1993;13:89-102.Google Scholar
12.
Murray CJ, Lopez AD. The Global Burden of Disease and Global Health StatisticsCambridge, Mass: Harvard University Press; 1996.
13.
Hoeg JM. Evaluating coronary heart disease risk.  JAMA.1997;277:1387-1390.Google Scholar
14.
O'Malley PG, Taylor AJ, Jackson JL, Doherty T, Detrano R. Prognostic value of coronary electron beam computed tomography for coronary heart disease events in asymptomatic populations.  Am J Cardiol.2000;85:945-948.Google Scholar
15.
Wong ND, Detrano RC, Diamond G.  et al.  Does coronary artery screening by electron beam computed tomography motivate potentially beneficial lifestyle behaviors?  Am J Cardiol.1996;78:1220-1223.Google Scholar
16.
Moher D, Schulz KF, Altman DG.for the CONSORT Group.  The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials.  Ann Intern Med.2001;134:657-662.Google Scholar
17.
O'Malley PG, Taylor AJ, Gibbons RV.  et al.  Rationale and design of the Prospective Army Coronary Calcium (PACC) study: utility of electron beam computed tomography as a screening test for coronary artery disease and as an intervention for risk factor modification among young, asymptomatic, active-duty United States Army personnel.  Am Heart J.1999;137:932-941.Google Scholar
18.
Rose G, McCartney P, Reid DD. Self-administration of a questionnaire on chest pain and intermittent claudication.  Br J Prev Soc Med.1977;31:42-48.Google Scholar
19.
Anderson KM, Odell PM, Wilson PW, Kannel WB. Cardiovascular disease risk profiles.  Am Heart J.1991;121(1 pt 2):293-298.Google Scholar
20.
McHorney CA, Ware JE, Raczek AE. The MOS 36-item short form health survey (SF-36), II: psychometric and clinical tests of validity in measuring physical and mental health constructs.  Med Care.1993;31:247-263.Google Scholar
21.
Taylor JA. A personality scale of manifest anxiety.  J Abnorm Soc Psychol.1953;48:285-290.Google Scholar
22.
Spitzer RL, Kroenke K, Williams JB.and the Patient Health Questionnaire Primary Care Study Group.  Validation and utility of a self-report version of PRIME-MD—the PHQ Primary Care Study.  JAMA.1999;282:1737-1744.Google Scholar
23.
DiClemente CC, Prochaska JO, Fairhurst SK. The process of smoking cessation: an analysis of the precontemplation, contemplation, and preparation stages of change.  J Consult Clin Psychol.1991;59:295-304.Google Scholar
24.
Biener L, Abrams DB. The contemplation ladder: validation of a measure of readiness to consider smoking cessation.  Health Psychol.1991;10:360-365.Google Scholar
25.
Baecke JA, Burema HJ, Fruters ER. A short questionnaire for the measurement of habitual physical activity in epidemiological studies.  Am J Clin Nutr.1982;36:936-942.Google Scholar
26.
Block G, Hartman AM, Naughton D. A reduced dietary questionnaire: development and validation.  Epidemiology.1990;1:58-64.Google Scholar
27.
Cook WW, Medley DM. Proposed hostility and pharisaic-virtue scales for the MMPI.  J Appl Psychol.1954;38:414-418.Google Scholar
28.
Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte MJ, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography.  J Am Coll Cardiol.1990;15:827-832.Google Scholar
29.
Shields JP, Mielke CH, Watson P, Viren F. Comparison of 10, 20, and 40 level electron beam computed tomography studies for coronary calcium.  Am J Card Imaging.1996;10:235-238.Google Scholar
30.
Wang S, Detrano RC, Secci A.  et al.  Detection of coronary calcification with electron beam computed tomography: evaluation of interexamination reproducibility and comparison of three image acquisition protocols.  Am Heart J.1996;132:550-558.Google Scholar
31.
Janowitz WR, Agatston AS, Kaplan G, Viamonte M. Differences in prevalence and extent of coronary artery calcium detected by ultrafast computed tomography in asymptomatic men and women.  Am J Cardiol.1993;72:247.Google Scholar
32.
Rumberger JA, Sheedy PF, Breen JF, Schwartz RS. Electron beam computed tomographic coronary calcium score cutpoints and severity of associated angiographic lumen stenosis.  J Am Coll Cardiol.1997;29:1542-1548.Google Scholar
33.
Kajinami K, Seki H, Takekoshi N, Mabuchi H. Coronary calcification and coronary atherosclerosis: site by site comparative morphologic study of electron beam computed tomography and coronary angiography.  J Am Coll Cardiol.1997;29:1549-1556.Google Scholar
34.
Schmermund A, Baumgart D, Gorge G.  et al.  Coronary artery calcium in acute coronary syndromes.  Circulation.1997;96:1461-1469.Google Scholar
35.
Stevens VJ, Glasgow RE, Hollis JF, Lichtenstein E, Vogt TM. A smoking-cessation intervention for hospital patients.  Med Care.1993;31:65-72.Google Scholar
36.
Dornelas EA, Sampson RA, Gray JF, Waters D, Thompson PD. A randomized controlled trial of smoking cessation counseling after myocardial infarction.  Prev Med.2000;30:261-268.Google Scholar
37.
DeBusk RF, Miller NH, Superko HR.  et al.  A case management system for coronary risk factor modification after acute myocardial infarction.  Ann Intern Med.1994;120:721-729.Google Scholar
38.
Haskell WL, Alderman EL, Fair JM.  et al.  Effects of intensive multiple risk factor reduction on coronary atherosclerosis and clinical cardiac events in men and women with coronary artery disease.  Circulation.1994;89:975-990.Google Scholar
39.
Silverman SL, Greenwald M, Klein RA, Drinkwater BL. Effect of bone density information about hormone replacement therapy: a randomized trial.  Obstet Gynecol.1997;89:321-325.Google Scholar
40.
Torgerson DJ, Thomas RE, Campbell MK, Reid DM. Randomized trial of osteoporosis screening.  Arch Intern Med.1997;157:2121-2125.Google Scholar
41.
Shaw C, Abrams K, Marteau TM. The psychological impact of predicting individuals' risk of illness: a systematic review.  Soc Sci Med.1999;49:1571-1598.Google Scholar
42.
Elgin E, O'Malley PG, Feuerstein I, Taylor AT. Frequency and severity of "incidentalomas" encountered during electron beam computed tomography for coronary calcium in middle-aged Army personnel.  Am J Cardiol.2002;90:543-545.Google Scholar
43.
Horton KM, Post WS, Blumenthal RS, Fishman EK. Prevalence of significant noncardiac findings on electron-beam computed tomography coronary artery calcium screening examinations.  Circulation.2002;106:532-534.Google Scholar
44.
Ebrahim S, Davey Smith G. Multiple risk factor interventions for primary prevention of coronary heart disease [Cochrane Review on CD-ROM]. Oxford, England: Cochrane Library, Update Software; 2000;issue 2.
45.
Greenland P, Smith SC, Grundy SM. Improving coronary heart disease risk assessment in asymptomatic people: role of traditional risk factors and noninvasive cardiovascular tests.  Circulation.2001;104:1863.Google Scholar
46.
Park R, Detrano R, Xiang M.  et al.  Combined use of computed tomography coronary calcium scores and C-reactive protein levels in predicting cardiovascular events in nondiabetic individuals.  Circulation.2002;106:2073-2077.Google Scholar
47.
Shaw LJ, Callister TQ, Schisterman E, Berman DS, Raggi P. Prognostic value of cardiac risk factors and coronary artery calcium screening for all cause mortality.  Radiology.In press.Google Scholar
48.
Taylor AT, O'Malley PG. Self-referral of patients for electron-beam computed tomography to screen for coronary artery disease.  N Engl J Med.1998;339:2018-2020.Google Scholar
49.
Lee TH, Brennan TA. Direct-to-consumer marketing of high technology screening tests.  N Engl J Med.2002;346:529-531.Google Scholar
Original Contribution
May 7, 2003

Impact of Electron Beam Tomography, With or Without Case Management, on Motivation, Behavioral Change, and Cardiovascular Risk Profile: A Randomized Controlled Trial

Author Affiliations

Author Affiliations: Departments of Medicine (Drs O'Malley and Taylor) and Radiology (Dr Feuerstein), Walter Reed Army Medical Center, Washington, DC; and the Uniformed Services University of the Health Sciences, Bethesda, Md (Drs O'Malley, Feuerstein, and Taylor).

JAMA. 2003;289(17):2215-2223. doi:10.1001/jama.289.17.2215
Abstract

Context Although the use of electron beam tomography (EBT) as a motivational tool to change behavior is practiced, its efficacy has not been studied.

Objective To assess the effects of incorporating EBT as a motivational factor into a cardiovascular screening program in the context of either intensive case management (ICM) or usual care by assessing its impact over 1 year on a composite measure of projected risk.

Design Randomized controlled trial with a 2 × 2 factorial design and 1 year of follow-up.

Setting and Participants A consecutive sample of 450 asymptomatic active-duty US Army personnel aged 39 to 45 years stationed within the Washington, DC, area and scheduled to undergo a periodic Army-mandated physical examination were enrolled between January 1999 and March 2001 (mean age, 42 years; 79% male; 66 [15%] had coronary calcification; mean [SD] predicted 10-year coronary risk, 5.85% [3.85%]).

Interventions Patients were randomly assigned to 1 of 4 intervention arms: EBT results provided in the setting of either ICM (n = 111) or usual care (n = 119) or EBT results withheld in the setting of either ICM (n = 124) or usual care (n = 96).

Main Outcome Measure The primary outcome measure was change in a composite measure of risk, the 10-year Framingham Risk Score (FRS).

Results Comparing the groups who received EBT results with those who did not, the mean absolute risk change in 10-year FRS was +0.30 vs +0.36 (P = .81). Comparing the groups who received ICM with those who received usual care, the mean absolute risk change in 10-year FRS was −0.06 vs +0.74 (P = .003). Improvement or stabilization of cardiovascular risk was noted in 157 patients (40.2%). In multivariable analyses predicting change in FRS, after controlling for knowledge of coronary calcification, motivation for change, and multiple psychological variables, only the number of risk factors (odds ratio, 1.42; 95% confidence interval, 1.16-1.75 for each additional risk factor) and receipt of ICM (odds ratio, 1.62; 95% confidence interval, 1.04-2.52) were associated with improved or stabilized projected risk.

Conclusions Using coronary calcification screening to motivate patients to make evidence-based changes in risk factors was not associated with improvement in modifiable cardiovascular risk at 1 year. Case management was superior to usual care in the management of risk factors.

×