Acarbose Treatment and the Risk of Cardiovascular Disease and Hypertension in Patients With Impaired Glucose Tolerance: The STOP-NIDDM Trial | Acute Coronary Syndromes | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.207.108.182. Please contact the publisher to request reinstatement.
[Skip to Navigation Landing]
1.
de Marco R, Locatelli F, Zoppini G, Verlato G, Bonora E, Muggeo M. Cause-specific mortality in type 2 diabetes: the Verona Diabetes Study.  Diabetes Care.1999;22:756-761.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=10332677Google Scholar
2.
Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial.  Diabetes Care.1993;16:434-444.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=8432214Google Scholar
3.
Manson JE, Colditz GA, Stampfer MJ.  et al.  A prospective study of maturity-onset diabetes mellitus and risk of coronary heart disease and stroke in women.  Arch Intern Med.1991;151:1141-1147.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=2043016Google Scholar
4.
Laakso M. Hyperglycemia and cardiovascular disease in type 2 diabetes.  Diabetes.1999;48:937-942.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=10331395Google Scholar
5.
U.K. Prospective Diabetes Study 27..  Plasma lipids and lipoproteins at diagnosis of NIDDM by age and sex.  Diabetes Care1997;20:1683-1687.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=9353608Google Scholar
6.
 Hypertension in Diabetes Study (HDS), I: Prevalence of hypertension in newly presenting type 2 diabetic patients and the association with risk factors for cardiovascular and diabetic complications.  J Hypertens.1993;11:309-317.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=8387089Google Scholar
7.
Coutinho M, Gerstein HC, Wang Y, Yusuf S. The relationship between glucose and incident cardiovascular events: a metaregression analysis of published data from 20 studies of 95 783 individuals followed for 12.4 years.  Diabetes Care.1999;22:233-240.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=10333939Google Scholar
8.
 Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria.  Arch Intern Med.2001;161:397-405.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=11176766Google Scholar
9.
Hanefeld M, Fischer S, Julius U.  et al.  Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up.  Diabetologia.1996;39:1577-1583.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=8960845Google Scholar
10.
Haffner SM, Stern MP, Hazuda HP, Mitchell BD, Patterson JK. Cardiovascular risk factors in confirmed prediabetic individuals.  JAMA.1990;263:2893-2998.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=2338751Google Scholar
11.
Fuller JH, Shipley MJ, Rose G, Jarrett RJ, Keen H. Coronary-heart-disease risk and impaired glucose tolerance: the Whitehall Study.  Lancet.1980;1:1373-1376.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=6104171Google Scholar
12.
Fontbonne A, Eschwège E, Cambien F.  et al.  Hypertriglyceridaemia as a risk factor of coronary heart disease mortality in subjects with impaired glucose tolerance or diabetes.  Diabetologia.1989;32:300-304.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=2666216Google Scholar
13.
Pyorala K. Relationship of glucose tolerance and plasma insulin to the incidence of coronary heart disease: results from two population studies in Finland.  Diabetes Care.1979;2:131-141.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=520116Google Scholar
14.
Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa A. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose: the Funagata Diabetes Study.  Diabetes Care.1999;22:920-924.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=10372242Google Scholar
15.
Barzilay JI, Spiekerman CF, Wahl PW.  et al.  Cardiovascular disease in older adults with glucose disorders: comparison of American Diabetes Association criteria for diabetes mellitus with WHO criteria.  Lancet.1999;354:622-625.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=10466662Google Scholar
16.
Temelkova-Kurktschiev TS, Koehler C, Henkel E, Leonhardt W, Fuecker K, Hanefeld M. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level.  Diabetes Care.2000;23:1830-1834.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=11128361Google Scholar
17.
Bonora E, Kiechl S, Oberhollenzer F.  et al.  Impaired glucose tolerance, type II diabetes mellitus, and carotid atherosclerosis: prospective results from the Bruneck Study.  Diabetologia.2000;43:156-164.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=10753036Google Scholar
18.
O'Leary DH, Polak JF, Kronmal RA.  et al.  Distribution and correlates of sonographically detected carotid artery disease in the Cardiovascular Health Study: the CHS Collaborative Research Group.  Stroke.1992;23:1752-1760.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=1448826Google Scholar
19.
Yamasaki Y, Kawamori R, Matsushima H.  et al.  Asymptomatic hyperglycaemia is associated with increased intimal plus medial thickness of the carotid artery.  Diabetologia.1995;38:585-591.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=7489842Google Scholar
20.
Beks PH, Mackaay AJ, De Vries H, De Neeling JN, Bouter LM, Heine RJ. Carotid artery stenosis is related to blood glucose level in an elderly Caucasian population: the Hoorn Study.  Diabetologia.1997;40:290-298.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=9084966Google Scholar
21.
Hanefeld M, Koehler C, Schaper F.  et al.  Postprandial plasma glucose is an independent risk factor for increased carotid intima-media thickness in non-diabetic individuals.  Atherosclerosis.1999;144:229-235.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=10381296Google Scholar
22.
Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial.  Lancet.2002;359:2072-2077.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=12086760Google Scholar
23.
Chiasson JL, Gomis R, Hanefeld M, Josse RG, Karasik A, Laakso M.for the STOP-NIDDM trial.  An international study on the efficacy of an α-glucosidase inhibitor to prevent type 2 diabetes in a population with impaired glucose tolerance: rationale, design, and preliminary screening data.  Diabetes Care.1998;21:1720-1725.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=9773737Google Scholar
24.
World Health Oganization.  Definition, Diagnosis, and Classification of Diabetes Mellitus and Its Complications: Report of a WHO Consultation. Part I: Diagnosis and Classification of Diabetes Mellitus. Geneva, Switzerland: World Health Organization; 1999.
25.
Sobey WJ, Beer SF, Carrington CA.  et al.  Sensitive and specific two-site immunoradiometric assays for human insulin, proinsulin, 65-66 split and 32-33 split proinsulins.  Biochem J.1989;260:535-541.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=2669734Google Scholar
26.
Warmick GR, Bendersen J, Albers JJ. Dextran sulfate-mg2+ precipitation procedure for quantitation of high-density lipoprotein cholesterol.  Clin Chem.1982;28:1379-1388.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=7074948Google Scholar
27.
Friedwald WT, Levy RJ, Frederickson DS. Estimation of concentration of low-density lipoprotein cholesterol in plasma without the use of the preparative ultracentrifuge.  Clin Chem.1972;18:499-502.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=4337382Google Scholar
28.
Haffner SM.American Diabetes Association.  Management of dyslipidemia in adults with diabetes.  Diabetes Care.2003;26 Suppl 1:S83-S86.Google Scholar
29.
De Vegt F, Dekker JM, Stehouwer CD, Nijpels G, Bouter LM, Heine RJ. Similar 9-year mortality risks and reproducibility for the World Health Organization and American Diabetes Association glucose tolerance categories: the Hoorn Study.  Diabetes Care.2000;23:40-44.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=10857966Google Scholar
30.
Saydah SH, Miret M, Sung J, Varas C, Gause D, Brancati FL. Postchallenge hyperglycemia and mortality in a national sample of US adults.  Diabetes Care.2001;24:1397-1402.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=11473076Google Scholar
31.
Hamman RF, Marshall JA, Baxter J.  et al.  Methods and prevalence of non-insulin-dependent diabetes mellitus in a biethnic Colorado population.  Am J Epidemiol.1989;129:295-311.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=2912042Google Scholar
32.
Haffner SM, Valdez R, Morales PA, Mitchell BD, Hazuda HP, Stern MP. Greater effect of glycemia on incidence of hypertension in women than in men.  Diabetes Care.1992;15:1277-1284.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=1425089Google Scholar
33.
Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update.  Hypertension.2001;37:1053-1059.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=11304502Google Scholar
34.
Després JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease.  Arteriosclerosis.1990;10:497-511.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=2196040Google Scholar
35.
Despres JP, Tremblay A, Theriault G, Perusse L, Leblanc C, Bouchard C. Relationships between body fatness, adipose tissue distribution and blood pressure in men and women.  J Clin Epidemiol.1988;41:889-897.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=3183696Google Scholar
36.
Laakso M, Lehto S, Penttilä I, Pyörälä K. Lipids and lipoproteins predicting coronary heart disease mortality and morbidity in ptaients with non-insulin-dependent diabetes.  Circulation.1993;88(pt 1):1421-1430.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=8403288Google Scholar
37.
Göke B, Herrmann C, Göke R.  et al.  Intestinal effects of α-glucosidase inhibitors: absorption of nutrients and enterohormonal changes.  Eur J Clin Invest.1994;24 Suppl 3:25-30.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=8001623Google Scholar
38.
Seifarth C, Begmann J, Holst JJ, Ritzel R, Schmiegel W, Nauck MA. Prolonged and enhanced secretion of glucagon-like peptide 1 (7-36 amide) after oral sucrose due to α-glucosidase inhibition (acarbose) in type 2 diabetic patients.  Diabetic Med.1998;15:485-491.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=9632123Google Scholar
39.
Chiasson JL, Josse RG, Leiter LA.  et al.  The effect of acarbose on insulin sensitivity in subjects with impaired glucose tolerance.  Diabetes Care.1996;19:1190-1193.Google Scholar
40.
Ceriello A, Bortolotti N, Motz E.  et al.  Meal-generated oxidative stress in type 2 diabetic patients.  Diabetes Care.1998;21:1529-1533.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=9727904Google Scholar
41.
Ceriello A, Quagliaro L, D'Amico M.  et al.  Acute hyperglycemia induces nitrotyrosine formation and apoptosis in perfused heart from rat.  Diabetes.2002;51:1076-1082.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=11916928Google Scholar
42.
Ceriello A, Mercuri F, Quagliaro L.  et al.  Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress.  Diabetologia.2001;44:834-838.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=11508267Google Scholar
43.
Ceriello A, Taboga C, Tonutti L.  et al.  Post-meal coagulation activation in diabetes mellitus: the effect of acarbose.  Diabetologia.1996;39:469-473.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=8777997Google Scholar
44.
Marfella R, Quagliaro L, Nappo F, Ceriello A, Giugliano D. Acute hyperglycemia induces an oxidative stress in healthy subjects.  J Clin Invest.2001;108:635-636.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=11518739Google Scholar
45.
Ceriello A, Bortolotti N, Falleti E, Taboga C, Tonutti L, Crescentini A, Motz E, Lizzio S, Russo A, Bartoli E. Total radical-trapping antioxidant parameter in NIDDM patients.  Diabetes Care.1997;20:194-197.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=9118773Google Scholar
46.
Heitzer T, Schlinzig T, Krohn K, Meinertz T, Munzel T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease.  Circulation.2001;104:2673-2678.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=11723017Google Scholar
47.
Kawano H, Motoyama T, Hirashima O.  et al.  Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery.  J Am Coll Cardiol.1999;34:146-154.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=10400004Google Scholar
48.
El Midaoui A, Wu R, De Champlain J. Prevention of hypertension, hyperglycemia and vascular oxidative stress by aspirin treatment in chronically glucose-fed rats.  J Hypertens.2002;20:1407-1412.http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&Dopt=r&uid=12131538Google Scholar
Original Contribution
July 23/30, 2003

Acarbose Treatment and the Risk of Cardiovascular Disease and Hypertension in Patients With Impaired Glucose Tolerance: The STOP-NIDDM Trial

JAMA. 2003;290(4):486-494. doi:10.1001/jama.290.4.486
Abstract

Context The worldwide explosive increase in type 2 diabetes mellitus and its cardiovascular morbidity are becoming major health concerns.

Objective To evaluate the effect of decreasing postprandial hyperglycemia with acarbose, an α-glucosidase inhibitor, on the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance (IGT).

Design, Setting, and Participants International, multicenter double-blind, placebo-controlled, randomized trial, undertaken in hospitals in Canada, Germany, Austria, Norway, Denmark, Sweden, Finland, Israel, and Spain from July 1998 through August 2001. A total of 1429 patients with IGT were randomized with 61 patients (4%) excluded because they did not have IGT or had no postrandomization data, leaving 1368 patients for a modified intent-to-treat analysis. Both men (49%) and women (51%) participated with a mean (SD) age of 54.5 (7.9) years and body mass index of 30.9 (4.2). These patients were followed up for a mean (SD) of 3.3 (1.2) years.

Intervention Patients with IGT were randomized to receive either placebo (n = 715) or 100 mg of acarbose 3 times a day (n = 714).

Main Outcome Measures The development of major cardiovascular events (coronary heart disease, cardiovascular death, congestive heart failure, cerebrovascular event, and peripheral vascular disease) and hypertension (≥140/90 mm Hg).

Results Three hundred forty-one patients (24%) discontinued their participation prematurely, 211 in the acarbose-treated group and 130 in the placebo group; these patients were also followed up for outcome parameters. Decreasing postprandial hyperglycemia with acarbose was associated with a 49% relative risk reduction in the development of cardiovascular events (hazard ratio [HR], 0.51; 95% confidence interval [CI]; 0.28-0.95; P = .03) and a 2.5% absolute risk reduction. Among cardiovascular events, the major reduction was in the risk of myocardial infarction (HR, 0.09; 95% CI, 0.01-0.72; P = .02). Acarbose was also associated with a 34% relative risk reduction in the incidence of new cases of hypertension (HR, 0.66; 95% CI, 0.49-0.89; P = .006) and a 5.3% absolute risk reduction. Even after adjusting for major risk factors, the reduction in the risk of cardiovascular events (HR, 0.47; 95% CI, 0.24-0.90; P = .02) and hypertension (HR, 0.62; 95% CI, 0.45-0.86; P = .004) associated with acarbose treatment was still statistically significant.

Conclusion This study suggests that treating IGT patients with acarbose is associated with a significant reduction in the risk of cardiovascular disease and hypertension.

×