Obesity, Weight Gain, and the Risk of Kidney Stones | Nephrology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC. Time trends in reported prevalence of kidney stones in the United States: 1976-1994.  Kidney Int. 2003;63:1817-182312675858Google ScholarCrossref
Johnson CM, Wilson DM, O'Fallon WM, Malek RS, Kurland LT. Renal stone epidemiology: a 25-year study in Rochester, Minnesota.  Kidney Int. 1979;16:624-631548606Google ScholarCrossref
Hiatt RA, Dales LG, Friedman GD, Hunkeler EM. Frequency of urolithiasis in a prepaid medical care program.  Am J Epidemiol. 1982;115:255-2657058784Google Scholar
Pearle M, Calhoun E, Curhan GC.National Institute of Diabetes and Digestive and Kidney Diseases.  Urolithiasis. In: Litwin MS, Saigal CS, eds. Urologic Diseases in America. Washington, DC: US Dept of Health and Human Services; 2004:34
Lingeman JE, Saywell RM Jr, Woods JR, Newman DM. Cost analysis of extracorporeal shock wave lithotripsy relative to other surgical and nonsurgical treatment alternatives for urolithiasis.  Med Care. 1986;24:1151-11603796081Google ScholarCrossref
Coe FL, Parks JH, Asplin JR. The pathogenesis and treatment of kidney stones.  N Engl J Med. 1992;327:1141-11521528210Google ScholarCrossref
Levy FL, Adams-Huet B, Pak CY. Ambulatory evaluation of nephrolithiasis: an update of a 1980 protocol.  Am J Med. 1995;98:50-597825619Google ScholarCrossref
Abate N, Chandalia M, Cabo-Chan AV Jr, Moe OW, Sakhaee K. The metabolic syndrome and uric acid nephrolithiasis: novel features of renal manifestation of insulin resistance.  Kidney Int. 2004;65:386-39214717908Google ScholarCrossref
Maalouf NM, Sakhaee K, Parks JH, Coe FL, Adams-Huet B, Pak CY. Association of urinary pH with body weight in nephrolithiasis.  Kidney Int. 2004;65:1422-142515086484Google ScholarCrossref
Hamm LL. Renal handling of citrate.  Kidney Int. 1990;38:728-7352232510Google ScholarCrossref
Kerstetter J, Caballero B, O'Brien K, Wurtman R, Allen L. Mineral homeostasis in obesity: effects of euglycemic hyperinsulinemia.  Metabolism. 1991;40:707-7131870424Google ScholarCrossref
Shimamoto K, Higashiura K, Nakagawa M.  et al.  Effects of hyperinsulinemia under the euglycemic condition on calcium and phosphate metabolism in non-obese normotensive subjects.  Tohoku J Exp Med. 1995;177:271-2788928187Google ScholarCrossref
Nowicki M, Kokot F, Surdacki A. The influence of hyperinsulinaemia on calcium-phosphate metabolism in renal failure.  Nephrol Dial Transplant. 1998;13:2566-25719794561Google ScholarCrossref
Coe FL, Kavalach AG. Hypercalciuria and hyperuricosuria in patients with calcium nephrolithiasis.  N Engl J Med. 1974;291:1344-13504610395Google ScholarCrossref
Pak CY, Arnold LH. Heterogeneous nucleation of calcium oxalate by seeds of monosodium urate.  Proc Soc Exp Biol Med. 1975;149:930-932241081Google ScholarCrossref
Coe FL, Strauss AL, Tembe V, Le Dun S. Uric acid saturation in calcium nephrolithiasis.  Kidney Int. 1980;17:662-6687401461Google ScholarCrossref
Powell CR, Stoller ML, Schwartz BF.  et al.  Impact of body weight on urinary electrolytes in urinary stone formers.  Urology. 2000;55:825-83010840085Google ScholarCrossref
Lemann J Jr, Pleuss JA, Worcester EM, Hornick L, Schrab D, Hoffmann RG. Urinary oxalate excretion increases with body size and decreases with increasing dietary calcium intake among healthy adults.  Kidney Int. 1996;49:200-2088770968Google ScholarCrossref
Curhan GC, Willett WC, Rimm EB, Speizer FE, Stampfer MJ. Body size and risk of kidney stones.  J Am Soc Nephrol. 1998;9:1645-16529727373Google Scholar
Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women.  Epidemiology. 1990;1:466-4732090285Google ScholarCrossref
Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals.  Am J Epidemiol. 1992;135:1114-1126, 1127-11361632423Google Scholar
Willett WC, Sampson L, Stampfer MJ.  et al.  Reproducibility and validity of a semiquantitative food frequency questionnaire.  Am J Epidemiol. 1985;122:51-654014201Google Scholar
Willett WC. Nutritional EpidemiologyNew York, NY: Oxford University Press; 1990
Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic analyses.  Am J Epidemiol. 1986;124:17-273521261Google Scholar
Colditz G, Marin P, Stampfer M.  et al.  Validation of questionnaire information on risk factors and disease outcomes in a prospective cohort study of women.  Am J Epidemiol. 1986;123:894-9003962971Google Scholar
Manson JE, Rimm EB, Stampfer MJ.  et al.  Physical activity and incidence of non-insulin-dependent diabetes mellitus in women.  Lancet. 1991;338:774-7781681160Google ScholarCrossref
Hu FB, Leitzmann MF, Stampfer MJ, Colditz GA, Willett WC, Rimm EB. Physical activity and television watching in relation to risk for type 2 diabetes mellitus in men.  Arch Intern Med. 2001;161:1542-154811427103Google ScholarCrossref
Curhan GC, Willett WC, Rimm EB, Stampfer MJ. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones.  N Engl J Med. 1993;328:833-8388441427Google ScholarCrossref
Curhan GC, Willett WC, Speizer FE, Spiegelman D, Stampfer MJ. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women.  Ann Intern Med. 1997;126:497-5049092314Google ScholarCrossref
Willett WC. Nutritional Epidemiology2nd ed. New York, NY: Oxford University Press; 1998
Elia M. Obesity in the elderly.  Obes Res. 2001;9:(suppl 4)  244S-248S11707549Google ScholarCrossref
Lemann J Jr, Piering WF, Lennon EJ. Possible role of carbohydrate-induced calciuria in calcium oxalate kidney-stone formation.  N Engl J Med. 1969;280:232-2375818178Google ScholarCrossref
Lemann J Jr, Lennon EJ, Piering WR, Prien EL Jr, Ricanati ES. Evidence that glucose ingestion inhibits net renal tubular reabsorption of calcium and magnesium in man.  J Lab Clin Med. 1970;75:578-5855444345Google Scholar
Wood RJ, Allen LH. Evidence for insulin involvement in arginine- and glucose-induced hypercalciuria in the rat.  J Nutr. 1983;113:1561-15676348222Google Scholar
Rumenapf G, Schmidtler J, Schwille PO. Intestinal calcium absorption during hyperinsulinemic euglycemic glucose clamp in healthy humans.  Calcif Tissue Int. 1990;46:73-792105152Google ScholarCrossref
Krivosikova Z, Spustova V, Dzurik R. Participation of P-dependent and P-independent glutaminases in rat kidney ammoniagenesis and their modulation by metabolic acidosis, hippurate and insulin.  Physiol Res. 1998;47:177-1839803482Google Scholar
Yamashita S, Matsuzawa Y, Tokunaga K, Fujioka S, Tarui S. Studies on the impaired metabolism of uric acid in obese subjects: marked reduction of renal urate excretion and its improvement by a low-calorie diet.  Int J Obes. 1986;10:255-2643771090Google Scholar
Siener R, Glatz S, Nicolay C, Hesse A. The role of overweight and obesity in calcium oxalate stone formation.  Obes Res. 2004;12:106-11314742848Google ScholarCrossref
Blaak E. Gender differences in fat metabolism.  Curr Opin Clin Nutr Metab Care. 2001;4:499-50211706283Google ScholarCrossref
Curhan GC, Willett WC, Speizer FE, Stampfer MJ. Twenty-four-hour urine chemistries and the risk of kidney stones among women and men.  Kidney Int. 2001;59:2290-229811380833Google Scholar
Heller HJ, Sakhaee K, Moe OW, Pak CY. Etiological role of estrogen status in renal stone formation.  J Urol. 2002;168:1923-192712394677Google ScholarCrossref
Mattix Kramer HJ, Grodstein F, Stampfer MJ, Curhan GC. Menopause and postmenopausal hormone use and risk of incident kidney stones.  J Am Soc Nephrol. 2003;14:1272-127712707395Google ScholarCrossref
Original Contribution
January 26, 2005

Obesity, Weight Gain, and the Risk of Kidney Stones

Author Affiliations

Author Affiliations: Channing Laboratory (Drs Taylor, Stampfer, and Curhan) and Renal Division (Drs Taylor and Curhan), Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass; and Departments of Nutrition and Epidemiology, Harvard School of Public Health (Drs Stampfer and Curhan).

JAMA. 2005;293(4):455-462. doi:10.1001/jama.293.4.455

Context Larger body size may result in increased urinary excretion of calcium, oxalate, and uric acid, thereby increasing the risk for calcium-containing kidney stones. It is unclear if obesity increases the risk of stone formation, and it is not known if weight gain influences risk.

Objective To determine if weight, weight gain, body mass index (BMI), and waist circumference are associated with kidney stone formation.

Design, Setting, and Participants A prospective study of 3 large cohorts: the Health Professionals Follow-up Study (N = 45 988 men; age range at baseline, 40-75 years), the Nurses’ Health Study I (N = 93 758 older women; age range at baseline, 34-59 years), and the Nurses’ Health Study II (N = 101 877 younger women; age range at baseline, 27-44 years).

Main Outcome Measures Incidence of symptomatic kidney stones.

Results We documented 4827 incident kidney stones over a combined 46 years of follow-up. After adjusting for age, dietary factors, fluid intake, and thiazide use, the relative risk (RR) for stone formation in men weighing more than 220 lb (100.0 kg) vs men less than 150 lb (68.2 kg) was 1.44 (95% confidence interval [CI], 1.11-1.86; P = .002 for trend). In older and younger women, RRs for these weight categories were 1.89 (95% CI, 1.52-2.36; P<.001 for trend) and 1.92 (95% CI, 1.59-2.31; P<.001 for trend), respectively. The RR in men who gained more than 35 lb (15.9 kg) since age 21 years vs men whose weight did not change was 1.39 (95% CI, 1.14-1.70; P = .001 for trend). Corresponding RRs for the same categories of weight gain since age 18 years in older and younger women were 1.70 (95% CI, 1.40-2.05; P<.001 for trend) and 1.82 (95% CI, 1.50-2.21; P<.001 for trend). Body mass index was associated with the risk of kidney stone formation: the RR for men with a BMI of 30 or greater vs those with a BMI of 21 to 22.9 was 1.33 (95% CI, 1.08-1.63; P<.001 for trend). Corresponding RRs for the same categories of BMI in older and younger women were 1.90 (95% CI, 1.61-2.25; P<.001 for trend) and 2.09 (95% CI, 1.77-2.48; P<.001 for trend). Waist circumference was also positively associated with risk in men (P = .002 for trend) and in older and younger women (P<.001 for trend for both).

Conclusions Obesity and weight gain increase the risk of kidney stone formation. The magnitude of the increased risk may be greater in women than in men.