[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.238.190.122. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
1.
Lesar TS, Lomaestro BM, Pohl H. Medication prescribing errors in a teaching hospital: a 9-year experience.  Arch Intern Med. 1997;157:1569-15769236558Google ScholarCrossref
2.
Kohn LT, Corrigan J, Donaldson MSTo Err Is Human: Building a Safer Health SystemWashington, DC: National Academy Press; 2000
3.
Kaushal R, Bates D. Computerized physician order entry with clinical decision support systems. In: Shojania KG, Duncan BW, McDonald KM, et al, eds. Making Health Care Safer: A Critical Analysis of Patient Safety Practices. Rockville, Md: Agency for Healthcare Research and Quality; 2001. Evidence Report/Technology Assessment No. 43; AHRQ publication 01-E058
4.
Kanjanarat P, Winterstein AG, Johns TE.  et al.  Nature of preventable adverse drug events in hospitals: a literature review.  Am J Health Syst Pharm. 2003;60:1750-175914503111Google Scholar
5.
Leape L, Bates D, Cullen D.  et al.  System analysis of adverse drug events.  JAMA. 1995;274:35-437791256Google ScholarCrossref
6.
Bates DW, Leape LL, Cullen DJ.  et al.  Effect of computerized physician order entry and a team intervention on prevention of serious medication errors.  JAMA. 1998;280:1311-13169794308Google ScholarCrossref
7.
Institute of Medicine.  Crossing the Quality Chasm: A New Health System for the 21st CenturyWashington, DC: National Academy Press; 2001
8.
Bates DW, Kuperman G, Teich JM. Computerized physician order entry and quality of care.  Qual Manag Health Care. 1994;2:18-2710172133Google Scholar
9.
Schiff G, Rucher DT. Computerized prescribing: building the electronic infrastructure for better medication usage.  JAMA. 1998;279:1024-10299533503Google ScholarCrossref
10.
Bates DW, Cullen D, Laird N.  et al.  Incidence of adverse drug events and potential adverse drug events: implications for prevention.  JAMA. 1995;274:29-347791255Google ScholarCrossref
11.
Bates DW, Cohen M, Leape LL, Overhage JM, Shabot MM, Sheridan T. Reducing the frequency of errors in medicine using information technology.  J Am Med Inform Assoc. 2001;8:299-30811418536Google ScholarCrossref
12.
Blendon RJ, DesRoches CM, Brodie M.  et al.  Views of practicing physicians and the public on medical errors.  N Engl J Med. 2003;347:1933-1967Google ScholarCrossref
13.
Sittig DF, Stead WW. Computer-based physician order entry: the state of the art.  J Am Med Inform Assoc. 1994;1:108-1237719793Google ScholarCrossref
14.
Teich JM, Merchia PR, Schmiz JL, Kuperman GJ, Spurr C, Bates DW. Effects of computerized physician order entry on prescribing practices.  Arch Intern Med. 2000;160:2741-274711025783Google ScholarCrossref
15.
Bates DW, Gawande AA. Patient safety: improving safety with information technology.  N Engl J Med. 2003;348:2526-253412815139Google ScholarCrossref
16.
 HealthLeaders looks at hospital CPOE programs [iHealth Web site]. Available at: http://www.ihealthbeat.org/index.cfm?Action=dspItem&itemID=100527. Accessed May 3, 2004
17.
Kuperman G, Teich J, Bates DW. Improving care with computerized alerts and reminders.  Assoc Health Serv Res. 1997;14:224-225Google Scholar
18.
 iHealth. Frist aide says EMR bill could pass January 30, 2004. Available at: http://www.ihealthbeat.org/index.cfm?Action=dspItem&itemID=100537. Accessed May 1, 2004
19.
 iHealth. Clinton reiterates IT stance, details legislation. Available at: http://www.ihealthbeat.org/index.cfm?action=dspItem&itemID=100529. Accessed May 1, 2004
20.
 The Patient Safety and Errors Reduction Act. June 15, 2000. Available at: http://www.senate.gov/~enzi/mederr.htm. Accessed May 1, 2004
21.
Berger RG, Kichak JP. Computerized physician order entry: helpful or harmful?  J Am Med Inform Assoc. 2004;11:100-10314633934Google ScholarCrossref
22.
Broder C. Lawmakers push health care IT at the state level [iHealth Web site]. Available at: http://www.ihealthbeat.org/index.cfm?Action=dspItem&itemD=99285. Accessed May 3, 2004
23.
Petersen LA, Brennan TA, O’Neil AC, Cook EF, Lee TH. Does house staff discontinuity of care increase the risk for preventable adverse events?  Ann Intern Med. 1994;121:866-8727978700Google ScholarCrossref
24.
Gordon S. Life SupportBoston, Mass: Little Brown & Co; 1997
25.
Aiken L, Clarke S, Sloane D, Sochalski J, Silber J. Hospital nurse staffing and patient mortality, nurse burnout, and job dissatisfaction.  JAMA. 2002;288:1987-1993Google ScholarCrossref
26.
Ash JS, Gorman PN, Seshadri V, Hersh WR. Perspectives on CPOE and patient care.  J Am Med Inform Assoc. 2004;11:207-21614633935Google ScholarCrossref
27.
Ash JS, Berg M, Coiera E. Some unintended consequences of information technology in health care: the nature of patient care information system-related errors.  J Am Med Inform Assoc. 2004;11:104-11214633936Google ScholarCrossref
28.
Kaushal R, Kaveh S, Bates DW. Effects of computerized physician order entry and clinical decision support systems on medication safety: a systematic review.  Arch Intern Med. 2003;163:1409-141612824090Google ScholarCrossref
29.
Ash JS, Gorman PN, Seshadri V, Hersh WR. Computerized physician order entry in U.S. hospitals: results of a 2002 survey.  J Am Med Inform Assoc. 2004;11:95-9914633935Google ScholarCrossref
30.
Bobb A, Gleason K, Husch M, Feinglass J, Yarnold P, Noshkin G. The epidemiology of prescribing errors.  Arch Intern Med. 2004;164:785-79215078649Google ScholarCrossref
31.
United States Pharmacopeia.  MEDMARX 5th Anniversary Data Report: A Chartbook of 2003 Findings and Trends 1999-2003Rockville, Md: United States Pharmacopeia; 2004
32.
Woods DD. Behind Human Error: Cognitive Systems, Computers and HindsightDayton, Ohio: Crew Systems Ergonomic Information and Analysis Center, Wright Patterson Air Force Base; 1994
33.
Cook R, Render M, Woods DD. Gaps: learning how practitioners create safety.  BMJ. 2000;320:791-79410720370Google ScholarCrossref
34.
Cook RI. Safety technology: solutions or experiments?  Nurs Econ. 2002;20:80-8211944538Google Scholar
35.
Nightingale PG, Adu D, Richards NT, Peters M. Implementation of rules based computerised bedside prescribing and administration: intervention study.  BMJ. 2000;320:750-753Google ScholarCrossref
36.
Bernard F, Savelyich B, Avery A.  et al.  Prescribing safety features of general practice computer systems: evaluation using simulated test cases.  BMJ. 2004;328:1171-1172Google ScholarCrossref
37.
Evans RS, Pestotnik SL, Glasen DC.  et al.  A computer-assisted management program for antibiotics and other antiinfective agents.  N Engl J Med. 1998;338:232-2389435330Google ScholarCrossref
38.
Sanders DL, Miller RA. The effects on clinical ordering patterns of a computerized decision support system for neuroradiology imaging studies.  Proc AMIA Symp. 2001;583-58711825254Google Scholar
39.
McNutt RA, Abrams R, Aron DC. Patient safety efforts should focus on medical errors.  JAMA. 2002;287:1997-200111960545Google ScholarCrossref
40.
Feied C, Handler J, Smith M.  et al.  Clinical information systems: instant ubiquitous clinical data for error reduction and improved clinical outcomes.  Acad Emerg Med. 2004;11:1162-116915528580Google ScholarCrossref
41.
Ramsay J, Popp H-J, Thull B, Rau G. The evaluation of an information system for intensive care.  Behav Inf Technol. 1997;16:17-24Google ScholarCrossref
42.
Woods DD, Cook RI. Nine steps to move forward from.  Error Cogn Technol Work. 2002;4:137-144Google ScholarCrossref
43.
Patterson ES, Cook RI, Render ML. Improving patient safety by identifying side effects from introducing bar coding in medication administration.  J Am Med Inform Assoc. 2002;9:540-55312223506Google ScholarCrossref
44.
Woods DD. Steering the reverberations of technology change on fields of practice: laws that govern cognitive work. Available at: http://csel.eng.ohio-state.edu/laws/laws_talk/media/0_steering.pdf. Accessed December 24, 2004
45.
Shane R. Computerized physician order entry: challenges and opportunities  Am J Health Syst Pharm. 2002;59:286-28811862642Google Scholar
46.
Ferner R.. Computer aided prescribing leaves holes in the safety net.  BMJ. 2004;328:1172-1173Google ScholarCrossref
47.
Woods DD, Tinapple D. Watching human factors watch people at work. Presidential address at: 43rd Annual Meeting of the Human Factors and Ergonomics Society; September 28, 1999; Houston, Tex
48.
Cook RI. Two years before the mast: learning how to learn about patient safety. In: Hendee W, ed. Enhancing Patient Safety and Reducing Errors in Health Care. Chicago, Ill: National Patient Safety Foundation; 1999
49.
Ottino JM. Engineering complex systems [essay].  Nature. 2004;427:39914749808Google ScholarCrossref
50.
Perrow C. Normal Accidents: Living With High-Risk TechnologiesPrinceton, NJ: Princeton University Press; 1999
51.
Sarter NB, Woods DD, Billings CE. Automation surprises. In: Salvend G, ed. Handbook of Human Factors and Ergonomics. 2nd ed. New York, NY: John Wiley & Sons; 1997:1926-1943
52.
Tucker AL, Edmondson AC. Why hospitals don't learn from failures: organizational and psychological dynamics that inhibit system change.  Calif Manage Rev. 2003;45:55-72Google ScholarCrossref
53.
Rasmussen J. Trends in human reliability analysis.  Ergonomics. 1985;28:1185-1196Google ScholarCrossref
54.
Giacomini MK, Cook DJ. Users’ guides to the medical literature, XXIII: qualitative research in health care A: are the results of the study valid?  JAMA. 2000;284:357-36210891968Google ScholarCrossref
55.
 TDS [now within the Eclipsys Corporation]. Available at: http://www.eclipsys.com/Solutions/med_mgt.asp. Accessed December 29, 2004
56.
 Frost & Sullivan. US computerized physician order entry market, 2002. Available at: Website. Accessed May 7, 2004
57.
 TDS [now within the Eclipsys Corporation]. Available at: http://www.eclipsys.com/about/default.asp. Accessed December 29, 2004
58.
Ash JS, Gorman PN, Lavelle M, Lyman J. Multiple perspectives on physician order entry.  Proc AMIA Symp. 2000;27-3111079838Google Scholar
59.
Ash J, Gorman P, Lavelle M, Lyman J, Fournier L. Investigating physician order entry in the field: lessons learned in a multi-center study.  Medinfo. 2001;10:1107-111111604900Google Scholar
60.
Cook RI, Woods DD. Implications of automation surprises in aviation for the future of total intravenous anesthesia (TIVA).  J Clin Anesth. 1996;8:(3 suppl)  29S-37S8695111Google ScholarCrossref
Original Contribution
March 9, 2005

Role of Computerized Physician Order Entry Systems in Facilitating Medication Errors

Author Affiliations
 

Author Affiliations: Department of Sociology (Dr Koppel), Department of Medicine, Cardiovascular Division (Dr Kimmel) and General Medicine Division (Drs Metlay and Strom), Center for Clinical Epidemiology and Biostatistics (Drs Koppel, Metlay, Cohen, Kimmel, and Strom and Mr Localio), Department of Biostatistics and Epidemiology (Drs Metlay, Kimmel, and Strom and Mr Localio), Department of Pharmacology (Dr Strom), Center for Education and Research in Therapeutics (Drs Metlay and Strom and Mr Localio), University of Pennsylvania School of Medicine (Mr Abaluck), Philadelphia; and Center for Health Equity Research and Promotion, Department of Veterans Affairs, Philadelphia (Dr Metlay).

JAMA. 2005;293(10):1197-1203. doi:10.1001/jama.293.10.1197
Abstract

Context Hospital computerized physician order entry (CPOE) systems are widely regarded as the technical solution to medication ordering errors, the largest identified source of preventable hospital medical error. Published studies report that CPOE reduces medication errors up to 81%. Few researchers, however, have focused on the existence or types of medication errors facilitated by CPOE.

Objective To identify and quantify the role of CPOE in facilitating prescription error risks.

Design, Setting, and Participants We performed a qualitative and quantitative study of house staff interaction with a CPOE system at a tertiary-care teaching hospital (2002-2004). We surveyed house staff (N = 261; 88% of CPOE users); conducted 5 focus groups and 32 intensive one-on-one interviews with house staff, information technology leaders, pharmacy leaders, attending physicians, and nurses; shadowed house staff and nurses; and observed them using CPOE. Participants included house staff, nurses, and hospital leaders.

Main Outcome Measure Examples of medication errors caused or exacerbated by the CPOE system.

Results We found that a widely used CPOE system facilitated 22 types of medication error risks. Examples include fragmented CPOE displays that prevent a coherent view of patients’ medications, pharmacy inventory displays mistaken for dosage guidelines, ignored antibiotic renewal notices placed on paper charts rather than in the CPOE system, separation of functions that facilitate double dosing and incompatible orders, and inflexible ordering formats generating wrong orders. Three quarters of the house staff reported observing each of these error risks, indicating that they occur weekly or more often. Use of multiple qualitative and survey methods identified and quantified error risks not previously considered, offering many opportunities for error reduction.

Conclusions In this study, we found that a leading CPOE system often facilitated medication error risks, with many reported to occur frequently. As CPOE systems are implemented, clinicians and hospitals must attend to errors that these systems cause in addition to errors that they prevent.

×