Temporal Relationship Between Elevation of Epstein-Barr Virus Antibody Titers and Initial Onset of Neurological Symptoms in Multiple Sclerosis | Demyelinating Disorders | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.175.212.130. Please contact the publisher to request reinstatement.
1.
de-Thé G, Geser A, Day NE.  et al.  Epidemiological evidence for causal relationship between Epstein-Barr virus and Burkitt's lymphoma from Ugandan prospective study.  Nature. 1978;274:756-761210392Google ScholarCrossref
2.
Rickinson AB, Kieff E. Epstein-Barr virus. In: Fields BN, Knipe DM, Howley PM, eds. Fields Virology. Philadelphia, Pa: Lippincott-Raven; 1996:2397-2446
3.
Mueller N, Evans A, Harris NL.  et al.  Hodgkin’s disease and Epstein-Barr virus: altered antibody pattern before diagnosis.  N Engl J Med. 1989;320:689-6952537928Google ScholarCrossref
4.
Larsen PD, Bloomer LC, Bray PF. Epstein-Barr nuclear antigen and viral capsid antigen antibody titers in multiple sclerosis.  Neurology. 1985;35:435-4382983262Google ScholarCrossref
5.
Shirodaria PV, Haire M, Fleming E.  et al.  Viral antibody titers: comparison in patients with multiple sclerosis and rheumatoid arthritis.  Arch Neurol. 1987;44:1237-12412823754Google ScholarCrossref
6.
Ascherio A, Munger KL, Lennette ET.  et al.  Epstein-Barr virus antibodies and risk of multiple sclerosis.  JAMA. 2001;286:3083-308811754673Google ScholarCrossref
7.
Sundstrom P, Juto P, Wadell G.  et al.  An altered immune response to Epstein-Barr virus in multiple sclerosis: a prospective study.  Neurology. 2004;62:2277-228215210894Google ScholarCrossref
8.
Rubertone MV, Brundage JF. The Defense Medical Surveillance System and the Department of Defense Serum Repository: glimpses of the future of public health surveillance.  Am J Public Health. 2002;92:1900-190412453804Google ScholarCrossref
9.
Poser C, Paty D, Scheinberg L.  et al.  New diagnostic criteria for multiple sclerosis.  Ann Neurol. 1983;13:227-2316847134Google ScholarCrossref
10.
Henle W, Henle G, Andersson J.  et al.  Antibody responses to Epstein-Barr virus-determined nuclear antigen (EBNA)-1 and EBNA-2 in acute and chronic Epstein-Barr virus infection.  Proc Natl Acad Sci U S A. 1987;84:570-5743025881Google ScholarCrossref
11.
Lennette ET. Epstein-Barr virus. In: Murray P, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, eds. Manual of Clinical Microbiology. 7th ed. Washington, DC: American Society for Microbiology; 1999:912-918
12.
Lennette ET, Rymo L, Yadav M.  et al.  Disease-related differences in antibody patterns against EBV-encoded nuclear antigens EBNA 1, EBNA 2 and EBNA 6.  Eur J Cancer. 1993;29A:1584-15898217366Google ScholarCrossref
13.
Lennette ET, Lennette D. Immune adherence hemagglutination. In: Specter S, Hodinka, R, Young S, eds. Clinical Virology Manual. Washington, DC: ASM Press; 2000:140-145
14.
Diggle P, Liang K, Zeger S. Analysis of Longitudinal DataOxford, England: Clarendon Press; 1994:253
15.
Brex PA, O'Riordan JI, Miszkiel KA.  et al.  Multisequence MRI in clinically isolated syndromes and the early development of MS.  Neurology. 1999;53:1184-119010522870Google ScholarCrossref
16.
Henle W, Henle G, Niederman JC.  et al.  Antibodies to early antigens induced by Epstein-Barr virus in infectious mononucleosis.  J Infect Dis. 1971;124:58-674335450Google ScholarCrossref
17.
Kusunoki Y, Huang H, Fukuda Y.  et al.  A positive correlation between the precursor frequency of cytotoxic lymphocytes to autologous Epstein-Barr virus-transformed B cells and antibody titer level against Epstein-Barr virus-associated nuclear antigen in healthy seropositive individuals.  Microbiol Immunol. 1993;37:461-4698231961Google Scholar
18.
Horwitz CA, Henle W, Henle G.  et al.  Long-term serological follow-up of patients for Epstein-Barr virus after recovery from infectious mononucleosis.  J Infect Dis. 1985;151:1150-11532987370Google ScholarCrossref
19.
de-Thé G. Epidemiology of Epstein-Barr virus and associated diseases in man. In: Roizman B, ed. The Herpesviruses: Volume 1. New York, NY: Plenum Press; 1982:25-103
20.
Chien YC, Chen JY, Liu MY.  et al.  Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men.  N Engl J Med. 2001;345:1877-188211756578Google ScholarCrossref
21.
Kurtzke JF. Epidemiologic evidence for multiple sclerosis as an infection.  Clin Microbiol Rev. 1993;6:382-4278269393Google Scholar
22.
Welsh RM, Selin LK. No one is naive: the significance of heterologous T-cell immunity.  Nat Rev Immunol. 2002;2:417-42612093008Google Scholar
23.
Sitki-Green D, Covington M, Raab-Traub N. Compartmentalization and transmission of multiple Epstein-Barr virus strains in asymptomatic carriers.  J Virol. 2003;77:1840-184712525618Google ScholarCrossref
24.
Leibowitz U, Antonovsky A, Medalie JM.  et al.  Epidemiological study of multiple sclerosis in Israel, II: multiple sclerosis and level of sanitation.  J Neurol Neurosurg Psychiatry. 1966;29:60-685910580Google ScholarCrossref
25.
Ponsonby AL, van der Mei I, Dwyer T.  et al.  Exposure to infant siblings during early life and risk of multiple sclerosis.  JAMA. 2005;293:463-46915671431Google ScholarCrossref
26.
Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases.  N Engl J Med. 2002;347:911-92012239261Google ScholarCrossref
27.
Hernán MA, Zhang SM, Lipworth L.  et al.  Multiple sclerosis and age at infection with common viruses.  Epidemiology. 2001;12:301-30611337603Google ScholarCrossref
28.
Niederman JC, Evans AS. Epstein-Barr virus. In: Evans AS, Kaslow RA, eds. Viral Infections of Humans: Epidemiology and Control. New York, NY: Plenum Medical Book Co; 1997:253-283
29.
Ascherio A, Munch M. Epstein-Barr virus and multiple sclerosis.  Epidemiology. 2000;11:220-22411021623Google ScholarCrossref
30.
Alotaibi S, Kennedy J, Tellier R.  et al.  Epstein-Barr virus in pediatric multiple sclerosis.  JAMA. 2004;291:1875-187915100207Google ScholarCrossref
31.
James JA, Neas BR, Moser KL.  et al.  Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure.  Arthritis Rheum. 2001;44:1122-112611352244Google ScholarCrossref
Original Contribution
May 25, 2005

Temporal Relationship Between Elevation of Epstein-Barr Virus Antibody Titers and Initial Onset of Neurological Symptoms in Multiple Sclerosis

Author Affiliations
 

Author Affiliations: Division of Preventive Medicine, Walter Reed Army Institute of Research, Silver Spring, Md (Dr Levin); Departments of Nutrition (Ms Munger and Dr Ascherio) and Epidemiology (Drs Spiegelman and Ascherio), Harvard School of Public Health, Boston, Mass; Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Mass (Dr Ascherio); Army Medical Surveillance Activity, US Army Center for Health Promotion and Preventive Medicine, Washington, DC (Dr Rubertone); US Army Physical Disability Agency, Washington, DC (Dr Peck); and Virolab Inc, Berkeley, Calif (Dr Lennette).

JAMA. 2005;293(20):2496-2500. doi:10.1001/jama.293.20.2496
Abstract

Context Infection with Epstein-Barr virus (EBV) has been associated with an increased risk of multiple sclerosis (MS), but the temporal relationship remains unclear.

Objective To determine whether antibodies to EBV are elevated before the onset of MS.

Design, Setting, and Participants Nested case-control study conducted among more than 3 million US military personnel with blood samples collected between 1988 and 2000 and stored in the Department of Defense Serum Repository. Cases were identified as individuals granted temporary or permanent disability because of MS. For each case (n = 83), 2 controls matched by age, sex, race/ethnicity, and dates of blood sample collection were selected. Serial samples collected before the onset of symptoms were available for 69 matched case-control sets.

Main Outcome Measures Antibodies including IgA against EBV viral capsid antigen (VCA), and IgG against VCA, nuclear antigens (EBNA complex, EBNA-1, and EBNA-2), diffuse and restricted early antigens, and cytomegalovirus.

Results The average time between blood collection and MS onset was 4 years (range, <1-11 years). The strongest predictors of MS were serum levels of IgG antibodies to EBNA complex or EBNA-1. Among individuals who developed MS, serum antibody titers to EBNA complex were similar to those of controls before the age of 20 years (geometric mean titers: cases = 245, controls = 265), but 2- to 3-fold higher at age 25 years and older (cases = 684, controls = 282; P<.001). The risk of MS increased with these antibody titers; the relative risk (RR) in persons with EBNA complex titers of at least 1280 compared with those with titers less than 80 was 9.4 (95% confidence interval [CI], 2.5-35.4; P for trend <.001). In longitudinal analyses, a 4-fold increase in anti-EBNA complex or anti–EBNA-1 titers during the follow-up was associated with a 3-fold increase in MS risk (EBNA complex: RR , 3.0; 95% CI, 1.3-6.5; EBNA-1: RR, 3.0; 95% CI, 1.2-7.3). No association was found between cytomegalovirus antibodies and MS.

Conclusion These results suggest an age-dependent relationship between EBV infection and development of MS.

×