Angiotensin-Converting Enzyme Insertion/Deletion Genotype, Exercise, and Physical Decline | Genetics and Genomics | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.206.238.77. Please contact the publisher to request reinstatement.
1.
Nagi SZ. Disability concepts revisited: implications for prevention. In: Pope AM, Tarlov AR, eds. Disability in America: A National Agenda for Prevention. Washington, DC: National Academy Press; 1991:309-327
2.
Miller B, Prohaska T, Mermelstein R, Van Nostrand JF. Changes in Functional Status and Risk of Institutionalization and DeathHyattsville, Md: US Dept of Health and Human Services, National Center for Health Statistics; 1993:41-75. Health Data on Older Americans: United States, 1992, Series No. 3: Analytic and Epidemiologic Studies, No. 27
3.
Stuck AE, Walthert JM, Nikolaus T, Bula CJ, Hohmann C, Beck JC. Risk factors for functional status decline in community-living elderly people: a systematic literature review.  Soc Sci Med. 1999;48:445-46910075171Google ScholarCrossref
4.
Singh MA. Exercise comes of age: rationale and recommendations for a geriatric exercise prescription.  J Gerontol A Biol Sci Med Sci. 2002;57:M262-M28211983720Google ScholarCrossref
5.
Wu SC, Leu SY, Li CY. Incidence of and predictors for chronic disability in activities of daily living among older people in Taiwan.  J Am Geriatr Soc. 1999;47:1082-108610484250Google Scholar
6.
Clark DO. The effect of walking on lower body disability among older blacks and whites.  Am J Public Health. 1996;86:57-618561243Google ScholarCrossref
7.
Visser M, Simonsick EM, Colbert LH.  et al.  Type and intensity of activity and risk of mobility limitation: the mediating role of muscle parameters.  J Am Geriatr Soc. 2005;53:762-77015877550Google ScholarCrossref
8.
Hirvensalo M, Rantanen T, Heikkinen E. Mobility difficulties and physical activity as predictors of mortality and loss of independence in the community-living older population.  J Am Geriatr Soc. 2000;48:493-49810811541Google Scholar
9.
Rantanen T, Era P, Heikkinen E. Physical activity and the changes in maximal isometric strength in men and women from the age of 75 to 80 years.  J Am Geriatr Soc. 1997;45:1439-14459400552Google Scholar
10.
Newman AB, Haggerty CL, Kritchevsky SB, Nevitt MC, Simonsick EM. Walking performance and cardiovascular response: associations with age and morbidity—the Health, Aging and Body Composition Study.  J Gerontol A Biol Sci Med Sci. 2003;58:715-72012902529Google ScholarCrossref
11.
Penninx BW, Messier SP, Rejeski WJ.  et al.  Physical exercise and the prevention of disability in activities of daily living in older persons with osteoarthritis.  Arch Intern Med. 2001;161:2309-231611606146Google ScholarCrossref
12.
Ades PA, Ballor DL, Ashikaga T, Utton JL, Nair KS. Weight training improves walking endurance in healthy elderly persons.  Ann Intern Med. 1996;124:568-5728597320Google ScholarCrossref
13.
Cress ME, Buchner DM, Questad KA, Esselman PC, deLateur BJ, Schwartz RS. Exercise: effects on physical functional performance in independent older adults.  J Gerontol A Biol Sci Med Sci. 1999;54:M242-M24810362007Google ScholarCrossref
14.
Bouchard C, Rankinen T. Individual differences in response to regular physical activity.  Med Sci Sports Exerc. 2001;33:S446-S45111427769Google ScholarCrossref
15.
Thomis MA, Beunen GP, Maes HH.  et al.  Strength training: importance of genetic factors.  Med Sci Sports Exerc. 1998;30:724-7319588615Google ScholarCrossref
16.
An P, Borecki IB, Rankinen T.  et al.  Evidence of major genes for exercise heart rate and blood pressure at baseline and in response to 20 weeks of endurance training: the HERITAGE Family Study.  Int J Sports Med. 2003;24:492-49812968206Google ScholarCrossref
17.
Perusse L, Rankinen T, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2002 update.  Med Sci Sports Exerc. 2003;35:1248-126412900676Google ScholarCrossref
18.
Jones A, Montgomery HE, Woods DR. Human performance: a role for the ACE genotype?  Exerc Sport Sci Rev. 2002;30:184-19012398116Google ScholarCrossref
19.
Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels.  J Clin Invest. 1990;86:1343-13461976655Google ScholarCrossref
20.
Gayagay G, Yu B, Hambly B.  et al.  Elite endurance athletes and the ACE I allele—the role of genes in athletic performance.  Hum Genet. 1998;103:48-509737775Google ScholarCrossref
21.
Myerson SG, Montgomery HE, Whittingham M.  et al.  Left ventricular hypertrophy with exercise and ace gene insertion/deletion polymorphism: a randomized controlled trial with losartan.  Circulation. 2001;103:226-23011208681Google ScholarCrossref
22.
Montgomery HE, Clarkson P, Dollery CM.  et al.  Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training.  Circulation. 1997;96:741-7479264477Google ScholarCrossref
23.
Myerson S, Hemingway H, Budget R, Martin J, Humphries S, Montgomery H. Human angiotensin I-converting enzyme gene and endurance performance.  J Appl Physiol. 1999;87:1313-131610517757Google Scholar
24.
Williams AG, Rayson MP, Jubb M.  et al.  The ACE gene and muscle performance.  Nature. 2000;403:61410688186Google ScholarCrossref
25.
Folland J, Leach B, Little T.  et al.  Angiotensin-converting enzyme genotype affects the response of human skeletal muscle to functional overload.  Exp Physiol. 2000;85:575-57911038409Google ScholarCrossref
26.
Ainsworth BE, Haskell WL, Leon AS.  et al.  Compendium of physical activities: classification of energy costs of human physical activities.  Med Sci Sports Exerc. 1993;25:71-808292105Google ScholarCrossref
27.
Lee IM, Paffenbarger RS Jr, Hsieh CC. Time trends in physical activity among college alumni, 1962-1988.  Am J Epidemiol. 1992;135:915-9251585904Google Scholar
28.
Washburn RA, Smith KW, Goldfield SR, McKinlay JB. Reliability and physiologic correlates of the Harvard Alumni Activity Survey in a general population.  J Clin Epidemiol. 1991;44:1319-13261753263Google ScholarCrossref
29.
Resnick HE, Shorr RI, Kuller L, Franse L, Harris TB. Prevalence and clinical implications of American Diabetes Association–defined diabetes and other categories of glucose dysregulation in older adults: the Health, Aging and Body Composition Study.  J Clin Epidemiol. 2001;54:869-87611520645Google ScholarCrossref
30.
Ding J, Visser M, Kritchevsky SB.  et al.  The association of regional fat depots with hypertension in older persons of white and African American ethnicity.  Am J Hypertens. 2004;17:971-97615485762Google ScholarCrossref
31.
American Thoracic Society.  Standardization of spirometry, 1994 update.  Am J Respir Crit Care Med. 1995;152:1107-11367663792Google ScholarCrossref
32.
Visser M, Kritchevsky SB, Goodpaster BH.  et al.  Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging, and body composition study.  J Am Geriatr Soc. 2002;50:897-90412028178Google ScholarCrossref
33.
Strazzullo P, Iacone R, Iacoviello L.  et al.  Genetic variation in the renin-angiotensin system and abdominal adiposity in men: the Olivetti Prospective Heart Study.  Ann Intern Med. 2003;138:17-2312513040Google ScholarCrossref
34.
Frederiksen H, Christensen K. The influence of genetic factors on physical functioning and exercise in second half of life.  Scand J Med Sci Sports. 2003;13:9-1812535312Google ScholarCrossref
35.
Coates D. The angiotensin converting enzyme (ACE).  Int J Biochem Cell Biol. 2003;35:769-77312676162Google ScholarCrossref
36.
Reneland R, Lithell H. Angiotensin-converting enzyme in human skeletal muscle: a simple in vitro assay of activity in needle biopsy specimens.  Scand J Clin Lab Invest. 1994;54:105-1118197396Google ScholarCrossref
37.
Suehiro T, Morita T, Inoue M, Kumon Y, Ikeda Y, Hashimoto K. Increased amount of the angiotensin-converting enzyme (ACE) mRNA originating from the ACE allele with deletion.  Hum Genet. 2004;115:91-9615164285Google ScholarCrossref
38.
Gordon SE, Davis BS, Carlson CJ, Booth FW. ANG II is required for optimal overload-induced skeletal muscle hypertrophy.  Am J Physiol Endocrinol Metab. 2001;280:E150-E15911120669Google Scholar
39.
Zhang B, Tanaka H, Shono N.  et al.  The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle.  Clin Genet. 2003;63:139-14412630962Google ScholarCrossref
40.
Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men.  J Neurol Sci. 1988;84:275-2943379447Google ScholarCrossref
41.
Bean JF, Leveille SG, Kiely DK, Bandinelli S, Guralnik JM, Ferrucci L. A comparison of leg power and leg strength within the InCHIANTI study: which influences mobility more?  J Gerontol A Biol Sci Med Sci. 2003;58:728-73312902531Google ScholarCrossref
42.
Foldvari M, Clark M, Laviolette LC.  et al.  Association of muscle power with functional status in community-dwelling elderly women.  J Gerontol A Biol Sci Med Sci. 2000;55:M192-M19910811148Google ScholarCrossref
43.
Frederiksen H, Gaist D, Bathum L.  et al.  Angiotensin I-converting enzyme (ACE) gene polymorphism in relation to physical performance, cognition and survival—a follow-up study of elderly Danish twins.  Ann Epidemiol. 2003;13:57-6512547486Google ScholarCrossref
44.
Frederiksen H, Bathum L, Worm C, Christensen K, Puggaard L. ACE genotype and physical training effects: a randomized study among elderly Danes.  Aging Clin Exp Res. 2003;15:284-29114661817Google ScholarCrossref
45.
Visser M, Harris TB, Langlois J.  et al.  Body fat and skeletal muscle mass in relation to physical disability in very old men and women of the Framingham Heart Study.  J Gerontol A Biol Sci Med Sci. 1998;53:M214-M2219597054Google ScholarCrossref
46.
Broadwin J, Goodman-Gruen D, Slymen D. Ability of fat and fat-free mass percentages to predict functional disability in older men and women.  J Am Geriatr Soc. 2001;49:1641-164511843997Google ScholarCrossref
47.
Zamboni M, Turcato E, Santana H.  et al.  The relationship between body composition and physical performance in older women.  J Am Geriatr Soc. 1999;47:1403-140810591232Google Scholar
48.
Goodpaster BH, Carlson CL, Visser M.  et al.  Attenuation of skeletal muscle and strength in the elderly: the Health ABC Study.  J Appl Physiol. 2001;90:2157-216511356778Google Scholar
49.
Nazarov IB, Woods DR, Montgomery HE.  et al.  The angiotensin-converting enzyme I/D polymorphism in Russian athletes.  Eur J Hum Genet. 2001;9:797-80111781693Google ScholarCrossref
50.
van Loon LJ. Use of intramuscular triacylglycerol as a substrate source during exercise in humans.  J Appl Physiol. 2004;97:1170-118715358749Google ScholarCrossref
51.
Goodpaster BH, Wolf D. Skeletal muscle lipid accumulation in obesity, insulin resistance, and type 2 diabetes.  Pediatr Diabetes. 2004;5:219-22615601366Google ScholarCrossref
52.
Visser M, Goodpaster BH, Kritchevsky SB.  et al.  Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons.  J Gerontol A Biol Sci Med Sci. 2005;60:324-33315860469Google ScholarCrossref
53.
Di Bari M, van de Poll-Franse LV, Onder G.  et al.  Antihypertensive medications and differences in muscle mass in older persons: the Health, Aging and Body Composition Study.  J Am Geriatr Soc. 2004;52:961-96615161462Google ScholarCrossref
54.
Onder G, Penninx BW, Balkrishnan R.  et al.  Relation between use of angiotensin-converting enzyme inhibitors and muscle strength and physical function in older women: an observational study.  Lancet. 2002;359:926-93011918911Google ScholarCrossref
55.
Carter CS, Cesari M, Ambrosius WT.  et al.  Angiotensin-converting enzyme inhibition, body composition, and physical performance in aged rats.  J Gerontol A Biol Sci Med Sci. 2004;59:416-42315123750Google ScholarCrossref
56.
Kohlstedt K, Brandes RP, Muller-Esterl W, Busse R, Fleming I. Angiotensin-converting enzyme is involved in outside-in signaling in endothelial cells.  Circ Res. 2004;94:60-6714615289Google ScholarCrossref
57.
Blais C Jr, Adam A, Massicotte D, Peronnet F. Increase in blood bradykinin concentration after eccentric weight-training exercise in men.  J Appl Physiol. 1999;87:1197-120110484595Google Scholar
58.
Stebbins CL, Carretero OA, Mindroiu T, Longhurst JC. Bradykinin release from contracting skeletal muscle of the cat.  J Appl Physiol. 1990;69:1225-12302124582Google Scholar
59.
Boppart MD, Aronson D, Gibson L.  et al.  Eccentric exercise markedly increases c-Jun NH(2)-terminal kinase activity in human skeletal muscle.  J Appl Physiol. 1999;87:1668-167310562607Google Scholar
60.
Nakai K, Itoh C, Miura Y.  et al.  Deletion polymorphism of the angiotensin I-converting enzyme gene is associated with serum ACE concentration and increased risk for CAD in the Japanese.  Circulation. 1994;90:2199-22027955173Google ScholarCrossref
61.
Martinez E, Puras A, Escribano J.  et al.  Angiotensin-converting enzyme (ACE) gene polymorphisms, serum ACE activity and blood pressure in a Spanish-Mediterranean population.  J Hum Hypertens. 2000;14:131-13510723120Google ScholarCrossref
62.
Knowler WC, Williams RC, Pettitt DJ, Steinberg AG. Gm3;5,13,14 and type 2 diabetes mellitus: an association in American Indians with genetic admixture.  Am J Hum Genet. 1988;43:520-5263177389Google Scholar
Original Contribution
August 10, 2005

Angiotensin-Converting Enzyme Insertion/Deletion Genotype, Exercise, and Physical Decline

Author Affiliations
 

Author Affiliations: The Sticht Center on Aging and Center for Human Genomics, Department of Internal Medicine (Drs Kritchevsky, Nicklas, Penninx, and Pahor) and Department of Public Health Sciences (Dr Lange), Wake Forest University School of Medicine, Winston-Salem, NC; Institute of Health Sciences (Dr Visser) and Department of Psychiatry (Dr Penninx), Vrije Universiteit, the Netherlands; Gerontology Research Center, National Institute on Aging, Baltimore, Md (Dr Simonsick); Departments of Epidemiology (Dr Newman) and Medicine (Dr Goodpaster), University of Pittsburgh, Pittsburgh, Pa; Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Md (Dr Harris); Department of Preventive Medicine, University of Tennessee, Memphis (Dr Satterfield); Department of Kinesiology, University of Wisconsin, Madison (Dr Colbert); Prevention Sciences Group, University of California, San Francisco (Ms Rubin); Department of Aging and Geriatric Research, University of Florida, Gainesville (Dr Pahor).

JAMA. 2005;294(6):691-698. doi:10.1001/jama.294.6.691
Abstract

Context Physical performance in response to exercise appears to be influenced by the angiotensin-converting enzyme (ACE) insertion (I)/deletion (D) genotype in young adults, but whether this relationship could help explain variation in older individuals’ response to exercise has not been well studied.

Objective To determine whether the ACE genotype interacts with significant physical activity to affect the incidence of mobility limitation in well-functioning older adults.

Design, Setting, and Participants The Health Aging and Body Composition (Health ABC) Cohort Study, conducted in the metropolitan areas of Memphis, Tenn, and Pittsburgh, Pa. A total of 3075 well-functioning community-dwelling adults aged 70 through 79 years were enrolled from 1997 to 1998 and had a mean of 4.1 years of follow-up.

Main Outcome Measure Incident mobility limitation defined as the report of difficulty walking a quarter of a mile (0.4 km) or walking up 10 steps on 2 consecutive semiannual interviews (n = 1204).

Results Physically active participants (those reporting expending ≥1000 kcal/wk in exercise, walking, and stair climbing) were less likely to develop mobility limitation regardless of genotype. However, activity level interacted significantly with the ACE genotype (P = .002). In the inactive group, the ACE genotype was not associated with limitation (P = .46). In the active group, those with the II genotype were more likely to develop mobility limitation after adjusting for potential confounders compared with those with ID/DD genotypes (adjusted rate ratio, 1.45, 95% confidence interval, 1.08-1.94). The gene association was especially strong among participants reporting weightlifting. Exploration of possible physiological correlates revealed that among active participants, those with the II genotype had higher percentage of body fat (P = .02) and more intermuscular thigh fat (P = .02) but had similar quadriceps strength as those with ID/DD.

Conclusions Among older individuals who exercised, those with the ACE DD or ID genotypes were less likely to develop mobility limitation than those with the II genotype. Regardless of genotype, individuals who exercised were less likely to develop mobility limitation than those who did not exercise.

×