Effect of Rimonabant, a Cannabinoid-1 Receptor Blocker, on Weight and Cardiometabolic Risk Factors in Overweight or Obese Patients: RIO-North America: A Randomized Controlled Trial | Cardiology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.226.234.102. Please contact the publisher to request reinstatement.
1.
Hedley AA, Ogden CL, Johnson CL, Carroll MD, Curtin LR, Flegal KM. Prevalence of overweight and obesity among US children, adolescents, and adults, 1999-2002.  JAMA. 2004;291:2847-285015199035Google ScholarCrossref
2.
Klein S, Burke LE, Bray GA.  et al.  Clinical implications of obesity with specific focus on cardiovascular disease: a statement for professionals from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism: endorsed by the American College of Cardiology Foundation.  Circulation. 2004;110:2952-296715509809Google ScholarCrossref
3.
Solomon CG, Manson JE. Obesity and mortality: a review of the epidemiologic data.  Am J Clin Nutr. 1997;66:1044S-1050S9322585Google Scholar
4.
National Institutes of Health Expert Panel on the Identification Evaluation and Treatment of Overweight in Adults.  Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report.  Obes Res. 1998;6:(suppl 2)  51S-209S9813653Google ScholarCrossref
5.
Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA.  Nature. 1990;346:561-5642165569Google ScholarCrossref
6.
Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids.  Nature. 1993;365:61-657689702Google ScholarCrossref
7.
Howlett AC. The cannabinoid receptors.  Prostaglandins Other Lipid Mediat. 2002;68:619-63112432948Google ScholarCrossref
8.
Cota D, Marsicano G, Tschop M.  et al.  The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis.  J Clin Invest. 2003;112:423-43112897210Google Scholar
9.
Osei-Hyiaman D, DePetrillo M, Pacher P.  et al.  Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity.  J Clin Invest. 2005;115:1298-130515864349Google Scholar
10.
Di Marzo V, Goparaju SK, Wang L.  et al.  Leptin-regulated endocannabinoids are involved in maintaining food intake.  Nature. 2001;410:822-82511298451Google ScholarCrossref
11.
Bensaid M, Gary-Bobo M, Esclangon A.  et al.  The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells.  Mol Pharmacol. 2003;63:908-91412644592Google ScholarCrossref
12.
Liu YL, Connoley IP, Wilson CA, Stock MJ. Effects of the cannabinoid CB1 receptor antagonist SR141716 on oxygen consumption and soleus muscle glucose uptake in Lep(ob)/Lep(ob) mice.  Int J Obes (Lond). 2005;29:183-187Google ScholarCrossref
13.
Ravinet Trillou C, Arnone M, Delgorge C.  et al.  Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice.  Am J Physiol Regul Integr Comp Physiol. 2003;284:R345-R35312399252Google Scholar
14.
Harris JA, Benedict FG. A Biometric Study of Basal Metabolism in Man. Washington, DC: Carnegie Institute of Washington; 1919. Publication 279
15.
Jacobs D, DeMott W, Grady H, Horvat R, Huestis D, Kasten BLaboratory Test Handbook. 4th ed. Cleveland, Ohio: Lexi-Comp Inc; 1996
16.
Rifai N, Warnick GLaboratory Measurement of Lipids, Lipoproteins, and Apolipoproteins. Washington, DC: AACC Press; 1994
17.
National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III).  Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III).  JAMA. 2001;285:2486-2497Google ScholarCrossref
18.
Zigmond AS, Snaith RP. The hospital anxiety and depression scale.  Acta Psychiatr Scand. 1983;67:361-3706880820Google ScholarCrossref
19.
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.  Diabetologia. 1985;28:412-4193899825Google ScholarCrossref
20.
Hochberg Y. A sharper Bonferonni procedure for multiple tests of significance.  Biometrika. 1988;75:800-802Google ScholarCrossref
21.
Buyse M, Molenberghs G. Criteria for the validation of surrogate endpoints in randomized experiments.  Biometrics. 1998;54:1014-10299840970Google ScholarCrossref
22.
Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rossner S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study.  Lancet. 2005;365:1389-139715836887Google ScholarCrossref
23.
Despres JP, Golay A, Sjostrom L.Rimonabant in Obesity-Lipids Study Group.  Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia.  N Engl J Med. 2005;353:2121-213416291982Google ScholarCrossref
24.
Salmenniemi U, Ruotsalainen E, Pihlajamaki J.  et al.  Multiple abnormalities in glucose and energy metabolism and coordinated changes in levels of adiponectin, cytokines, and adhesion molecules in subjects with metabolic syndrome.  Circulation. 2004;110:3842-384815596567Google ScholarCrossref
25.
Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism.  Trends Endocrinol Metab. 2002;13:84-8911854024Google ScholarCrossref
26.
Carr DB, Utzschneider KM, Hull RL.  et al.  Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome.  Diabetes. 2004;53:2087-209415277390Google ScholarCrossref
27.
Padwal R, Li S, Lau D. Long-term pharmacotherapy for overweight and obesity: a systematic review and meta-analysis of randomized controlled trials.  Int J Obes Relat Metab Disord. 2003;27:1437-144612975638Google ScholarCrossref
28.
Gadbury GL, Coffey CS, Allison DB. Modern statistical methods for handling missing repeated measurements in obesity trial data: beyond LOCF.  Obes Rev. 2003;4:175-18412916818Google ScholarCrossref
Original Contribution
February 15, 2006

Effect of Rimonabant, a Cannabinoid-1 Receptor Blocker, on Weight and Cardiometabolic Risk Factors in Overweight or Obese Patients: RIO-North America: A Randomized Controlled Trial

Author Affiliations
 

Author Affiliations: Obesity Research Center, St Luke’s-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, NY (Dr Pi-Sunyer); Department of Medicine, Cornell Weil Medical College, New York, NY (Dr Aronne); Sanofi-Aventis, Malvern, Pa (Dr Heshmati and Ms Devin); and Dallas Diabetes and Endocrine Center, Dallas, Tex (Dr Rosenstock).

JAMA. 2006;295(7):761-775. doi:10.1001/jama.295.7.761
Abstract

Context Rimonabant, a selective cannabinoid-1 receptor blocker, may reduce body weight and improve cardiometabolic risk factors in patients who are overweight or obese.

Objective To compare the efficacy and safety of rimonabant with placebo each in conjunction with diet and exercise for sustained changes in weight and cardiometabolic risk factors over 2 years.

Design, Setting, and Participants Randomized, double-blind, placebo-controlled trial of 3045 obese (body mass index ≥30) or overweight (body mass index >27 and treated or untreated hypertension or dyslipidemia) adult patients at 64 US and 8 Canadian clinical research centers from August 2001 to April 2004.

Intervention After a 4-week single-blind placebo plus diet (600 kcal/d deficit) run-in period, patients were randomized to receive placebo, 5 mg/d of rimonabant, or 20 mg/d of rimonabant for 1 year. Rimonabant-treated patients were rerandomized to receive placebo or continued to receive the same rimonabant dose while the placebo group continued to receive placebo during year 2.

Main Outcome Measures Body weight change over year 1 and prevention of weight regain during year 2. Additional efficacy measures included changes in waist circumference, plasma lipid levels, and other cardiometabolic risk factors.

Results At year 1, the completion rate was 309 (51%) patients in the placebo group, 620 (51%) patients in the 5 mg of rimonabant group, and 673 (55%) patients in the 20 mg of rimonabant group. Compared with the placebo group, the 20 mg of rimonabant group produced greater mean (SEM) reductions in weight (−6.3 [0.2] kg vs −1.6 [0.2] kg; P<.001), waist circumference (−6.1 [0.2] cm vs −2.5 [0.3] cm; P<.001), and level of triglycerides (percentage change, −5.3 [1.2] vs 7.9 [2.0]; P<.001) and a greater increase in level of high-density lipoprotein cholesterol (percentage change, 12.6 [0.5] vs 5.4 [0.7]; P<.001). Patients who were switched from the 20 mg of rimonabant group to the placebo group during year 2 experienced weight regain while those who continued to receive 20 mg of rimonabant maintained their weight loss and favorable changes in cardiometabolic risk factors. Use of different imputation methods to account for the high rate of dropouts in all 3 groups yielded similar results. Rimonabant was generally well tolerated; the most common drug-related adverse event was nausea (11.2% for the 20 mg of rimonabant group vs 5.8% for the placebo group).

Conclusions In this multicenter trial, treatment with 20 mg/d of rimonabant plus diet for 2 years promoted modest but sustained reductions in weight and waist circumference and favorable changes in cardiometabolic risk factors. However, the trial was limited by a high drop-out rate and longer-term effects of the drug require further study.

Clinical Trials Registration ClinicalTrials.gov Identifier: NCT00029861

×