Radiation Dose-Response Relationships for Thyroid Nodules and Autoimmune Thyroid Diseases in Hiroshima and Nagasaki Atomic Bomb Survivors 55-58 Years After Radiation Exposure | Endocrinology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Ron E, Lubin JH, Shore RE.  et al.  Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies.  Radiat Res. 1995;141:259-2777871153Google ScholarCrossref
2.
Shore RE, Hildreth N, Dvoretsky P, Andresen E, Moseson M, Pasternack B. Thyroid cancer among persons given X-ray treatment in infancy for an enlarged thymus gland.  Am J Epidemiol. 1993;137:1068-10808317436Google Scholar
3.
Schneider AB, Ron E, Lubin J, Stovall M, Gierlowski TC. Dose-response relationships for radiation-induced thyroid cancer and thyroid nodules: evidence for the prolonged effects of radiation on the thyroid.  J Clin Endocrinol Metab. 1993;77:362-3698345040Google ScholarCrossref
4.
Yoshimoto Y, Ezaki H, Etoh R, Hiraoka T, Akiba S. Prevalence rate of thyroid diseases among autopsy cases of the atomic bomb survivors in Hiroshima, 1951-1985.  Radiat Res. 1995;141:278-2867871154Google ScholarCrossref
5.
Shore RE, Hildreth N, Dvoretsky P, Pasternack B, Andresen E. Benign thyroid adenomas among persons x-irradiated in infancy for enlarged thymus glands.  Radiat Res. 1993;134:217-2238488255Google ScholarCrossref
6.
Ron E, Modan B, Preston D, Alfandary E, Stovall M, Boice JD Jr. Thyroid neoplasia following low-dose radiation in childhood.  Radiat Res. 1989;120:516-5312594972Google ScholarCrossref
7.
Pottern LM, Kaplan MM, Larsen PR.  et al.  Thyroid nodularity after childhood irradiation for lymphoid hyperplasia: a comparison of questionnaire and clinical findings.  J Clin Epidemiol. 1990;43:449-4602324785Google ScholarCrossref
8.
Shore RE, Moseson M, Harley N, Pasternack BS. Tumors and other diseases following childhood x-ray treatment for ringworm of the scalp (Tinea capitis).  Health Phys. 2003;85:404-40813678280Google ScholarCrossref
9.
Nagataki S, Hirayu H, Izumi M, Inoue S, Okajima S, Shimaoka K. High prevalence of thyroid nodule in area of radioactive fallout.  Lancet. 1989;2:385-3862569572Google ScholarCrossref
10.
Kazakov VS, Demidchik EP, Astakhova LN. Thyroid cancer after Chernobyl.  Nature. 1992;359:211522879Google ScholarCrossref
11.
Shibata Y, Yamashita S, Masyakin VB, Panasyuk GD, Nagataki S. 15 years after Chernobyl: new evidence of thyroid cancer.  Lancet. 2001;358:1965-196611747925Google ScholarCrossref
12.
Takahashi T, Schoemaker MJ, Trott KR.  et al.  The relationship of thyroid cancer with radiation exposure from nuclear weapon testing in the Marshall Islands.  J Epidemiol. 2003;13:99-10712675119Google ScholarCrossref
13.
Dobyns BM, Sheline GE, Workman JB, Tompkins EA, McConahey WM, Becker DV. Malignant and benign neoplasms of the thyroid in patients treated for hyperthyroidism: a report of the cooperative thyrotoxicosis therapy follow-up study.  J Clin Endocrinol Metab. 1974;38:976-9984134013Google ScholarCrossref
14.
Nagataki S, Shibata Y, Inoue S, Yokoyama N, Izumi M, Shimaoka K. Thyroid diseases among atomic bomb survivors in Nagasaki.  JAMA. 1994;272:364-3708028167Google ScholarCrossref
15.
Kerber RA, Till JE, Simon SL.  et al.  A cohort study of thyroid disease in relation to fallout from nuclear weapons testing.  JAMA. 1993;270:2076-20828411574Google ScholarCrossref
16.
Pacini F, Vorontsova T, Molinaro E.  et al.  Prevalence of thyroid autoantibodies in children and adolescents from Belarus exposed to the Chernobyl radioactive fallout.  Lancet. 1998;352:763-7669737280Google ScholarCrossref
17.
Ito M, Yamashita S, Ashizawa K.  et al.  Childhood thyroid diseases around Chernobyl evaluated by ultrasound examination and fine needle aspiration cytology.  Thyroid. 1995;5:365-3688563473Google ScholarCrossref
18.
Takahashi T, Fujimori K, Simon SL, Bechtner G, Edwards R, Trott KR. Thyroid nodules, thyroid function and dietary iodine in the Marshall Islands.  Int J Epidemiol. 1999;28:742-74910480705Google ScholarCrossref
19.
Eheman CR, Garbe P, Tuttle RM. Autoimmune thyroid disease associated with environmental thyroidal irradiation.  Thyroid. 2003;13:453-46412855012Google ScholarCrossref
20.
Davis S, Kopecky KJ, Hamilton TE, Onstad L. Thyroid neoplasia, autoimmune thyroiditis, and hypothyroidism in persons exposed to iodine 131 from the Hanford Nuclear Site.  JAMA. 2004;292:2600-261315572718Google ScholarCrossref
21.
Pierce DA, Shimizu Y, Preston DL, Vaeth M, Mabuchi K. Studies of the mortality of atomic bomb survivors: report 12, part I: cancer: 1950-1990.  Radiat Res. 1996;146:1-278677290Google ScholarCrossref
22.
Shimizu Y, Pierce DA, Preston DL, Mabuchi K. Studies of the mortality of atomic bomb survivors: report 12, part II: noncancer mortality: 1950-1990.  Radiat Res. 1999;152:374-38910477914Google ScholarCrossref
23.
Young RW, Kerr GDReassessment of the Atomic Bomb Radiation Dosimetry for Hiroshima and Nagasaki, Dosimetry System 2002, Report of the Joint US-Japan Working Group. Hiroshima, Japan: Radiation Effects Research Foundation; 2005
24.
Thompson DE, Mabuchi K, Ron E.  et al.  Cancer incidence in atomic bomb survivors: part II: solid tumors, 1958-1987.  Radiat Res. 1994;137:S17-S678127952Google ScholarCrossref
25.
Akiba S, Lubin J, Ezaki H.  et al.  Thyroid Cancer Incidence Among Atomic Bomb Survivors, 1958-79Hiroshima, Japan: Radiation Effects Research Foundation; 1992. Technical Report 5-91
26.
Atomic Bomb Casualty Commission.  Research Plan for Joint ABCC-NIH Adult Health Study in Hiroshima and NagasakiHiroshima and Nagasaki, Japan: Atomic Bomb Casualty Commission; 1962. ABCC Technical Report 11-62
27.
Yamada M, Wong FL, Fujiwara S, Akahoshi M, Suzuki G. Noncancer disease incidence in atomic bomb survivors, 1958-1998.  Radiat Res. 2004;161:622-63215161358Google ScholarCrossref
28.
Tan GH, Gharib H. Thyroid incidentalomas: management approaches to nonpalpable nodules discovered incidentally on thyroid imaging.  Ann Intern Med. 1997;126:226-2319027275Google ScholarCrossref
29.
Soda M, Ikeda T, Matsuo T, Suyama A. Cancer incidence in Nagasaki Prefecture 1993-1997. In: Parkin DM, ed. Cancer Incidence in Five Continents. Vol 8. Lyon, France: International Agency for Research on Cancer/International Association of Cancer Registry; 2003:390-393
30.
Hedinger C, Williams ED, Sobin LH. Histological Typing of Thyroid Tumor. 2nd ed. Berlin, Germany: Springer-Verlag; 1988
31.
Hedinger C, Williams ED, Sobin LH. The WHO histological classification of thyroid tumors: a commentary on the second edition.  Cancer. 1989;63:908-9112914297Google ScholarCrossref
32.
Preston DL, Pierce DA, Shimizu Y.  et al.  Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates.  Radiat Res. 2004;162:377-38915447045Google ScholarCrossref
33.
Pierce DA, Stram DO, Vaeth M. Allowing for random errors in radiation dose estimates for the atomic bomb survivor data.  Radiat Res. 1990;123:275-2842217725Google ScholarCrossref
34.
Preston D, Lubin J, Pierce D. Epicure User's Guide. Seattle, Wash: HiroSoft International Corp; 1993
35.
Akaike H. Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F, eds. Second International Symposium on Information Theory. Budapest, Hungary: Akademiai Kiado; 1973:267-281
36.
Akaike H. A new look at the statistical model identification.  IEEE Trans Autom Contr. 1974;AC-19:716-723Google ScholarCrossref
37.
Cox DR, Hinkley DV. Theoretical Statistics. London, England: Chapman & Hall; 1974
38.
Roesch WCUS-Japan Joint Reassessment of Atomic Bomb Radiation Dosimetry in Hiroshima and Nagasaki. Hiroshima, Japan: Radiation Effects Research Foundation; 1987
39.
Hollowell JG, Staehling NW, Flanders WD.  et al.  Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III).  J Clin Endocrinol Metab. 2002;87:489-49911836274Google ScholarCrossref
40.
Fugazzola L, Pilotti S, Pinchera A.  et al.  Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident.  Cancer Res. 1995;55:5617-56207585643Google Scholar
41.
Klugbauer S, Lengfelder E, Demidchik EP, Rabes HM. High prevalence of RET rearrangement in thyroid tumors of children from Belarus after the Chernobyl reactor accident.  Oncogene. 1995;11:2459-24678545102Google Scholar
42.
Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children.  Cancer Res. 1997;57:1690-16949135009Google Scholar
43.
Williams ED, Abrosimov A, Bogdanova T.  et al.  Thyroid carcinoma after Chernobyl latent period, morphology and aggressiveness.  Br J Cancer. 2004;90:2219-222415150580Google Scholar
44.
Health Expert Group.  Health Effects of the Chernobyl Accident and Special Health Care Programes, Working Draft. Geneva, Switzerland: World Health Organization; 2005
45.
Demidchik E, Mrochek A, Demidchik Y.  et al.  Thyroid cancer promoted by radiation in young people of Belarus (clinical and epidemiological features). Presented at: Radiation and Thyroid Cancer Conference; July 20-23, 1998; Cambridge, England
46.
DeGroot LJ, Reilly M, Pinnameneni K, Refetoff S. Retrospective and prospective study of radiation-induced thyroid disease.  Am J Med. 1983;74:852-8626837608Google ScholarCrossref
47.
Shore RE, Woodard E, Hildreth N, Dvoretsky P, Hempelmann L, Pasternack B. Thyroid tumors following thymus irradiation.  J Natl Cancer Inst. 1985;74:1177-11843858590Google Scholar
48.
Okamura K, Ueda K, Sone H.  et al.  A sensitive thyroid stimulating hormone assay for screening of thyroid functional disorder in elderly Japanese.  J Am Geriatr Soc. 1989;37:317-3222493494Google Scholar
49.
Vanderpump MPJ, Tunbridge WMG. The epidemiology of thyroid diseases. In: Braverman LE, Utiger RD, eds. Werner and Ingbar's The Thyroid. 8th ed. Philadelphia, Pa: Lippincott Williams & Wilkins; 2000:467-473
50.
Parle JV, Franklyn JA, Cross KW, Jones SC, Sheppard MC. Prevalence and follow-up of abnormal thyrotrophin (TSH) concentrations in the elderly in the United Kingdom.  Clin Endocrinol (Oxf). 1991;34:77-832004476Google ScholarCrossref
51.
Fujiwara S, Carter RL, Akiyama M.  et al.  Autoantibodies and immunoglobulins among atomic bomb survivors.  Radiat Res. 1994;137:89-958265792Google ScholarCrossref
52.
Morimoto I, Yoshimoto Y, Sato K.  et al.  Serum TSH, thyroglobulin, and thyroidal disorders in atomic bomb survivors exposed in youth: 30-year follow-up study.  J Nucl Med. 1987;28:1115-11223598702Google Scholar
53.
Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K. Studies of mortality of atomic bomb survivors: report 13: solid cancer and noncancer disease mortality: 1950-1997.  Radiat Res. 2003;160:381-40712968934Google ScholarCrossref
54.
Nygaard B, Faber J, Veje A, Hegedus L, Hansen JM. Transition of nodular toxic goiter to autoimmune hyperthyroidism triggered by 131I therapy.  Thyroid. 1999;9:477-48110365679Google ScholarCrossref
55.
Nygaard B, Knudsen JH, Hegedus L, Scient AV, Hansen JE. Thyrotropin receptor antibodies and Graves' disease, a side-effect of 131I treatment in patients with nontoxic goiter.  J Clin Endocrinol Metab. 1997;82:2926-29309284721Google ScholarCrossref
56.
Wallaschofski H, Orda C, Georgi P, Miehle K, Paschke R. Distinction between autoimmune and non-autoimmune hyperthyroidism by determination of TSH-receptor antibodies in patients with the initial diagnosis of toxic multinodular goiter.  Horm Metab Res. 2001;33:504-50711544566Google ScholarCrossref
57.
Chiovato L, Santini F, Vitti P, Bendinelli G, Pinchera A. Appearance of thyroid stimulating antibody and Graves' disease after radioiodine therapy for toxic nodular goitre.  Clin Endocrinol (Oxf). 1994;40:803-8068033373Google ScholarCrossref
58.
Soule J, Mayfield R. Graves' disease after 131I therapy for toxic nodule.  Thyroid. 2001;11:91-9211272103Google ScholarCrossref
59.
Davis S, Kopecky KJ, Hamilton TE.  et al.  Hanford Thyroid Disease Study Final Report. 2002. Available at: http://www.cdc.gov/nceh/radiation/hanford/htdsweb/. Accessed September 1, 2005
60.
Cologne JB, Preston DL. Longevity of atomic-bomb survivors.  Lancet. 2000;356:303-30711071186Google ScholarCrossref
Original Contribution
March 1, 2006

Radiation Dose-Response Relationships for Thyroid Nodules and Autoimmune Thyroid Diseases in Hiroshima and Nagasaki Atomic Bomb Survivors 55-58 Years After Radiation Exposure

Author Affiliations
 

Author Affiliations: Departments of Clinical Studies (Drs Imaizumi, Neriishi, Akahoshi, Ashizawa, Hida, Soda, Fujiwara, Yamada, Suzuki, and Maeda) and Statistics (Dr Nakashima), Radiation Effects Research Foundation, Nagasaki and Hiroshima; First Department of Internal Medicine, Graduate School of Biochemical Sciences, Nagasaki University, Nagasaki (Drs Imaizumi, Usa, Ejima, and Eguchi); Sasebo Chuo Hospital, Nagasaki (Dr Tominaga); Nagasaki Saiseikai Hospital (Dr Yokoyama); Hisayasu Clinic, Hiroshima (Dr Okubo); Tsuchiya General Hospital, Hiroshima (Dr Sugino); and Japan Radioisotope Association, Tokyo (Dr Nagataki), Japan.

JAMA. 2006;295(9):1011-1022. doi:10.1001/jama.295.9.1011
Abstract

Context Effects of irradiation on thyroid diseases such as thyroid nodules and autoimmune thyroid diseases have not been evaluated among people exposed to radiation more than 50 years in the past.

Objective To evaluate the prevalence of thyroid diseases and their radiation-dose responses in atomic bomb survivors.

Design, Setting, and Participants Survey study comprising 4091 cohort members (mean age, 70 [SD, 9] years; 1352 men and 2739 women) who participated in the thyroid study at the Radiation Effects Research Foundation. Thyroid examinations were conducted between March 2000 and February 2003.

Main Outcome Measures Prevalence of thyroid diseases, including thyroid nodules (malignant and benign) and autoimmune thyroid diseases, and the dose-response relationship of atomic bomb radiation in each thyroid disease.

Results Thyroid diseases were identified in 1833 (44.8%) of the total participants (436 men [32.2% of men] and 1397 women [51.0% of women]) (P<.001). In 3185 participants, excluding persons exposed in utero, not in the city at the time of the atomic bombings, or with unknown radiation dose, the prevalence of all solid nodules, malignant tumors, benign nodules, and cysts was 14.6%, 2.2%, 4.9%, and 7.7%, respectively. The prevalence of positive thyroid antibodies, antithyroid antibody–positive hypothyroidism, and Graves disease was 28.2%, 3.2%, and 1.2%, respectively. A significant linear dose-response relationship was observed for the prevalence of all solid nodules, malignant tumors, benign nodules, and cysts (P<.001). We estimate that about 28% of all solid nodules, 37% of malignant tumors, 31% of benign nodules, and 25% of cysts are associated with radiation exposure at a mean and median thyroid radiation dose of 0.449 Sv and 0.087 Sv, respectively. No significant dose-response relationship was observed for positive antithyroid antibodies (P = .20), antithyroid antibody–positive hypothyroidism (P = .92), or Graves disease (P = .10).

Conclusions A significant linear radiation dose response for thyroid nodules, including malignant tumors and benign nodules, exists in atomic bomb survivors. However, there is no significant dose response for autoimmune thyroid diseases.

×