Coffee, CYP1A2 Genotype, and Risk of Myocardial Infarction | Acute Coronary Syndromes | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.175.212.130. Please contact the publisher to request reinstatement.
1.
Kawachi I, Colditz GA, Stone CB. Does coffee drinking increase risk of coronary heart disease? results from a meta-analysis.  Br Heart J. 1994;72:269-2757946780Google ScholarCrossref
2.
Greenland S. A meta-analysis of coffee, myocardial infarction, and coronary death.  Epidemiology. 1993;4:366-3748347748Google ScholarCrossref
3.
Myers MG, Basinski A. Coffee and coronary heart disease.  Arch Intern Med. 1992;152:1767-17721387780Google ScholarCrossref
4.
LaCroix AZ, Mead LA, Liang KY, Thomas CB, Pearson TA. Coffee consumption and the incidence of coronary heart disease.  N Engl J Med. 1986;315:977-9823762618Google ScholarCrossref
5.
Tverdal A, Stensvold I, Solvoll K, Foss OP, Lund-Larsen PG, Bjartveit K. Coffee consumption and death from coronary heart disease in middle aged Norwegian men and women.  BMJ. 1990;300:566-5692108750Google ScholarCrossref
6.
Stensvold I, Tverdal A, Jacobsen BK. Cohort study of coffee intake and death from coronary heart disease over 12 years.  BMJ. 1996;312:544-5458595285Google ScholarCrossref
7.
Palmer JR, Rosenberg L, Rao RS, Shapiro S. Coffee consumption and myocardial infarction in women.  Am J Epidemiol. 1995;141:724-7317709915Google Scholar
8.
Rosenberg L, Palmer JR, Kelly JP, Kaufman DW, Shapiro S. Coffee drinking and nonfatal myocardial infarction in men under 55 years of age.  Am J Epidemiol. 1988;128:570-5783414661Google Scholar
9.
Hammar N, Anderson T, Alfredsson L.  et al.  Association of boiled and filtered coffee with incidence of first nonfatal myocardial infarction: the SHEEP and the VHEEP study.  J Intern Med. 2003;253:653-65912755961Google ScholarCrossref
10.
Tavani A, Bertuzzi M, Negri E, Loredana S, La Vecchia C. Alcohol, smoking, coffee and risk of non-fatal myocardial infarction in Italy.  Eur J Epidemiol. 2001;17:1131-113712530773Google ScholarCrossref
11.
Panagiotakos DB, Pitsavos C, Chrysohoou C, Kokkinos P, Toutouzas P, Stefanadis C. The J-shaped effect of coffee consumption on the risk of developing acute coronary syndromes: the CARDIO2000 case-control study.  J Nutr. 2003;133:3228-323214519815Google Scholar
12.
Happonen P, Voutilainen S, Salonen JT. Coffee drinking is dose-dependently related to the risk of acute coronary events in middle-aged men.  J Nutr. 2004;134:2381-238615333732Google Scholar
13.
Woodward M, Tunstall-Pedoe H. Coffee and tea consumption in the Scottish Heart Health Study follow up: conflicting relations with coronary risk factors, coronary disease, and all cause mortality.  J Epidemiol Community Health. 1999;53:481-48710562866Google ScholarCrossref
14.
Kleemola P, Jousilahti P, Pietinen P, Vartiainen E, Tuomilehto J. Coffee consumption and the risk of coronary heart disease and death.  Arch Intern Med. 2000;160:3393-340011112231Google ScholarCrossref
15.
Ranheim T, Halvorsen B. Coffee consumption and human health—beneficial or detrimental?—mechanisms for effects of coffee consumption on different risk factors for cardiovascular disease and type 2 diabetes mellitus.  Mol Nutr Food Res. 2005;49:274-28415704241Google ScholarCrossref
16.
Lundsberg LS. Caffeine consumption. In: Spiller GA, ed. Caffeine. Boca Raton, Fla: CRC; 1998:199-224
17.
Nawrot P, Jordan S, Eastwood J, Rostein J, Hugenholtz A, Feeley M. Effects of caffeine on human health.  Food Addit Contam. 2003;20:1-3012519715Google ScholarCrossref
18.
Spiller MA. The chemical components of coffee. In: Spiller GA, ed. Caffeine. Boca Raton, Fla: CRC; 1998:97-161
19.
Schreiber GB, Robins M, Maffeo CE, Masters MN, Bond AP, Morganstein D. Confounders contributing to the reported association of coffee or caffeine with disease.  Prev Med. 1988;17:295-3093405986Google ScholarCrossref
20.
Butler MA, Iwasaki M, Guengerich FP, Kadlubar F. Human cytochrome P450A (P-4501A2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines.  Proc Natl Acad Sci U S A. 1989;86:7696-77002813353Google ScholarCrossref
21.
Gu L, Gonzalez FJ, Kalow W, Tang BK. Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1.  Pharmacogenetics. 1992;2:73-771302044Google ScholarCrossref
22.
Kalow W, Tang BK. The use of caffeine for enzyme assays: a critical appraisal.  Clin Pharmacol Ther. 1993;53:503-5148491061Google ScholarCrossref
23.
Rasmussen BB, Brix TH, Kyvik KO, Brosen K. The interindividual differences in the 3-demethylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors.  Pharmacogenetics. 2002;12:473-47812172216Google ScholarCrossref
24.
Castorena-Torres F, Mendoza-Cantu A, Bermudez de Leon M.  et al.  CYP1A2 phenotype and genotype in a population from Carboniferous Region of Coahuila, Mexico.  Toxicol Lett. 2005;156:331-33915763632Google ScholarCrossref
25.
Sachse C, Brockmoller J, Bauer S, Roots I. Functional significance of a C to A polymorphism in intron 1 of the cytochrome P450 1A2 (CYP1A2) gene tested with caffeine.  Br J Clin Pharmacol. 1999;47:445-44910233211Google ScholarCrossref
26.
Han X-M, Ou-Yang D-S, Lu P-X.  et al.  Plasma caffeine metabolite ratio (17X/137X) in vivo associated with G-2964A and C734 polymorphisms of human CYP1A2.  Pharmacogenetics. 2001;11:429-43511470995Google ScholarCrossref
27.
Hall C. Costa Rica: A Geographical Interpretation in Historical PerspectiveBoulder, Colo: Westview Press Inc; 1985. Dellplain Latin American Studies No. 17
28.
Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas A-M, Pajak A. Myocardial infarction and coronary deaths in the World Health Organization MONICA project: registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents.  Circulation. 1994;90:583-6128026046Google ScholarCrossref
29.
Kabagambe EK, Baylin A, Allan DA, Siles X, Spiegelman D, Campos H. Application of the method of triads to evaluate the performance of food frequency questionnaires and biomarkers as indicators of long-term dietary intake.  Am J Epidemiol. 2001;154:1126-113511744518Google ScholarCrossref
30.
Cornelis MC, El-Sohemy A, Campos H. Genetic polymorphism of CYP1A2 increases risk of myocardial infarction.  J Med Genet. 2004;41:758-76215466009Google ScholarCrossref
31.
Willet W. Nutritional Epidemiology. 2nd ed. New York, NY: Oxford University Press; 1998
32.
Kalow W, Tang BK. Caffeine as a metabolic probe: exploration of the enzyme-inducing effect of cigarette smoking.  Clin Pharmacol Ther. 1991;49:44-481988240Google ScholarCrossref
33.
Willett WC, Stampfer MJ, Manson JE.  et al.  Coffee consumption and coronary heart disease in women: a ten-year follow-up.  JAMA. 1996;275:458-4628627967Google ScholarCrossref
34.
Schreiber GB, Maffeo CE, Robins M, Masters MN, Bond AP. Measurement of coffee and caffeine intake: implications for epidemiological research.  Prev Med. 1988;17:280-2943405985Google ScholarCrossref
35.
Tiwari AK, Deshpande SN, Rao AR.  et al.  Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects, I: association of CYP1A2 gene polymorphism.  Pharmacogenomics J. 2005;5:60-6915505641Google ScholarCrossref
36.
Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M, Kamataki T. Genetic polymorphism in the 5' flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans.  J Biochem (Tokyo). 1999;125:803-80810101295Google ScholarCrossref
37.
Hamdy SI, Hiratsuka M, Narahara K.  et al.  Genotyping of four genetic polymorphisms in the CYP1A2 gene in the Egyptian population.  Br J Clin Pharmacol. 2003;55:321-32412630986Google ScholarCrossref
38.
Goodman MT, Tung K-H, McDuffie K, Wilkens LR, Donlon T. Association of caffeine intake and CYP1A2 genotype with ovarian cancer.  Nutr Cancer. 2003;46:23-2912925300Google ScholarCrossref
39.
Bak AA, Grobbee DE. The effect on serum cholesterol levels of coffee brewed by filtering or boiling.  N Engl J Med. 1989;321:1432-14372811958Google ScholarCrossref
40.
Thelle DS, Heyden S, Fodor J. Coffee and cholesterol in epidemiological and experimental studies.  Atherosclerosis. 1987;67:97-1033314888Google ScholarCrossref
41.
Jee SH, He J, Appel LJ, Whelton PK, Suh I, Klag MJ. Coffee consumption and serum lipids: a meta-analysis of randomized controlled clinical trials.  Am J Epidemiol. 2001;153:353-36211207153Google ScholarCrossref
42.
van Dusseldorp M, Katan MB, van Vliet T, Demacker PN, Stalenhoef AF. Cholesterol-raising factor from boiled coffee does not pass a paper filter.  Arterioscler Thromb. 1991;11:586-5932029499Google ScholarCrossref
43.
Fisone G, Borgkvist A, Usiello A. Caffeine as a psychomotor stimulant: mechanism of action.  Cell Mol Life Sci. 2004;61:857-87215095008Google ScholarCrossref
44.
Smits P, Boekema P, De Abreu R, Thein T, van't Laar A. Evidence for an antagonism between caffeine and adenosine in the human cardiovascular system.  J Cardiovasc Pharmacol. 1987;10:136-1432441163Google ScholarCrossref
45.
Shyrock JC, Belardinelli L. Adenosine and adenosine receptors in the cardiovascular system: biochemistry, physiology, and pharmacology.  Am J Cardiol. 1997;79:2-109223356Google ScholarCrossref
46.
Hori M, Kitakaza M. Adenosine, the heart, and coronary circulation.  Hypertension. 1991;18:565-5741937658Google ScholarCrossref
47.
Le Hir H, Nott A, Moore MJ. How introns influence and enhance eukaryotic gene expression.  Trends Biochem Sci. 2003;28:215-22012713906Google ScholarCrossref
Original Contribution
March 8, 2006

Coffee, CYP1A2 Genotype, and Risk of Myocardial Infarction

Author Affiliations
 

Author Affiliations: Department of Nutritional Sciences, University of Toronto, Toronto, Ontario (Ms Cornelis and Dr El-Sohemy); Department of Nutrition, Harvard School of Public Health, Boston, Mass (Drs Kabagambe and Campos); and Centro Centroamericano de Poblacion, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica (Dr Campos).

JAMA. 2006;295(10):1135-1141. doi:10.1001/jama.295.10.1135
Abstract

Context The association between coffee intake and risk of myocardial infarction (MI) remains controversial. Coffee is a major source of caffeine, which is metabolized by the polymorphic cytochrome P450 1A2 (CYP1A2) enzyme. Individuals who are homozygous for the CYP1A2*1A allele are “rapid” caffeine metabolizers, whereas carriers of the variant CYP1A2*1F are “slow” caffeine metabolizers.

Objective To determine whether CYP1A2 genotype modifies the association between coffee consumption and risk of acute nonfatal MI.

Design, Setting, and Participants Cases (n = 2014) with a first acute nonfatal MI and population-based controls (n = 2014) living in Costa Rica between 1994 and 2004, matched for age, sex, and area of residence, were genotyped by restriction fragment–length polymorphism polymerase chain reaction. A food frequency questionnaire was used to assess the intake of caffeinated coffee.

Main Outcome Measure Relative risk of nonfatal MI associated with coffee intake, calculated using unconditional logistic regression.

Results Fifty-five percent of cases (n = 1114) and 54% of controls (n = 1082) were carriers of the slow *1F allele. For carriers of the slow *1F allele, the multivariate-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) of nonfatal MI associated with consuming less than 1, 1, 2 to 3, and 4 or more cups of coffee per day were 1.00 (reference), 0.99 (0.69-1.44), 1.36 (1.01-1.83), and 1.64 (1.14-2.34), respectively. Corresponding ORs (95% CIs) for individuals with the rapid *1A/*1A genotype were 1.00, 0.75 (0.51-1.12), 0.78 (0.56-1.09), and 0.99 (0.66-1.48) (P = .04 for gene × coffee interaction). For individuals younger than the median age of 59 years, the ORs (95% CIs) associated with consuming less than 1, 1, 2 to 3, or 4 or more cups of coffee per day were 1.00, 1.24 (0.71-2.18), 1.67 (1.08-2.60), and 2.33 (1.39-3.89), respectively, among carriers of the *1F allele. The corresponding ORs (95% CIs) for those with the *1A/*1A genotype were 1.00, 0.48 (0.26-0.87), 0.57 (0.35-0.95), and 0.83 (0.46-1.51).

Conclusion Intake of coffee was associated with an increased risk of nonfatal MI only among individuals with slow caffeine metabolism, suggesting that caffeine plays a role in this association.

×