Neurobehavioral Effects of Dental Amalgam in Children: A Randomized Clinical Trial | Pediatrics | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Dye BA, Schober SE, Dillon CF.  et al.  Urinary mercury concentrations associated with dental restorations in adult women aged 16-49 years: United States, 1999–2000.  Occup Environ Med. 2005;62:368-37515901883Google ScholarCrossref
Ritchie KA, Burke FJ, Gilmour WH.  et al.  Mercury vapour levels in dental practices and body mercury levels of dentists and controls.  Br Dent J. 2004;197:625-63215611750Google ScholarCrossref
Mackert JR Jr, Berglund A. Mercury exposure from dental amalgam fillings: absorbed dose and the potential for adverse health effects.  Crit Rev Oral Biol Med. 1997;8:410-4369391753Google ScholarCrossref
Brownawell AM, Berent S, Brent RL.  et al.  The potential adverse health effects of dental amalgam.  Toxicol Rev. 2005;24:1-1016042501Google ScholarCrossref
Van Nieuwenhuysen JP, D'Hoore W, Carvalho J, Qvist V. Long-term evaluation of extensive restorations in permanent teeth.  J Dent. 2003;31:395-40512878022Google ScholarCrossref
Sjogren P, Halling A. Survival time of class II molar restorations in relation to patient and dental health insurance costs for treatment.  Swed Dent J. 2002;26:59-6612462873Google Scholar
Mjor IA, Dahl JE, Moorhead JE. Placement and replacement of restorations in primary teeth.  Acta Odontol Scand. 2002;60:25-2811902609Google ScholarCrossref
DeRouen TA, Leroux BG, Martin MD.  et al.  Issues in design and analysis of a randomized clinical trial to assess the safety of dental amalgam restorations in children.  Control Clin Trials. 2002;23:301-32012057882Google ScholarCrossref
Friberg L, Nordberg G. Inorganic mercury: a toxicological and epidemiological appraisal. In: Miller W, Clarkson T, eds. Mercury, Mercurials and Mercaptans. Springfield, Ill: Charles C Thomas; 1973
Martins IP, Castro-Caldas A, Townes BD.  et al.  Age and sex difference in neurobehavioral performance: a study of Portuguese elementary school children.  Int J Neurosci. 2005;115:1687-170916287634Google ScholarCrossref
Townes BD, Rosenbaum JG, Martins IP, Castro-Caldas A. Neurobehavioral assessment of children: a cross-cultural perspective.  Psychologica. 2003;34:177-185Google Scholar
Children's Amalgam Trial Study Group.  The Children's Amalgam Trial: design and methods.  Control Clin Trials. 2003;24:795-81414662283Google ScholarCrossref
Harrison DJ, Kharbandra R, Scott Cunningham D, McLellan LI, Hayes JD. Distribution of glutathione S-transferase isoenzymes in human kidney: basis for possible biomarkers of renal injury.  J Clin Pathol. 1989;42:624-6282738168Google ScholarCrossref
Bowers MA, Aicher LD, Woods JS. Quantitative determination of porphyrins in rat and human urine and evaluation of urinary porphyrin profiles during mercury and lead exposures.  J Lab Clin Med. 1992;120:272-2801500825Google Scholar
Corns WT, Stockwell PB, Jameel M. Rapid method for the determination of total mercury in urine samples using cold vapour atomic fluorescense spectrometry.  Analyst. 1994;119:2481-24847872489Google ScholarCrossref
O’Brien PC. Procedures for comparing samples with multiple endpoints.  Biometrics. 1984;40:1079-10876534410Google ScholarCrossref
Leroux BG, Mancl LA, DeRouen TA. Group sequential testing in dental clinical trials with longitudinal data on multiple outcome variables.  Stat Methods Med Res. 2005;14:591-60216355546Google ScholarCrossref
Liang K-Y, Zeger SL. Longitudinal data analysis using generalized linear models.  Biometrika. 1986;73:13-22Google ScholarCrossref
Schafer JL. Multiple imputation: a primer.  Stat Methods Med Res. 1999;8:3-1510347857Google ScholarCrossref
 Criteria EH, 118: Inorganic MercuryGeneva, Switzerland: World Health Organization; 1991
 Toxicological Profile for MercuryAtlanta, Ga: Agency for Toxic Substances and Disease Registry; 1999
Wada H, Tarumi H, Imazato S, Narimatsu M, Ebisu S. In vitro estrogenicity of resin composites.  J Dent Res. 2004;83:222-22614981123Google ScholarCrossref
Martin MD, Bajet D, Woods JS, Dills RL, Poulten EJ. Detection of dental composite and sealant resin components in urine.  Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2005;99:429Google Scholar
Original Contribution
April 19, 2006

Neurobehavioral Effects of Dental Amalgam in Children: A Randomized Clinical Trial

Author Affiliations

Author Affiliations: Departments of Dental Public Health Sciences (Drs DeRouen and Leroux), Biostatistics (Drs DeRouen and Leroux), Oral Medicine (Dr Martin), Epidemiology (Dr Martin), Psychiatry and Behavioral Sciences (Dr Townes and Ms Rosenbaum), and Environmental and Occupational Health Sciences (Dr Woods), University of Washington, Seattle; Battelle Centers for Public Health Research and Evaluation, Seattle, Wash (Dr Woods); Faculty of Dental Medicine (Drs Bernardo and Leitão and Mr Luis) and Faculty of Medicine (Drs Castro-Caldas and Martins), Universidade de Lisboa, Lisbon, Portugal; and Institute of Health Sciences, Universidade Catolica Portuguesa, Lisbon, Portugal (Dr Castro-Caldas).

JAMA. 2006;295(15):1784-1792. doi:10.1001/jama.295.15.1784

Context Dental (silver) amalgam is a widely used restorative material containing 50% elemental mercury that emits small amounts of mercury vapor. No randomized clinical trials have determined whether there are significant health risks associated with this low-level mercury exposure.

Objective To assess the safety of dental amalgam restorations in children.

Design A randomized clinical trial in which children requiring dental restorative treatment were randomized to either amalgam for posterior restorations or resin composite instead of amalgam. Enrollment commenced February 1997, with annual follow-up for 7 years concluding in July 2005.

Setting and Participants A total of 507 children in Lisbon, Portugal, aged 8 to 10 years with at least 1 carious lesion on a permanent tooth, no previous exposure to amalgam, urinary mercury level <10 μg/L, blood lead level <15 μg/dL, Comprehensive Test of Nonverbal Intelligence IQ ≥67, and with no interfering health conditions.

Intervention Routine, standard-of-care dental treatment, with one group receiving amalgam restorations for posterior lesions (n = 253) and the other group receiving resin composite restorations instead of amalgam (n = 254).

Main Outcome Measures Neurobehavioral assessments of memory, attention/concentration, and motor/visuomotor domains, as well as nerve conduction velocities.

Results During the 7-year trial period, children had a mean of 18.7 tooth surfaces (median, 16) restored in the amalgam group and 21.3 (median, 18) restored in the composite group. Baseline mean creatinine-adjusted urinary mercury levels were 1.8 μg/g in the amalgam group and 1.9 μg/g in the composite group, but during follow-up were 1.0 to 1.5 μg/g higher in the amalgam group than in the composite group (P<.001). There were no statistically significant differences in measures of memory, attention, visuomotor function, or nerve conduction velocities (average z scores were very similar, near zero) for the amalgam and composite groups over all 7 years of follow-up, with no statistically significant differences observed at any time point (P values from .29 to .91). Starting at 5 years after initial treatment, the need for additional restorative treatment was approximately 50% higher in the composite group.

Conclusions In this study, children who received dental restorative treatment with amalgam did not, on average, have statistically significant differences in neurobehavioral assessments or in nerve conduction velocity when compared with children who received resin composite materials without amalgam. These findings, combined with the trend of higher treatment need later among those receiving composite, suggest that amalgam should remain a viable dental restorative option for children.

Trial Registration Identifier: NCT00066118