[Skip to Content]
Sign In
Individual Sign In
Create an Account
Institutional Sign In
OpenAthens Shibboleth
Purchase Options:
[Skip to Content Landing]
1.
Stiell I, Nichol G, Wells G.  et al.  Health-related quality of life is better for cardiac arrest survivors who received citizen cardiopulmonary resuscitation.  Circulation. 2003;108:1939-1944PubMedGoogle ScholarCrossref
2.
Ewy GA. Cardiocerebral resuscitation: the new cardiopulmonary resuscitation.  Circulation. 2005;111:2134-2142PubMedGoogle ScholarCrossref
3.
Gallagher EJ, Lombardi G, Gennis P. Effectiveness of bystander cardiopulmonary resuscitiation and survival following out-of-hospital cardiac arrest.  JAMA. 1995;274:1922-1925PubMedGoogle ScholarCrossref
4.
Niemann JT. Cardiopulmonary resuscitation.  N Engl J Med. 1992;327:1075-1080PubMedGoogle ScholarCrossref
5.
Yu T, Weil MH, Tang W.  et al.  Adverse outcomes of interrupted precordial compression during automated defibrillation.  Circulation. 2002;106:368-372PubMedGoogle ScholarCrossref
6.
Kern KB, Hilwig RW, Berg RA, Sanders AB, Ewy GA. Importance of continuous chest compressions during cardiopulmonary resuscitation: improved outcome during a simulated single lay-rescuer scenario.  Circulation. 2002;105:645-649PubMedGoogle ScholarCrossref
7.
Steen S, Liao Q, Pierre L, Paskevicius A, Sjoberg T. The critical importance of minimal delay between chest compressions and subsequent defibrillation: a haemodynamic explanation.  Resuscitation. 2003;58:249-258PubMedGoogle ScholarCrossref
8.
Cobb LA, Fahrenbruch CE, Walsh TR.  et al.  Influence of cardiopulmonary resuscitation prior to defibrillation in patients with out-of-hospital ventricular fibrillation.  JAMA. 1999;281:1182-1188PubMedGoogle ScholarCrossref
9.
Wik L, Hansen TB, Fylling F.  et al.  Delaying defibrillation to give basic cardiopulmonary resuscitation to patients with out-of-hospital ventricular fibrillation: a randomized trial.  JAMA. 2003;289:1389-1395PubMedGoogle ScholarCrossref
10.
Huseyin TS, Matthews AJ, Wills P, O'Neill VM. Improving the effectiveness of continuous closed chest compressions: an exploratory study.  Resuscitation. 2002;54:57-62PubMedGoogle ScholarCrossref
11.
Ochoa FJ, Ramalle-Gomara E, Lisa V, Saralegui I. The effect of rescuer fatigue on the quality of chest compressions.  Resuscitation. 1998;37:149-152PubMedGoogle ScholarCrossref
12.
Hightower D, Thomas SH, Stone CK, Dunn K, March JA. Decay in quality of closed-chest compressions over time.  Ann Emerg Med. 1995;26:300-303PubMedGoogle ScholarCrossref
13.
Abella BS, Alvarado JP, Myklebust H.  et al.  Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest.  JAMA. 2005;293:305-310PubMedGoogle ScholarCrossref
14.
Wik L, Kramer-Johansen J, Myklebust H.  et al.  Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest.  JAMA. 2005;293:299-304PubMedGoogle ScholarCrossref
15.
Timmerman S, Cardoso LF, Ramires JA. Improved hemodynamics with a novel chest compression device during treatment of in-hospital cardiac arrest.  Prehosp Emerg Care. 2003;7:162Google Scholar
16.
Halperin HR, Paradis NA, Omato JP. Improved hemodynamics with a novel chest compression device during a porcine model of cardiac arrest.  Circulation. 2002;106:538PubMedGoogle Scholar
17.
Ikeno F, Kaneda H, Hongo Y.  et al.  Augmentation of tissue perfusion by a novel compression device increases neurologically intact survival in a porcine model of prolonged cardiac arrest.  Resuscitation. 2006;68:109-118PubMedGoogle ScholarCrossref
18.
Hallstrom AP, Paradis NA. Pre-randomization and de-randomization in emergency medical research: new names and rigorous criteria for old methods.  Resuscitation. 2005;65:65-69PubMedGoogle ScholarCrossref
19.
 Protection of Human Subjects, 45 CFR §46.116 (1997) 
20.
 Protection of Human Subjects, 21 CFR §50.23 (1979) 
21.
Herlitz J, Ekstrom L, Wennerblom B, Axelsson A, Bang A, Holmberg S. Prognosis among survivors of prehospital cardiac arrest.  Ann Emerg Med. 1995;25:58-63PubMedGoogle ScholarCrossref
22.
Jacobs I, Nadkarni V, Bahr J.  et al.  Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Councils of Southern Africa).  Circulation. 2004;110:3385-3397PubMedGoogle ScholarCrossref
23.
Connelly LB. Balancing the number and size of sites: an economic approach to the optimal design of cluster samples.  Control Clin Trials. 2003;24:544-559PubMedGoogle ScholarCrossref
24.
Casner M, Andersen D, Isaacs SM. The impact of a new CPR assist device on rate of return of spontaneous circulation in out-of-hospital cardiac arrest.  Prehosp Emerg Care. 2005;9:61-67PubMedGoogle ScholarCrossref
25.
 East Version 3.0: Software for the Design, Simulation and Interim Monitoring of Flexible Clinical Trials User Manual. Cambridge, Mass: Cytel Software Corp; 2003
26.
Chen YH, DeMets DL, Lan KK. Increasing the sample size when the unblinded interim result is promising.  Stat Med. 2004;23:1023-1038PubMedGoogle ScholarCrossref
27.
Venables WN, Ripley BD. Modern Applied Statistics With S. 4th ed. New York, NY: Springer Publishing Co; 2002
28.
Rogers WH. Regression standard errors in clustered samples.  Stata Tech Bull Rep. 1993;3:88-94Google Scholar
29.
Williams RL. A note on robust variance estimation for cluster-correlated data.  Biometrics. 2000;56:645-646PubMedGoogle ScholarCrossref
30.
Wooldridge JM. Econometric Analysis of Cross Section and Panel Data. Cambridge, Mass: MIT Press; 2002
31.
Vukmir RB. Survival and outcome from prehospital cardiac arrest. http://www.ispub.com/ostia/index.php?xmlFilePath=journals/ijrdm/vol4n1/survival.xml. Accessibility verified May 15, 2006
32.
Rea TD, Eisenberg MS, Becker LJ, Murray JA, Hearne T. Temporal trends in sudden cardiac arrest: a 25-year emergency medical services perspective.  Circulation. 2003;107:2780-2785PubMedGoogle ScholarCrossref
33.
Lairet J, Lee M. A comparison of standard manual cardiopulmonary resuscitation versus the AutoPulse mechanical cardiopulmonary resuscitation device.  Ann Emerg Med. 2005;46:S114Crossref Google Scholar
34.
Ornato J. An emergency medical services system resuscitation strategy: using AutoPulse™ as the primary method for delivering chest compressions improves survival from out-of-hospital cardiac arrest (late-breaking trial presentation). Presented at: American Heart Association Resuscitation Science Symposium; November 11-12, 2005; Dallas, Tex
35.
Campbell JP, Maxey VA, Watson WA. Hawthorne effect: implications for prehospital research.  Ann Emerg Med. 1995;26:590-594PubMedGoogle ScholarCrossref
36.
Anderson T, Vanden Hoek TL. Preconditioning and the oxidants of sudden death.  Curr Opin Crit Care. 2003;9:194-198PubMedGoogle ScholarCrossref
37.
Blackstone E, Morrison M, Roth MB. H2S induces a suspended animation-like state in mice.  Science. 2005;308:518PubMedGoogle ScholarCrossref
38.
Hart AP, Azar VJ, Hart KR, Stephens BG. Autopsy artifact created by the Revivant AutoPulse resuscitation device.  J Forensic Sci. 2005;50:164-168PubMedGoogle Scholar
39.
Weisfeldt ML, Becker LB. Resuscitation after cardiac arrest: a 3-phase time-sensitive model.  JAMA. 2002;288:3035-3038PubMedGoogle ScholarCrossref
Original Contribution
June 14, 2006

Manual Chest Compression vs Use of an Automated Chest Compression Device During Resuscitation Following Out-of-Hospital Cardiac ArrestA Randomized Trial

JAMA. 2006;295(22):2620-2628. doi:10.1001/jama.295.22.2620
Abstract

Context High-quality cardiopulmonary resuscitation (CPR) may improve both cardiac and brain resuscitation following cardiac arrest. Compared with manual chest compression, an automated load-distributing band (LDB) chest compression device produces greater blood flow to vital organs and may improve resuscitation outcomes.

Objective To compare resuscitation outcomes following out-of-hospital cardiac arrest when an automated LDB-CPR device was added to standard emergency medical services (EMS) care with manual CPR.

Design, Setting, and Patients Multicenter, randomized trial of patients experiencing out-of-hospital cardiac arrest in the United States and Canada. The a priori primary population was patients with cardiac arrest that was presumed to be of cardiac origin and that had occurred prior to the arrival of EMS personnel. Initial study enrollment varied by site, ranging from late July to mid November 2004; all sites halted study enrollment on March 31, 2005.

Intervention Standard EMS care for cardiac arrest with an LDB-CPR device (n = 554) or manual CPR (n = 517).

Main Outcome Measures The primary end point was survival to 4 hours after the 911 call. Secondary end points were survival to hospital discharge and neurological status among survivors.

Results Following the first planned interim monitoring conducted by an independent data and safety monitoring board, study enrollment was terminated. No difference existed in the primary end point of survival to 4 hours between the manual CPR group and the LDB-CPR group overall (N = 1071; 29.5% vs 28.5%; P = .74) or among the primary study population (n = 767; 24.7% vs 26.4%, respectively; P = .62). However, among the primary population, survival to hospital discharge was 9.9% in the manual CPR group and 5.8% in the LDB-CPR group (P = .06, adjusted for covariates and clustering). A cerebral performance category of 1 or 2 at hospital discharge was recorded in 7.5% of patients in the manual CPR group and in 3.1% of the LDB-CPR group (P = .006).

Conclusions Use of an automated LDB-CPR device as implemented in this study was associated with worse neurological outcomes and a trend toward worse survival than manual CPR. Device design or implementation strategies require further evaluation.

Trial Registration clinicaltrials.gov Identifier: NCT00120965

Out-of-hospital cardiac arrest claims hundreds of thousands of lives annually in North America. Successful resuscitation depends on a coordinated set of actions including early cardiopulmonary resuscitation (CPR). High-quality CPR may be important for both cardiac and brain resuscitation.1-3 In animal investigations, fewer interruptions of CPR before and after defibrillation have improved cardiac and neurological outcomes.4-7 The order of resuscitation interventions may also be important, eg, survival may be improved by performing CPR by emergency medical services (EMS) personnel prior to defibrillation.8,9

Observations of rescue personnel indicate that maintaining consistent compressions is a difficult task.10 In the laboratory, trained paramedics provide shallower and slower compressions over time without noticing.11,12 Chest compressions often do not achieve guideline recommendations with regard to depth, rate, and hands-off time.13,14

The desire to provide optimal chest compressions led to the development of automated mechanical chest compression devices. The AutoPulse Resuscitation System (ZOLL Circulation, Sunnyvale, Calif) is a load-distributing band (LDB) circumferential chest compression device with an electrically actuated constricting band on a short backboard and has been approved by the US Food and Drug Administration for use in attempted resuscitation of cardiac arrest. In pig models and in-hospital cardiac arrest in humans, this LDB-CPR device produces greater blood flow to the heart and brain than manual CPR by trained individuals or the automated mechanical piston CPR device.15,16 Animal investigation has demonstrated a greater likelihood of neurologically intact survival in prolonged ventricular fibrillation cardiac arrest with LDB-CPR.17

In this study, the AutoPulse Assisted Prehospital International Resuscitation (ASPIRE) trial, we compared LDB-CPR with manual CPR during out-of-hospital cardiac arrest. We hypothesized that 4-hour survival would be greater among patients randomized to LDB-CPR compared with those randomized to manual CPR. Secondary outcomes were survival to hospital discharge and neurological function at hospital discharge.

Methods
Results
Comment
Conclusion
Back to top
Article Information

Corresponding Author: Al Hallstrom, PhD, Department of Biostatistics, University of Washington, 1107 NE 45th St, Suite 505, Seattle, WA 98105 (aph@u.washington.edu).

Author Contributions: Dr Hallstrom had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Hallstrom, Rea, Sayre, Christenson, Anton, Mosesso, Van Ottingham, Cobb.

Acquisition of data: Rea, Sayre, Christenson, Anton, Mosesso, Olsufka, Pennington, White, Yahn, Husar, Cobb.

Analysis and interpretation of data: Hallstrom, Rea, Sayre, Christenson, Anton, Mosesso, Van Ottingham, Morris, Cobb.

Drafting of the manuscript: Hallstrom, Rea, Sayre.

Critical revision of the manuscript for important intellectual content: Hallstrom, Rea, Sayre, Christenson, Anton, Mosesso, Van Ottingham, Olsufka, Pennington, White, Yahn, Husar, Morris, Cobb.

Statistical analysis: Hallstrom, Morris.

Obtained funding: Hallstrom.

Administrative, technical, or material support: Hallstrom, Van Ottingham.

Study supervision: Hallstrom, Rea, Sayre, Christenson, Anton, Mosesso, Van Ottingham, Olsufka, Pennington, White, Yahn, Husar, Cobb.

Financial Disclosures: Dr Mosesso reported receiving equipment and supplies for the AED clinical trial from the ZOLL Corporation.

Funding/Support: This study was sponsored by Revivant Corporation, now part of the ZOLL Corporation.

Role of the Sponsor: The funding organization provided the automated devices, assisted with training, and attended some of the investigator meetings, but had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation or approval of the manuscript. The sponsor was provided a 1-month period to review and comment on the manuscript prior to submission. The investigators were under no obligation to incorporate any such input.

Acknowledgment: The data and safety monitoring board consisted of Lawrence Brown, EMT-P, Department of Emergency Medicine, Upstate Medical University, Syracuse, NY; David Goff, Jr, MD, PhD, Wake Forest University School of Medicine, Winston-Salem, NC; Joel Singer, PhD, St Paul's Hospital, Vancouver, British Columbia; and Terence Valenzuela, MD, University of Arizona College of Medicine, Tucson. Each data and safety monitoring board member received a fixed amount of money ($3000) independent of how many times the board would need to meet. We acknowledge the dedicated efforts of the following emergency medical service agencies and their personnel: British Columbia Ambulance Service, Baldwin EMS, Calgary EMS, Eastern Area Prehospital Services, McKeesport Ambulance Rescue Service, Medical/Rescue Team South Authority, Northwest EMS, Ross-West View EMS Authority, Seattle Fire Department, Tri-Community South EMS, Columbus Division of Fire EMS, Upper Arlington Fire Division, and Worthington Fire and EMS.

References
1.
Stiell I, Nichol G, Wells G.  et al.  Health-related quality of life is better for cardiac arrest survivors who received citizen cardiopulmonary resuscitation.  Circulation. 2003;108:1939-1944PubMedGoogle ScholarCrossref
2.
Ewy GA. Cardiocerebral resuscitation: the new cardiopulmonary resuscitation.  Circulation. 2005;111:2134-2142PubMedGoogle ScholarCrossref
3.
Gallagher EJ, Lombardi G, Gennis P. Effectiveness of bystander cardiopulmonary resuscitiation and survival following out-of-hospital cardiac arrest.  JAMA. 1995;274:1922-1925PubMedGoogle ScholarCrossref
4.
Niemann JT. Cardiopulmonary resuscitation.  N Engl J Med. 1992;327:1075-1080PubMedGoogle ScholarCrossref
5.
Yu T, Weil MH, Tang W.  et al.  Adverse outcomes of interrupted precordial compression during automated defibrillation.  Circulation. 2002;106:368-372PubMedGoogle ScholarCrossref
6.
Kern KB, Hilwig RW, Berg RA, Sanders AB, Ewy GA. Importance of continuous chest compressions during cardiopulmonary resuscitation: improved outcome during a simulated single lay-rescuer scenario.  Circulation. 2002;105:645-649PubMedGoogle ScholarCrossref
7.
Steen S, Liao Q, Pierre L, Paskevicius A, Sjoberg T. The critical importance of minimal delay between chest compressions and subsequent defibrillation: a haemodynamic explanation.  Resuscitation. 2003;58:249-258PubMedGoogle ScholarCrossref
8.
Cobb LA, Fahrenbruch CE, Walsh TR.  et al.  Influence of cardiopulmonary resuscitation prior to defibrillation in patients with out-of-hospital ventricular fibrillation.  JAMA. 1999;281:1182-1188PubMedGoogle ScholarCrossref
9.
Wik L, Hansen TB, Fylling F.  et al.  Delaying defibrillation to give basic cardiopulmonary resuscitation to patients with out-of-hospital ventricular fibrillation: a randomized trial.  JAMA. 2003;289:1389-1395PubMedGoogle ScholarCrossref
10.
Huseyin TS, Matthews AJ, Wills P, O'Neill VM. Improving the effectiveness of continuous closed chest compressions: an exploratory study.  Resuscitation. 2002;54:57-62PubMedGoogle ScholarCrossref
11.
Ochoa FJ, Ramalle-Gomara E, Lisa V, Saralegui I. The effect of rescuer fatigue on the quality of chest compressions.  Resuscitation. 1998;37:149-152PubMedGoogle ScholarCrossref
12.
Hightower D, Thomas SH, Stone CK, Dunn K, March JA. Decay in quality of closed-chest compressions over time.  Ann Emerg Med. 1995;26:300-303PubMedGoogle ScholarCrossref
13.
Abella BS, Alvarado JP, Myklebust H.  et al.  Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest.  JAMA. 2005;293:305-310PubMedGoogle ScholarCrossref
14.
Wik L, Kramer-Johansen J, Myklebust H.  et al.  Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest.  JAMA. 2005;293:299-304PubMedGoogle ScholarCrossref
15.
Timmerman S, Cardoso LF, Ramires JA. Improved hemodynamics with a novel chest compression device during treatment of in-hospital cardiac arrest.  Prehosp Emerg Care. 2003;7:162Google Scholar
16.
Halperin HR, Paradis NA, Omato JP. Improved hemodynamics with a novel chest compression device during a porcine model of cardiac arrest.  Circulation. 2002;106:538PubMedGoogle Scholar
17.
Ikeno F, Kaneda H, Hongo Y.  et al.  Augmentation of tissue perfusion by a novel compression device increases neurologically intact survival in a porcine model of prolonged cardiac arrest.  Resuscitation. 2006;68:109-118PubMedGoogle ScholarCrossref
18.
Hallstrom AP, Paradis NA. Pre-randomization and de-randomization in emergency medical research: new names and rigorous criteria for old methods.  Resuscitation. 2005;65:65-69PubMedGoogle ScholarCrossref
19.
 Protection of Human Subjects, 45 CFR §46.116 (1997) 
20.
 Protection of Human Subjects, 21 CFR §50.23 (1979) 
21.
Herlitz J, Ekstrom L, Wennerblom B, Axelsson A, Bang A, Holmberg S. Prognosis among survivors of prehospital cardiac arrest.  Ann Emerg Med. 1995;25:58-63PubMedGoogle ScholarCrossref
22.
Jacobs I, Nadkarni V, Bahr J.  et al.  Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Councils of Southern Africa).  Circulation. 2004;110:3385-3397PubMedGoogle ScholarCrossref
23.
Connelly LB. Balancing the number and size of sites: an economic approach to the optimal design of cluster samples.  Control Clin Trials. 2003;24:544-559PubMedGoogle ScholarCrossref
24.
Casner M, Andersen D, Isaacs SM. The impact of a new CPR assist device on rate of return of spontaneous circulation in out-of-hospital cardiac arrest.  Prehosp Emerg Care. 2005;9:61-67PubMedGoogle ScholarCrossref
25.
 East Version 3.0: Software for the Design, Simulation and Interim Monitoring of Flexible Clinical Trials User Manual. Cambridge, Mass: Cytel Software Corp; 2003
26.
Chen YH, DeMets DL, Lan KK. Increasing the sample size when the unblinded interim result is promising.  Stat Med. 2004;23:1023-1038PubMedGoogle ScholarCrossref
27.
Venables WN, Ripley BD. Modern Applied Statistics With S. 4th ed. New York, NY: Springer Publishing Co; 2002
28.
Rogers WH. Regression standard errors in clustered samples.  Stata Tech Bull Rep. 1993;3:88-94Google Scholar
29.
Williams RL. A note on robust variance estimation for cluster-correlated data.  Biometrics. 2000;56:645-646PubMedGoogle ScholarCrossref
30.
Wooldridge JM. Econometric Analysis of Cross Section and Panel Data. Cambridge, Mass: MIT Press; 2002
31.
Vukmir RB. Survival and outcome from prehospital cardiac arrest. http://www.ispub.com/ostia/index.php?xmlFilePath=journals/ijrdm/vol4n1/survival.xml. Accessibility verified May 15, 2006
32.
Rea TD, Eisenberg MS, Becker LJ, Murray JA, Hearne T. Temporal trends in sudden cardiac arrest: a 25-year emergency medical services perspective.  Circulation. 2003;107:2780-2785PubMedGoogle ScholarCrossref
33.
Lairet J, Lee M. A comparison of standard manual cardiopulmonary resuscitation versus the AutoPulse mechanical cardiopulmonary resuscitation device.  Ann Emerg Med. 2005;46:S114Crossref Google Scholar
34.
Ornato J. An emergency medical services system resuscitation strategy: using AutoPulse™ as the primary method for delivering chest compressions improves survival from out-of-hospital cardiac arrest (late-breaking trial presentation). Presented at: American Heart Association Resuscitation Science Symposium; November 11-12, 2005; Dallas, Tex
35.
Campbell JP, Maxey VA, Watson WA. Hawthorne effect: implications for prehospital research.  Ann Emerg Med. 1995;26:590-594PubMedGoogle ScholarCrossref
36.
Anderson T, Vanden Hoek TL. Preconditioning and the oxidants of sudden death.  Curr Opin Crit Care. 2003;9:194-198PubMedGoogle ScholarCrossref
37.
Blackstone E, Morrison M, Roth MB. H2S induces a suspended animation-like state in mice.  Science. 2005;308:518PubMedGoogle ScholarCrossref
38.
Hart AP, Azar VJ, Hart KR, Stephens BG. Autopsy artifact created by the Revivant AutoPulse resuscitation device.  J Forensic Sci. 2005;50:164-168PubMedGoogle Scholar
39.
Weisfeldt ML, Becker LB. Resuscitation after cardiac arrest: a 3-phase time-sensitive model.  JAMA. 2002;288:3035-3038PubMedGoogle ScholarCrossref
×