Fish Intake, Contaminants, and Human Health: Evaluating the Risks and the Benefits | Cardiology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.175.212.130. Please contact the publisher to request reinstatement.
1.
Bang HO, Dyerberg J. Lipid metabolism and ischemic heart disease in Greenland Eskimos. In: Draper H, ed. Advances in Nutrition Research. New York, NY: Plenum Press; 1980:1-22
2.
Kromhout D, Bosschieter EB, de Lezenne Coulander C. The inverse relation between fish consumption and 20-year mortality from coronary heart disease.  N Engl J Med. 1985;312:1205-12093990713Google ScholarCrossref
3.
Burr ML, Fehily AM, Gilbert JF.  et al.  Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART).  Lancet. 1989;2:757-7612571009Google ScholarCrossref
4.
Dolecek TA, Granditis G. Dietary polyunsaturated fatty acids and mortality in the Multiple Risk Factor Intervention Trial (MRFIT).  World Rev Nutr Diet. 1991;66:205-2162053338Google Scholar
5.
Siscovick DS, Raghunathan TE, King I.  et al.  Dietary intake and cell membrane levels of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest.  JAMA. 1995;274:1363-13677563561Google ScholarCrossref
6.
Kromhout D, Feskens EJ, Bowles CH. The protective effect of a small amount of fish on coronary heart disease mortality in an elderly population.  Int J Epidemiol. 1995;24:340-3457635594Google ScholarCrossref
7.
Daviglus ML, Stamler J, Orencia AJ.  et al.  Fish consumption and the 30-year risk of fatal myocardial infarction.  N Engl J Med. 1997;336:1046-10539091800Google ScholarCrossref
8.
Albert CM, Hennekens CH, O’Donnell CJ.  et al.  Fish consumption and risk of sudden cardiac death.  JAMA. 1998;279:23-289424039Google ScholarCrossref
9.
Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico.  Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial.  Lancet. 1999;354:447-45510465168Google ScholarCrossref
10.
Oomen CM, Feskens EJ, Rasanen L.  et al.  Fish consumption and coronary heart disease mortality in Finland, Italy, and The Netherlands.  Am J Epidemiol. 2000;151:999-100610853639Google ScholarCrossref
11.
Yuan JM, Ross RK, Gao YT, Yu MC. Fish and shellfish consumption in relation to death from myocardial infarction among men in Shanghai, China.  Am J Epidemiol. 2001;154:809-81611682363Google ScholarCrossref
12.
Hu FB, Bronner L, Willett WC.  et al.  Fish and omega-3 fatty acid intake and risk of coronary heart disease in women.  JAMA. 2002;287:1815-182111939867Google ScholarCrossref
13.
Albert CM, Campos H, Stampfer MJ.  et al.  Blood levels of long-chain n-3 fatty acids and the risk of sudden death.  N Engl J Med. 2002;346:1113-111811948270Google ScholarCrossref
14.
Lemaitre RN, King IB, Mozaffarian D, Kuller LH, Tracy RP, Siscovick DS. n-3 Polyunsaturated fatty acids, fatal ischemic heart disease, and nonfatal myocardial infarction in older adults: the Cardiovascular Health Study.  Am J Clin Nutr. 2003;77:319-32512540389Google Scholar
15.
Mozaffarian D, Lemaitre RN, Kuller LH, Burke GL, Tracy RP, Siscovick DS. Cardiac benefits of fish consumption may depend on the type of fish meal consumed: the Cardiovascular Health Study.  Circulation. 2003;107:1372-137712642356Google ScholarCrossref
16.
Mozaffarian D, Ascherio A, Hu FB.  et al.  Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men.  Circulation. 2005;111:157-16415630029Google ScholarCrossref
17.
Yokoyama M, Origasu H, Matsuzaki M.  et al.  Effects of eicosapentaenoic acid (EPA) on major cardiovascular events in hypercholesterolemic patients: the Japan EPA Lipid Intervention Study (JELIS). Presented at: American Heart Association Scientific Sessions; November 17, 2005; Dallas, Tex
18.
McLennan PL. Myocardial membrane fatty acids and the antiarrhythmic actions of dietary fish oil in animal models.  Lipids. 2001;36:(suppl)  S111-S11411837983Google ScholarCrossref
19.
Leaf A, Kang JX, Xiao YF, Billman GE. Clinical prevention of sudden cardiac death by n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n-3 fish oils.  Circulation. 2003;107:2646-265212782616Google ScholarCrossref
20.
Wang C, Harris WS, Chung M.  et al.  n-3 Fatty acids from fish or fish-oil supplements, but not {alpha}-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review.  Am J Clin Nutr. 2006;84:5-1716825676Google Scholar
21.
Simmer K. Longchain polyunsaturated fatty acid supplementation in infants born at term.  Cochrane Database Syst Rev. 2001;((4)):CD00037611687076Google Scholar
22.
Food and Nutrition Board, Institute of Medicine.  Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients)Washington, DC: The National Academies Press; 2002/2005
23.
Uauy R, Hoffman DR, Mena P, Llanos A, Birch EE. Term infant studies of DHA and ARA supplementation on neurodevelopment: results of randomized controlled trials.  J Pediatr. 2003;143:S17-S2514597910Google Scholar
24.
Cohen JT, Bellinger DC, Connor WE, Shaywitz BA. A quantitative analysis of prenatal intake of n-3 polyunsaturated fatty acids and cognitive development.  Am J Prev Med. 2005;29:366-37416242603Google ScholarCrossref
25.
McCann JC, Ames BN. Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? an overview of evidence from cognitive and behavioral tests in humans and animals.  Am J Clin Nutr. 2005;82:281-29516087970Google Scholar
26.
Lewin GA, Schachter HM, Yuen D, Merchant P, Mamaladze V, Tsertsvadze A.Agency for Healthcare Research and Quality (AHRQ).  Effects of omega-3 fatty acids on child and maternal health.  Evid Rep Technol Assess (Summ). August 2005;((118)):1-1116194124Google Scholar
27.
US Environmental Protection Agency.  Mercury Study report to Congress. http://www.epa.gov/mercury/report.htm. Accessed January 24, 2006
28.
US Geological Survey.  Mercury in the environment. http://www.usgs.gov/themes/factsheet/146-00/. Accessed October 25, 2005
29.
Committee on the Toxicological Effects of Methylmercury, Board on Environmental Studies and Toxicology; Commission on Life Sciences, National Research Council.  Toxicological Effects of Methylmercury. Washington, DC: National Academies Press; 2000
30.
Risk Assessment Information System.  Toxicity summary for mercury. http://risk.lsd.ornl.gov/tox/profiles/mercury_f_V1.shtml. Accessed January 24, 2006
31.
Center for Food Safety and Applied Nutrition, US Food and Drug Administration.  Seafood information and resources. http://www.cfsan.fda.gov/seafood1.html. Accessed January 30, 2006
32.
World Health Organization (WHO).  Assessment of the health risk of dioxins: re-evaluation of the Tolerable Daily Intake (TDI). WHO Consultation; May 25-29, 1998; Geneva, Switzerland
33.
National Center for Environmental Assessment, US Environmental Protection Agency.  Dioxin and related compounds. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=55264. Accessed March 14, 2006
34.
US Environmental Protection Agency.  Polychlorinated biphenyls (PCBs). http://www.epa.gov/opptintr/pcb/. Accessed March 14, 2006
35.
Verbeke W, Sioen I, Pieniak Z, Van Camp J, De Henauw S. Consumer perception versus scientific evidence about health benefits and safety risks from fish consumption.  Public Health Nutr. 2005;8:422-42915975189Google ScholarCrossref
36.
Center for Food Nutrition and Agriculture Policy, University of Maryland.  Real mercury facts. http://www.realmercuryfacts.org/index.htm. Accessed March 23, 2006
37.
DerSimonian R, Laird N. Meta-analysis in clinical trials.  Control Clin Trials. 1986;7:177-1883802833Google ScholarCrossref
38.
Smith PL. Splines as a useful and convenient statistical tool.  Am Stat. 1979;33:57-62Google Scholar
39.
Durrleman S, Simon R. Flexible regression models with cubic splines.  Stat Med. 1989;8:551-5612657958Google ScholarCrossref
40.
Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS. Fish consumption and cognitive decline with age in a large community study.  Arch Neurol. 2005;62:1849-185316216930Google ScholarCrossref
41.
Peet M, Stokes C. Omega-3 fatty acids in the treatment of psychiatric disorders.  Drugs. 2005;65:1051-105915907142Google ScholarCrossref
42.
Young G, Conquer J. Omega-3 fatty acids and neuropsychiatric disorders.  Reprod Nutr Dev. 2005;45:1-2815865053Google ScholarCrossref
43.
Mori TA, Beilin LJ. Omega-3 fatty acids and inflammation.  Curr Atheroscler Rep. 2004;6:461-46715485592Google ScholarCrossref
44.
Mickleborough TD, Lindley MR, Ionescu AA, Fly AD. Protective effect of fish oil supplementation on exercise-induced bronchoconstriction in asthma.  Chest. 2006;129:39-4916424411Google ScholarCrossref
45.
Fraser GE, Sabate J, Beeson WL, Strahan TM. A possible protective effect of nut consumption on risk of coronary heart disease: the Adventist Health Study.  Arch Intern Med. 1992;152:1416-14241627021Google ScholarCrossref
46.
Mann JI, Appleby PN, Key TJ, Thorogood M. Dietary determinants of ischaemic heart disease in health conscious individuals.  Heart. 1997;78:450-4559415002Google Scholar
47.
Osler M, Andreasen AH, Hoidrup S. No inverse association between fish consumption and risk of death from all-causes, and incidence of coronary heart disease in middle-aged, Danish adults.  J Clin Epidemiol. 2003;56:274-27912725883Google ScholarCrossref
48.
Folsom AR, Demissie Z. Fish intake, marine omega-3 fatty acids, and mortality in a cohort of postmenopausal women.  Am J Epidemiol. 2004;160:1005-101015522857Google ScholarCrossref
49.
Nakamura Y, Ueshima H, Okamura T.  et al.  Association between fish consumption and all-cause and cause-specific mortality in Japan: NIPPON DATA80, 1980-99.  Am J Med. 2005;118:239-24515745721Google ScholarCrossref
50.
Iso H, Kobayashi M, Ishihara J.  et al.  Intake of fish and n3 fatty acids and risk of coronary heart disease among Japanese: the Japan Public Health Center-Based (JPHC) Study Cohort I.  Circulation. 2006;113:195-20216401768Google ScholarCrossref
51.
Burr ML, Ashfield-Watt PA, Dunstan FD.  et al.  Lack of benefit of dietary advice to men with angina: results of a controlled trial.  Eur J Clin Nutr. 2003;57:193-20012571649Google ScholarCrossref
52.
Siscovick DS, Lemaitre RN, Mozaffarian D. The fish story: a diet-heart hypothesis with clinical implications: n-3 polyunsaturated fatty acids, myocardial vulnerability, and sudden death.  Circulation. 2003;107:2632-263412782612Google ScholarCrossref
53.
He K, Song Y, Daviglus ML.  et al.  Fish consumption and incidence of stroke: a meta-analysis of cohort studies.  Stroke. 2004;35:1538-154215155968Google ScholarCrossref
54.
Mozaffarian D, Longstreth WT Jr, Lemaitre RN.  et al.  Fish consumption and stroke risk in elderly individuals: the cardiovascular health study.  Arch Intern Med. 2005;165:200-20615668367Google ScholarCrossref
55.
Erkkila AT, Lichtenstein AH, Mozaffarian D, Herrington DM. Fish intake is associated with a reduced progression of coronary artery atherosclerosis in postmenopausal women with coronary artery disease.  Am J Clin Nutr. 2004;80:626-63215321802Google Scholar
56.
Sacks FM, Stone PH, Gibson CM, Silverman DI, Rosner B, Pasternak RC.HARP Research Group.  Controlled trial of fish oil for regression of human coronary atherosclerosis.  J Am Coll Cardiol. 1995;25:1492-14987759696Google ScholarCrossref
57.
von Schacky C, Angerer P, Kothny W, Theisen K, Mudra H. The effect of dietary omega-3 fatty acids on coronary atherosclerosis: a randomized, double-blind, placebo-controlled trial.  Ann Intern Med. 1999;130:554-56210189324Google ScholarCrossref
58.
Angerer P, Kothny W, Stork S, von Schacky C. Effect of dietary supplementation with omega-3 fatty acids on progression of atherosclerosis in carotid arteries.  Cardiovasc Res. 2002;54:183-19012062374Google ScholarCrossref
59.
Balk EM, Lichtenstein AH, Chung M, Kupelnick B, Chew P, Lau J. Effects of omega-3 fatty acids on coronary restenosis, intima-media thickness, and exercise tolerance: a systematic review.  Atherosclerosis. 2006;184:237-24616084516Google ScholarCrossref
60.
Raitt MH, Connor WE, Morris C.  et al.  Fish oil supplementation and risk of ventricular tachycardia and ventricular fibrillation in patients with implantable defibrillators: a randomized controlled trial.  JAMA. 2005;293:2884-289115956633Google ScholarCrossref
61.
Leaf A, Albert CM, Josephson M.  et al.  Prevention of fatal arrhythmias in high-risk subjects by fish oil n-3 fatty acid intake.  Circulation. 2005;112:2762-276816267249Google ScholarCrossref
62.
Brouwer IA, Zock PL, Camm AJ.  et al.  Effect of fish oil on ventricular tachyarrhythmia and death in patients with implantable cardioverter defibrillators: the Study on Omega-3 Fatty Acids and Ventricular Arrhythmia (SOFA) randomized trial.  JAMA. 2006;295:2613-261916772624Google ScholarCrossref
63.
Mozaffarian D, Psaty BM, Rimm EB.  et al.  Fish intake and risk of incident atrial fibrillation.  Circulation. 2004;110:368-37315262826Google ScholarCrossref
64.
Frost L, Vestergaard P. n-3 Fatty acids consumed from fish and risk of atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study.  Am J Clin Nutr. 2005;81:50-5415640459Google Scholar
65.
Calo L, Bianconi L, Colivicchi F.  et al.  N-3 Fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery: a randomized, controlled trial.  J Am Coll Cardiol. 2005;45:1723-172815893193Google ScholarCrossref
66.
Mozaffarian D, Bryson CL, Lemaitre RN, Burke GL, Siscovick DS. Fish intake and risk of incident heart failure.  J Am Coll Cardiol. 2005;45:2015-202115963403Google ScholarCrossref
67.
Charnock JS, McLennan PL, Abeywardena MY. Dietary modulation of lipid metabolism and mechanical performance of the heart.  Mol Cell Biochem. 1992;116:19-251480148Google ScholarCrossref
68.
Kenny D, Warltier DC, Pleuss JA, Hoffmann RG, Goodfriend TL, Egan BM. Effect of omega-3 fatty acids on the vascular response to angiotensin in normotensive men.  Am J Cardiol. 1992;70:1347-13521442589Google ScholarCrossref
69.
Chin JP, Gust AP, Nestel PJ, Dart AM. Marine oils dose-dependently inhibit vasoconstriction of forearm resistance vessels in humans.  Hypertension. 1993;21:22-288418020Google ScholarCrossref
70.
Geleijnse JM, Giltay EJ, Grobbee DE, Donders AR, Kok FJ. Blood pressure response to fish oil supplementation: metaregression analysis of randomized trials.  J Hypertens. 2002;20:1493-149912172309Google ScholarCrossref
71.
Mozaffarian D, Geelen A, Brouwer IA, Geleijnse JM, Zock PL, Katan MB. Effect of fish oil on heart rate in humans: a meta-analysis of randomized controlled trials.  Circulation. 2005;112:1945-195216172267Google ScholarCrossref
72.
Mozaffarian D, Gottdiener JS, Siscovick DS. Intake of tuna or other broiled or baked fish vs. fried fish and cardiac structure, function, and hemodynamics.  Am J Cardiol. 2006;97:216-22216442366Google ScholarCrossref
73.
Nestel PJ. Fish oil and cardiovascular disease: lipids and arterial function.  Am J Clin Nutr. 2000;71:228S-231S10617976Google Scholar
74.
Christensen JH. n-3 fatty acids and the risk of sudden cardiac death: emphasis on heart rate variability.  Dan Med Bull. 2003;50:347-36714694851Google Scholar
75.
Kristensen SD, Iversen AM, Schmidt EB. n-3 polyunsaturated fatty acids and coronary thrombosis.  Lipids. 2001;36:(suppl)  S79-S8211837997Google ScholarCrossref
76.
Clandinin MT, Cheema S, Field CJ, Garg ML, Venkatraman J, Clandinin TR. Dietary fat: exogenous determination of membrane structure and cell function.  FASEB J. 1991;5:2761-27691916101Google Scholar
77.
Feller SE, Gawrisch K. Properties of docosahexaenoic-acid-containing lipids and their influence on the function of rhodopsin.  Curr Opin Struct Biol. 2005;15:416-42216039844Google ScholarCrossref
78.
Vanden Heuvel JP. Diet, fatty acids, and regulation of genes important for heart disease.  Curr Atheroscler Rep. 2004;6:432-44015485588Google ScholarCrossref
79.
Harris WS. n-3 Fatty acids and serum lipoproteins: human studies.  AM J Clin Nutr. 1997;65:(5 suppl)  1645S-1654S9129504Google Scholar
80.
Dallongeville J, Yarnell J, Ducimetiere P.  et al.  Fish consumption is associated with lower heart rates.  Circulation. 2003;108:820-82512912821Google ScholarCrossref
81.
Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silberschatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories.  Circulation. 1998;97:1837-18479603539Google ScholarCrossref
82.
Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor.  Am J Cardiol. 1998;81:7B-12B9526807Google ScholarCrossref
83.
Kannel WB, Kannel C, Paffenbarger RS Jr, Cupples LA. Heart rate and cardiovascular mortality: the Framingham Study.  Am Heart J. 1987;113:1489-14943591616Google ScholarCrossref
84.
Jouven X, Zureik M, Desnos M, Guerot C, Ducimetiere P. Resting heart rate as a predictive risk factor for sudden death in middle-aged men.  Cardiovasc Res. 2001;50:373-37811334841Google ScholarCrossref
85.
Hu FB, Stampfer MJ, Manson JE.  et al.  Dietary saturated fats and their food sources in relation to the risk of coronary heart disease in women.  Am J Clin Nutr. 1999;70:1001-100810584044Google Scholar
86.
Anderson RN, Smith LB.Division of Vital Statistics, Centers for Disease Control and Prevention.  National Vital Statistics Reports: deaths: leading causes for 2002. http://www.cdc.gov/nchs/data/nvsr/nvsr53/nvsr53_17.pdf. Accessed March 29, 2006
87.
Brox J, Olaussen K, Osterud B.  et al.  A long-term seal- and cod-liver-oil supplementation in hypercholesterolemic subjects.  Lipids. 2001;36:7-1311214732Google ScholarCrossref
88.
Eritsland J, Arnesen H, Gronseth K, Fjeld NB, Abdelnoor M. Effect of dietary supplementation with n-3 fatty acids on coronary artery bypass graft patency.  Am J Cardiol. 1996;77:31-368540453Google ScholarCrossref
89.
Johansen O, Brekke M, Seljeflot I, Abdelnoor M, Arnesen H.Coronary Angioplasty Restenosis Trial.  N-3 fatty acids do not prevent restenosis after coronary angioplasty: results from the CART study.  J Am Coll Cardiol. 1999;33:1619-162610334433Google ScholarCrossref
90.
Kaul U, Sanghvi S, Bahl VK, Dev V, Wasir HS. Fish oil supplements for prevention of restenosis after coronary angioplasty.  Int J Cardiol. 1992;35:87-931563884Google ScholarCrossref
91.
Leaf A, Jorgensen MB, Jacobs AK.  et al.  Do fish oils prevent restenosis after coronary angioplasty?  Circulation. 1994;90:2248-22577955181Google ScholarCrossref
92.
Nilsen DW, Albrektsen G, Landmark K, Moen S, Aarsland T, Woie L. Effects of a high-dose concentrate of n-3 fatty acids or corn oil introduced early after an acute myocardial infarction on serum triacylglycerol and HDL cholesterol.  Am J Clin Nutr. 2001;74:50-5611451717Google Scholar
93.
Singh RB, Niaz MA, Sharma JP, Kumar R, Rastogi V, Moshiri M. Randomized, double-blind, placebo-controlled trial of fish oil and mustard oil in patients with suspected acute myocardial infarction: the Indian experiment of infarct survival—4.  Cardiovasc Drugs Ther. 1997;11:485-4919310278Google ScholarCrossref
94.
Hooper L, Thompson RL, Harrison RA.  et al.  Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: systematic review.  BMJ. 2006;332:752-76016565093Google ScholarCrossref
95.
Cheung BM, Lauder IJ, Lau CP, Kumana CR. Meta-analysis of large randomized controlled trials to evaluate the impact of statins on cardiovascular outcomes.  Br J Clin Pharmacol. 2004;57:640-65115089818Google ScholarCrossref
96.
Uauy R, Mena P, Wegher B, Nieto S, Salem N Jr. Long chain polyunsaturated fatty acid formation in neonates: effect of gestational age and intrauterine growth.  Pediatr Res. 2000;47:127-13510625093Google ScholarCrossref
97.
Helland IB, Smith L, Saarem K, Saugstad OD, Drevon CA. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children's IQ at 4 years of age.  Pediatrics. 2003;111:e39-e4412509593Google ScholarCrossref
98.
Oken E, Wright RO, Kleinman KP.  et al.  Maternal fish consumption, hair mercury, and infant cognition in a U.S. Cohort.  Environ Health Perspect. 2005;113:1376-138016203250Google ScholarCrossref
99.
Colombo J, Kannass KN, Shaddy DJ.  et al.  Maternal DHA and the development of attention in infancy and toddlerhood.  Child Dev. 2004;75:1254-126715260876Google ScholarCrossref
100.
Daniels JL, Longnecker MP, Rowland AS, Golding J. Fish intake during pregnancy and early cognitive development of offspring.  Epidemiology. 2004;15:394-40215232398Google ScholarCrossref
101.
US Environmental Protection Agency.  Controlling power plant emissions: emissions progress. http://www.epa.gov/mercury/control_emissions/emissions.htm. Accessed March 29, 2006, 2006
102.
Office of Regulatory Affairs, US Food And Drug Administration.  Compliance policy guides. http://www.fda.gov/ora/compliance_ref/cpg/cpgfod/default.htm#sc540. Accessed February 2, 2006, 2006
103.
Bayarri S, Baldassarri LT, Iacovella N, Ferrara F, di Domenico A. PCDDs, PCDFs, PCBs and DDE in edible marine species from the Adriatic Sea.  Chemosphere. 2001;43:601-61011372844Google ScholarCrossref
104.
Schmitt CJ, Hinck JE, Blazer VS.  et al.  Environmental contaminants and biomarker responses in fish from the Rio Grande and its U.S. tributaries: spatial and temporal trends.  Sci Total Environ. 2005;350:161-19316227080Google ScholarCrossref
105.
Karl H, Ruoff U, Bluthgen A. Levels of dioxins in fish and fishery products on the German market.  Chemosphere. 2002;49:765-77312431013Google ScholarCrossref
106.
Schecter A, Dellarco M, Papke O, Olson J. A comparison of dioxins, dibenzofurans and coplanar PCBs in uncooked and broiled ground beef, catfish and bacon.  Chemosphere. 1998;37:1723-17309828300Google ScholarCrossref
107.
Jensen E, Bolger PM. Exposure assessment of dioxins/furans consumed in dairy foods and fish.  Food Addit Contam. 2001;18:395-40311358181Google Scholar
108.
Fiedler H, Cooper K, Bergek S.  et al.  PCDD, PCDF, and PCB in farm-raised catfish from southeast United States—concentrations, sources, and CYP1A induction.  Chemosphere. 1998;37:1645-16569828294Google ScholarCrossref
109.
Focant JF, Pirard C, De Pauw E. Levels of PCDDs, PCDFs and PCBs in Belgian and international fast food samples.  Chemosphere. 2004;54:137-14214559266Google ScholarCrossref
110.
US Food And Drug Administration.  Food and Drug Administration total diet study. http://vm.cfsan.fda.gov/~comm/tds-toc.html. Accessed February 1, 2006
111.
Hayward DG, Holcomb J, Glidden R, Wilson P, Harris M, Spencer V. Quadrupole ion storage tandem mass spectrometry and high-resolution mass spectrometry: complementary application in the measurement of 2,3,7,8-chlorine substituted dibenzo-p-dioxins and dibenzofurans in US foods.  Chemosphere. 2001;43:407-41511372820Google ScholarCrossref
112.
Gomara B, Bordajandi LR, Fernandez MA.  et al.  Levels and trends of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (PCBs) in Spanish commercial fish and shellfish products, 1995-2003.  J Agric Food Chem. 2005;53:8406-841316218694Google ScholarCrossref
113.
Rawn DF, Forsyth DS, Ryan JJ.  et al.  PCB, PCDD and PCDF residues in fin and non-fin fish products from the Canadian retail market 2002.  Sci Total Environ. 2006;359:101-11015913708Google ScholarCrossref
114.
Food Safety Authority of Ireland.  Summary of investigation of dioxins, furans, and PCBs in farmed salmon, wild salmon, farmed trout and fish oil capsules. March 2002. http://www.fsai.ie/surveillance/food/surveillance_food_summarydioxins.asp. Accessed March 31, 2006
115.
Hites RA, Foran JA, Carpenter DO, Hamilton MC, Knuth BA, Schwager SJ. Global assessment of organic contaminants in farmed salmon.  Science. 2004;303:226-22914716013Google ScholarCrossref
116.
Jacobs MN, Covaci A, Schepens P. Investigation of selected persistent organic pollutants in farmed Atlantic salmon (Salmo salar), salmon aquaculture feed, and fish oil components of the feed.  Environ Sci Technol. 2002;36:2797-280512144249Google ScholarCrossref
117.
Easton MD, Luszniak D, Von der GE. Preliminary examination of contaminant loadings in farmed salmon, wild salmon and commercial salmon feed.  Chemosphere. 2002;46:1053-107411999769Google ScholarCrossref
118.
Bordajandi LR, Martin I, Abad E, Rivera J, Gonzalez MJ. Organochlorine compounds (PCBs, PCDDs and PCDFs) in seafish and seafood from the Spanish Atlantic Southwest Coast.  Chemosphere. 2006;64:1450-145716483635Google ScholarCrossref
119.
Kiviranta H, Hallikainen A, Ovaskainen ML, Kumpulainen J, Vartiainen T. Dietary intakes of polychlorinated dibenzo-p-dioxins, dibenzofurans and polychlorinated biphenyls in Finland.  Food Addit Contam. 2001;18:945-95311665735Google ScholarCrossref
120.
Schecter A, Cramer P, Boggess K.  et al.  Intake of dioxins and related compounds from food in the U.S. population.  J Toxicol Environ Health A. 2001;63:1-1811346131Google ScholarCrossref
121.
Agricultural Research Service, US Department of Agriculture.  USDA National Nutrient Database for Standard Reference—Release 18 (2005)Washington, DC: US Dept of Agriculture; 2006
122.
US Department of Health and Human Services; US Environmental Protection Agency.  Mercury levels in commercial fish and shellfish. http://www.cfsan.fda.gov/~frf/sea-mehg.html. Accessed February 2, 2006
123.
Shim SM, Lasrado JA, Dorworth LE, Santerre CR. Mercury and omega-3 fatty acids in retail fish sandwiches.  J Food Prot. 2005;68:633-63515771197Google Scholar
124.
DietFacts.com.  Helping you choose healthful foods. http://www.dietfacts.com/. Accessed April 4, 2006
125.
Office MF, US Fish and Wildlife Service.  Total mercury and methylmercury in freshwater mussels from the Sudbury River Watershed, Massachusetts. http://www.fws.gov/northeast/mainecontaminants/PDF%20files/NyanMussels.PDF#search='mussel%20mercury'. Accessed July 11, 2006
126.
Airas S, Duinker A, Julshamn K. Copper, zinc, arsenic, cadmium, mercury, and lead in blue mussels (Mytilus edulis) in the Bergen harbor area, Western Norway.  Bull Environ Contam Toxicol. 2004;73:276-28415386040Google ScholarCrossref
127.
Food Safety and Inspection Service, US Department of Agriculture.  Dioxins and dioxin-like compounds in the U.S. domestic meat and poultry supply. http://www.fsis.usda.gov/PDF/Dioxin_Report_0605.pdf. Accessed March 24, 2006
128.
Liem AK, Furst P, Rappe C. Exposure of populations to dioxins and related compounds.  Food Addit Contam. 2000;17:241-25910912239Google ScholarCrossref
129.
US Food And Drug Administration.  Questions and answers about dioxins. http://www.cfsan.fda.gov/~lrd/dioxinqa.html#g11. Accessed February 2, 2006, 2006
130.
Thannum J.Great Lakes Indian Fish & Wildlife Commission.  Tribally sold Lake Superior fish easily meet FDA restrictions for chemical contaminants. http://www.glifwc.org/pub/summer00/fish_contaminants.htm. Accessed March 25, 2006
131.
Gochfeld M. Cases of mercury exposure, bioavailability, and absorption.  Ecotoxicol Environ Saf. 2003;56:174-17912915150Google ScholarCrossref
132.
Integrated Risk Information System, US Environmental Protection Agency.  Methylmercury (MeHg) (CASRN 22967-92-6). http://www.epa.gov/iris/subst/0073.htm. Accessed May 1, 2006
133.
McDowell MA, Dillon CF, Osterloh J.  et al.  Hair mercury levels in U.S. children and women of childbearing age: reference range data from NHANES 1999-2000.  Environ Health Perspect. 2004;112:1165-117115289161Google ScholarCrossref
134.
Grandjean P, Weihe P, White RF.  et al.  Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury.  Neurotoxicol Teratol. 1997;19:417-4289392777Google ScholarCrossref
135.
Grandjean P, Weihe P, White RF, Debes F. Cognitive performance of children prenatally exposed to “safe” levels of methylmercury.  Environ Res. 1998;77:165-1729600810Google ScholarCrossref
136.
Kjellstrom T. Physical and Mental Development of Children With Prenatal Exposure to Mercury from Fish: Stage II: Interviews and Psychological Tests at Age 6. Stockholm, Sweden: National Swedish Environmental Protection Board; 1989
137.
Crump KS, Kjellstrom T, Shipp AM, Silvers A, Stewart A. Influence of prenatal mercury exposure upon scholastic and psychological test performance: benchmark analysis of a New Zealand cohort.  Risk Anal. 1998;18:701-7139972579Google ScholarCrossref
138.
Jedrychowski W, Jankowski J, Flak E.  et al.  Effects of prenatal exposure to mercury on cognitive and psychomotor function in one-year-old infants: epidemiologic cohort study in Poland.  Ann Epidemiol. 2006;16:439-44716275013Google ScholarCrossref
139.
Palumbo DR, Cox C, Davidson PW.  et al.  Association between prenatal exposure to methylmercury and cognitive functioning in Seychellois children: a reanalysis of the McCarthy Scales of Children's Ability from the main cohort study.  Environ Res. 2000;84:81-8811068921Google ScholarCrossref
140.
Davidson PW, Palumbo D, Myers GJ.  et al.  Neurodevelopmental outcomes of Seychellois children from the pilot cohort at 108 months following prenatal exposure to methylmercury from a maternal fish diet.  Environ Res. 2000;84:1-1110991777Google ScholarCrossref
141.
Spurgeon A. Prenatal methylmercury exposure and developmental outcomes: review of the evidence and discussion of future directions.  Environ Health Perspect. 2006;114:307-31216451873Google ScholarCrossref
142.
US Environmental Protection Agency.  What you need to know about mercury in fish and shellfish. http://www.epa.gov/waterscience/fishadvice/advice.html. Accessed March 25, 2006
143.
Rice DC. The US EPA reference dose for methylmercury: sources of uncertainty.  Environ Res. 2004;95:406-41315220074Google ScholarCrossref
144.
Ahlqwist M, Bengtsson C, Lapidus L, Gergdahl IA, Schutz A. Serum mercury concentration in relation to survival, symptoms, and diseases: results from the prospective population study of women in Gothenburg, Sweden.  Acta Odontol Scand. 1999;57:168-17410480284Google ScholarCrossref
145.
Hallgren CG, Hallmans G, Jansson JH.  et al.  Markers of high fish intake are associated with decreased risk of a first myocardial infarction.  Br J Nutr. 2001;86:397-40411570992Google ScholarCrossref
146.
Guallar E, Sanz-Gallardo MI, van't Veer P.  et al.  Mercury, fish oils, and the risk of myocardial infarction.  N Engl J Med. 2002;347:1747-175412456850Google ScholarCrossref
147.
Yoshizawa K, Rimm EB, Morris JS.  et al.  Mercury and the risk of coronary heart disease in men.  N Engl J Med. 2002;347:1755-176012456851Google ScholarCrossref
148.
Virtanen JK, Voutilainen S, Rissanen TH.  et al.  Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in eastern Finland.  Arterioscler Thromb Vasc Biol. 2005;25:228-23315539625Google Scholar
149.
Joshi A, Douglass CW, Kim HD.  et al.  The relationship between amalgam restorations and mercury levels in male dentists and nondental health professionals.  J Public Health Dent. 2003;63:52-6012597586Google ScholarCrossref
150.
Rissanen T, Voutilainen S, Nyyssonen K, Lakka TA, Salonen JT. Fish oil-derived fatty acids, docosahexaenoic acid and docosapentaenoic acid, and the risk of acute coronary events: the Kuopio ischaemic heart disease risk factor study.  Circulation. 2000;102:2677-267911094031Google ScholarCrossref
151.
Risher JF, Murray HE, Prince GR. Organic mercury compounds: human exposure and its relevance to public health.  Toxicol Ind Health. 2002;18:109-16012974562Google ScholarCrossref
152.
Risher JF. Too much of a good thing (fish): methylmercury case study.  J Environ Health. 2004;67:9-14, 2815310052Google Scholar
153.
Lebel J, Mergler D, Branches F.  et al.  Neurotoxic effects of low-level methylmercury contamination in the Amazonian Basin.  Environ Res. 1998;79:20-329756677Google ScholarCrossref
154.
Yokoo EM, Valente JG, Grattan L, Schmidt SL, Platt I, Silbergeld EK. Low level methylmercury exposure affects neuropsychological function in adults.  Environ Health. 2003;2:812844364Google ScholarCrossref
155.
Auger N, Kofman O, Kosatsky T, Armstrong B. Low-level methylmercury exposure as a risk factor for neurologic abnormalities in adults.  Neurotoxicology. 2005;26:149-15715713336Google ScholarCrossref
156.
Weil M, Bressler J, Parsons P, Bolla K, Glass T, Schwartz B. Blood mercury levels and neurobehavioral function.  JAMA. 2005;293:1875-188215840862Google ScholarCrossref
157.
Johansson N, Basun H, Winblad B, Nordberg M. Relationship between mercury concentration in blood, cognitive performance, and blood pressure, in an elderly urban population.  Biometals. 2002;15:189-19512046928Google ScholarCrossref
158.
Suzuki KT, Sasakura C, Yoneda S. Binding sites for the (Hg-Se) complex on selenoprotein P.  Biochim Biophys Acta. 1998;1429:102-1129920389Google ScholarCrossref
159.
Watanabe C. Modification of mercury toxicity by selenium: practical importance?  Tohoku J Exp Med. 2002;196:71-7712498318Google ScholarCrossref
160.
Raymond LJ, Ralston NV. Mercury: selenium interactions and health implications.  Seychelles Med Dent J. 2004;7:72-77Google Scholar
161.
Chen C, Yu H, Zhao J.  et al.  The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure.  Environ Health Perspect. 2006;114:297-30116451871Google ScholarCrossref
162.
Paulsson K, Lundbergh K. The selenium method for treatment of lakes for elevated levels of mercury in fish.  Sci Total Environ. 1989;87-88:495-5072558416Google ScholarCrossref
163.
Seppanen K, Kantola M, Laatikainen R.  et al.  Effect of supplementation with organic selenium on mercury status as measured by mercury in pubic hair.  J Trace Elem Med Biol. 2000;14:84-8710941718Google ScholarCrossref
164.
Buettner C. Mercury and the risk of myocardial infarction.  N Engl J Med. 2003;348:2151-215412765165Google Scholar
165.
National Center for Environmental Assessment, US Environmental Protection Agency.  PCBs: cancer dose-response assessment and application to environmental mixtures. Washington, DC: US Environmental Protection Agency; 1996
166.
Hamilton MC, Hites RA, Schwager SJ, Foran JA, Knuth BA, Carpenter DO. Lipid composition and contaminants in farmed and wild salmon.  Environ Sci Technol. 2005;39:8622-862916323755Google ScholarCrossref
167.
Foran JA, Good DH, Carpenter DO, Hamilton MC, Knuth BA, Schwager SJ. Quantitative analysis of the benefits and risks of consuming farmed and wild salmon.  J Nutr. 2005;135:2639-264316251623Google Scholar
168.
US Environmental Protection Agency.  Risk Assessment and Fish Consumption Limits. 3rd ed. Washington, DC: US Environmental Protection Agency; 2003. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories; vol 2
169.
Hoyert DL, Heron MP, Murphy SL, Kung HC.Division of Vital Statistics.  National Vital Statistics Report: deaths: final data for 2003. http://www.cdc.gov/nchs/data/nvsr/nvsr54/nvsr54_13.pdf. 2006. Accessed May 2, 2006
170.
MacLean CH, Newberry SJ, Mojica WA.  et al.  Effects of omega-3 fatty acids on cancer risk: a systematic review.  JAMA. 2006;295:403-41516434631Google ScholarCrossref
171.
Jacobson JL, Jacobson SW. Intellectual impairment in children exposed to polychlorinated biphenyls in utero.  N Engl J Med. 1996;335:783-7898703183Google ScholarCrossref
172.
Patandin S, Lanting CI, Mulder PG, Boersma ER, Sauer PJ, Weisglas-Kuperus N. Effects of environmental exposure to polychlorinated biphenyls and dioxins on cognitive abilities in Dutch children at 42 months of age.  J Pediatr. 1999;134:33-419880446Google ScholarCrossref
173.
Grandjean P, Weihe P, Burse VW.  et al.  Neurobehavioral deficits associated with PCB in 7-year-old children prenatally exposed to seafood neurotoxicants.  Neurotoxicol Teratol. 2001;23:305-31711485834Google ScholarCrossref
174.
Ribas-Fito N, Sala M, Kogevinas M, Sunyer J. Polychlorinated biphenyls (PCBs) and neurological development in children: a systematic review.  J Epidemiol Community Health. 2001;55:537-54611449010Google ScholarCrossref
175.
Stewart PW, Reihman J, Lonky EI, Darvill TJ, Pagano J. Cognitive development in preschool children prenatally exposed to PCBs and MeHg.  Neurotoxicol Teratol. 2003;25:11-2212633733Google ScholarCrossref
176.
Schantz SL, Widholm JJ, Rice DC. Effects of PCB exposure on neuropsychological function in children.  Environ Health Perspect. 2003;111:357-57612611666Google ScholarCrossref
177.
Nakajima S, Saijo Y, Kato S.  et al.  Effects of prenatal exposure to polychlorinated biphenyls and dioxins on mental and motor development in Japanese children at 6 months of age.  Environ Health Perspect. 2006;114:773-77816675436Google ScholarCrossref
178.
Daniels JL, Longnecker MP, Klebanoff MA.  et al.  Prenatal exposure to low-level polychlorinated biphenyls in relation to mental and motor development at 8 months.  Am J Epidemiol. 2003;157:485-49212631537Google ScholarCrossref
179.
Gray KA, Klebanoff MA, Brock JW.  et al.  In utero exposure to background levels of polychlorinated biphenyls and cognitive functioning among school-age children.  Am J Epidemiol. 2005;162:17-2615961582Google ScholarCrossref
180.
Judd N, Griffith WC, Faustman EM. Contribution of PCB exposure from fish consumption to total dioxin-like dietary exposure.  Regul Toxicol Pharmacol. 2004;40:125-13515450716Google ScholarCrossref
181.
Peapod by Stop & Shop.. http://www.peapod.com/ Accessed July 11, 2006
182.
Great Alaska Seafood.  Fresh wild Alaska salmon. http://www.great-alaska-seafood.com/fresh-alaska-salmon.htm#alaska-king-salmon. Accessed July 11, 2006
183.
Ed's Kasilof Seafoods.  Alaska wild salmon. http://www.kasilofseafoods.com/seafood-gifts/wild-salmon.htm. Accessed July 12, 2006
184.
Wild Pacific Salmon.  Wild salmon products. http://www.wildpacificsalmon.com/site/680079/page/45031. Accessed July 12, 2006
185.
Chee KM, Gong JX, Rees DM.  et al.  Fatty acid content of marine oil capsules.  Lipids. 1990;25:523-5282250588Google ScholarCrossref
186.
Center for Drug Evaluation and Research, US Food And Drug Administration.  Omacor: consumer drug information sheet—approval label. http://www.fda.gov/cder/foi/label/2004/21654lbl.pdf. Accessed April 5, 2006
187.
Foran SE, Flood JG, Lewandrowski KB. Measurement of mercury levels in concentrated over-the-counter fish oil preparations: is fish oil healthier than fish?  Arch Pathol Lab Med. 2003;127:1603-160514632570Google Scholar
188.
Storelli MM, Storelli A, Marcotrigiano GO. Polychlorinated biphenyls, hexachlorobenzene, hexachlorocyclohexane isomers, and pesticide organochlorine residues in cod-liver oil dietary supplements.  J Food Prot. 2004;67:1787-179115330552Google Scholar
189.
Jimenez B, Wright C, Kelly M, Startin JR. Levels of PCDDs, PCDFs and non-ortho PCBs in dietary supplement fish oil obtained in Spain.  Chemosphere. 1996;32:461-4678907223Google ScholarCrossref
190.
Patch CS, Tapsell LC, Mori TA.  et al.  The use of novel foods enriched with long-chain n-3 fatty acids to increase dietary intake: a comparison of methodologies assessing nutrient intake.  J Am Diet Assoc. 2005;105:1918-192616321598Google ScholarCrossref
191.
Warner K. Impact of high-temperature food processing on fats and oils.  Adv Exp Med Biol. 1999;459:67-7710335369Google Scholar
192.
Simopoulos AP. Essential fatty acids in health and chronic disease.  Am J Clin Nutr. 1999;70:560S-569S10479232Google Scholar
193.
Kris-Etherton PM, Taylor DS, Yu-Poth S.  et al.  Polyunsaturated fatty acids in the food chain in the United States.  Am J Clin Nutr. 2000;71:179S-188S10617969Google Scholar
194.
Hu FB, Stampfer MJ, Manson JE.  et al.  Dietary intake of alpha-linolenic acid and risk of fatal ischemic heart disease among women.  Am J Clin Nutr. 1999;69:890-89710232627Google Scholar
195.
Naylor RL, Goldburg RJ, Primavera JH.  et al.  Effect of aquaculture on world fish supplies.  Nature. 2000;405:1017-102410890435Google ScholarCrossref
196.
Pauly D, Watson R, Alder J. Global trends in world fisheries: impacts on marine ecosystems and food security.  Philos Trans R Soc Lond B Biol Sci. 2005;360:5-1215713585Google ScholarCrossref
197.
Devine JA, Baker KD, Haedrich RL. Fisheries: deep-sea fishes qualify as endangered.  Nature. 2006;439:2916397489Google ScholarCrossref
198.
National Marine Fisheries Service.  Fisheries of the United States, 2004. Silver Spring, Md: US Dept of Commerce; 2005
199.
Garcia SM, Grainger RJ. Gloom and doom? the future of marine capture fisheries.  Philos Trans R Soc Lond B Biol Sci. 2005;360:21-4615713587Google ScholarCrossref
200.
World Resources Institute.  Millennium Ecosystem Assessment: Ecosystems and Human Well-Being—Synthesis Report. Washington, DC: Island Press; 2005
201.
Williams CM, Burdge G. Long-chain n-3 PUFA: plant v. marine sources.  Proc Nutr Soc. 2006;65:42-5016441943Google ScholarCrossref
202.
Mozaffarian D. Does alpha-linolenic acid intake reduce the risk of coronary heart disease? a review of the evidence.  Altern Ther Health Med. 2005;11:24-30, 31, 7915945135Google Scholar
203.
Brown AJ, Pang E, Roberts DC. Persistent changes in the fatty acid composition of erythrocyte membranes after moderate intake of n-3 polyunsaturated fatty acids: study design implications.  Am J Clin Nutr. 1991;54:668-6731832813Google Scholar
204.
Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease.  Circulation. 2002;106:2747-275712438303Google ScholarCrossref
205.
Van de Werf F, Ardissino D, Betriu A.  et al. Task Force on the Management of Acute Myocardial Infarction of the European Society of Cardiology.  Management of acute myocardial infarction in patients presenting with ST-segment elevation.  Eur Heart J. 2003;24:28-6612559937Google ScholarCrossref
206.
Schober SE, Sinks TH, Jones RL.  et al.  Blood mercury levels in US children and women of childbearing age, 1999-2000.  JAMA. 2003;289:1667-167412672735Google ScholarCrossref
207.
Oken E, Kleinman KP, Berland WE, Simon SR, Rich-Edwards JW, Gillman MW. Decline in fish consumption among pregnant women after a national mercury advisory.  Obstet Gynecol. 2003;102:346-35112907111Google ScholarCrossref
Clinical Review
Clinician's Corner
October 18, 2006

Fish Intake, Contaminants, and Human Health: Evaluating the Risks and the Benefits

Author Affiliations
 

Clinical Review Section Editor: Michael S. Lauer, MD.

 

Author Affiliations: Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School; and Departments of Epidemiology and Nutrition, Harvard School of Public Health, Boston, Mass.

JAMA. 2006;296(15):1885-1899. doi:10.1001/jama.296.15.1885
Abstract

Context Fish (finfish or shellfish) may have health benefits and also contain contaminants, resulting in confusion over the role of fish consumption in a healthy diet.

Evidence Acquisition We searched MEDLINE, governmental reports, and meta-analyses, supplemented by hand reviews of references and direct investigator contacts, to identify reports published through April 2006 evaluating (1) intake of fish or fish oil and cardiovascular risk, (2) effects of methylmercury and fish oil on early neurodevelopment, (3) risks of methylmercury for cardiovascular and neurologic outcomes in adults, and (4) health risks of dioxins and polychlorinated biphenyls in fish. We concentrated on studies evaluating risk in humans, focusing on evidence, when available, from randomized trials and large prospective studies. When possible, meta-analyses were performed to characterize benefits and risks most precisely.

Evidence Synthesis Modest consumption of fish (eg, 1-2 servings/wk), especially species higher in the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), reduces risk of coronary death by 36% (95% confidence interval, 20%-50%; P<.001) and total mortality by 17% (95% confidence interval, 0%-32%; P = .046) and may favorably affect other clinical outcomes. Intake of 250 mg/d of EPA and DHA appears sufficient for primary prevention. DHA appears beneficial for, and low-level methylmercury may adversely affect, early neurodevelopment. Women of childbearing age and nursing mothers should consume 2 seafood servings/wk, limiting intake of selected species. Health effects of low-level methylmercury in adults are not clearly established; methylmercury may modestly decrease the cardiovascular benefits of fish intake. A variety of seafood should be consumed; individuals with very high consumption (≥5 servings/wk) should limit intake of species highest in mercury levels. Levels of dioxins and polychlorinated biphenyls in fish are low, and potential carcinogenic and other effects are outweighed by potential benefits of fish intake and should have little impact on choices or consumption of seafood (women of childbearing age should consult regional advisories for locally caught freshwater fish).

Conclusions For major health outcomes among adults, based on both the strength of the evidence and the potential magnitudes of effect, the benefits of fish intake exceed the potential risks. For women of childbearing age, benefits of modest fish intake, excepting a few selected species, also outweigh risks.

×