Effect of Testosterone Replacement Therapy on Prostate Tissue in Men With Late-Onset Hypogonadism: A Randomized Controlled Trial | Endocrinology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Liverman CT, Blazer DG. Testosterone and Aging: Clinical Research Directions. Washington, DC: National Academy of Sciences; 2004
 Extent and nature of testosterone use [news release]. Fairfield, Conn: IMS Health; September 2006
Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men.  J Clin Endocrinol Metab. 2001;86:724-73111158037Google ScholarCrossref
Heller CG, Myers GB. The male climacteric: its symptomatology, diagnosis, and treatment.  JAMA. 1944;126:472-477Google ScholarCrossref
Hijazi RA, Cunningham GR. Andropause: is androgen replacement therapy indicated for the aging male?  Annu Rev Med. 2005;56:117-13715660505Google ScholarCrossref
Morley JE, Perry HM III. Androgen deficiency in aging men: role of testosterone replacement therapy.  J Lab Clin Med. 2000;135:370-37810811051Google ScholarCrossref
Nieschlag E, Swerdloff R, Behre HM.  et al.  Investigation, treatment and monitoring of late-onset hypogonadism in males.  Eur Urol. 2005;48:1-415951102Google ScholarCrossref
Wang C, Swerdloff RS, Iranmanesh A.  et al.  Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men.  J Clin Endocrinol Metab. 2000;85:2839-285310946892Google ScholarCrossref
Snyder PJ, Peachey H, Berlin JA.  et al.  Effects of testosterone replacement in hypogonadal men.  J Clin Endocrinol Metab. 2000;85:2670-267710946864Google ScholarCrossref
Dobs AS, Meikle AW, Arver S, Sanders SW, Caramelli KE, Mazer NA. Pharmacokinetics, efficacy, and safety of a permeation-enhanced testosterone transdermal system in comparison with bi-weekly injections of testosterone enanthate for the treatment of hypogonadal men.  J Clin Endocrinol Metab. 1999;84:3469-347810522982Google ScholarCrossref
Rhoden EL, Morgentaler A. Risks of testosterone-replacement therapy and recommendations for monitoring.  N Engl J Med. 2004;350:482-49214749457Google ScholarCrossref
Oesterling JE, Epstein JI, Walsh PC. The inability of adrenal androgens to stimulate the adult human prostate.  J Urol. 1986;136:1030-10342945933Google Scholar
Wu CP, Gu FL. The prostate in eunuchs.  Prog Clin Biol Res. 1991;370:249-2551924456Google Scholar
Imperato-McGinley J, Guerrero L, Gautier T, Peterson RE. Steroid 5α-reductase deficiency in man.  Science. 1974;186:1213-12154432067Google ScholarCrossref
Huggins C, Stevens RA. The effect of castration on benign hypertrophy of the prostate in man.  J Urol. 1940;43:705Google Scholar
Huggins C, Stevens RA, Hodges CV. Studies on prostate cancer: the effects of castration on advanced carcinoma of the prostate gland.  Arch Surg. 1941;43:209-223Google ScholarCrossref
Johnson DE, Haynie TP. Phosphorus-32 for intractable pain in carcinoma of prostate.  Urology. 1977;9:137-13965816Google ScholarCrossref
Fowler JE Jr, Whitmore WF Jr. The response of metastatic adenocarcinoma of the prostate to exogenous testosterone.  J Urol. 1981;126:372-3757277602Google Scholar
Loughlin KR, Richie JP. Prostate cancer after exogenous testosterone treatment for impotence.  J Urol. 1997;157:18459112543Google ScholarCrossref
Schaeffer EM, Walsh PC. Risks of testosterone replacement.  N Engl J Med. 2004;350:2004-200615131839Google ScholarCrossref
Gaylis FD, Lin DW, Ignatoff JM, Amling CL, Tutrone RF, Cosgrove DJ. Prostate cancer in men using testosterone supplementation.  J Urol. 2005;174:534-53816006887Google ScholarCrossref
Tenover JL. Experience with testosterone replacement in the elderly.  Mayo Clin Proc. 2000;75:(suppl)  S77-S8110959222Google Scholar
Meikle AW, Arver S, Dobs AS.  et al.  Prostate size in hypogonadal men treated with a nonscrotal permeation-enhanced testosterone transdermal system.  Urology. 1997;49:191-1969037280Google ScholarCrossref
Gann PH, Hennekens CH, Ma J, Longcope C, Stampfer MJ. Prospective study of sex hormone levels and risk of prostate cancer.  J Natl Cancer Inst. 1996;88:1118-11268757191Google ScholarCrossref
Parsons JK, Carter HB, Platz EA, Wright EJ, Landis P, Metter EJ. Serum testosterone and the risk of prostate cancer.  Cancer Epidemiol Biomarkers Prev. 2005;14:2257-226016172240Google ScholarCrossref
Hsing AW, Reichardt JK, Stanczyk FZ. Hormones and prostate cancer: current perspectives and future directions.  Prostate. 2002;52:213-23512111697Google ScholarCrossref
Shirai T, Takahashi S, Cui L.  et al.  Experimental prostate carcinogenesis: rodent models.  Mutat Res. 2000;462:219-22610767633Google ScholarCrossref
Bhasin S, Singh AB, Mac RP, Carter B, Lee MI, Cunningham GR. Managing the risks of prostate disease during testosterone replacement therapy in older men.  J Androl. 2003;24:299-31112721204Google Scholar
Morley JE, Charlton E, Patrick P.  et al.  Validation of a screening questionnaire for androgen deficiency in aging males.  Metabolism. 2000;49:1239-124211016912Google ScholarCrossref
Marks LS, Partin AW, Gormley GJ.  et al.  Prostate tissue composition and response to finasteride in men with symptomatic benign prostatic hyperplasia.  J Urol. 1997;157:2171-21789146609Google ScholarCrossref
Marks LS, Partin AW, Epstein JI.  et al.  Effects of a saw palmetto herbal blend in men with symptomatic benign prostatic hyperplasia.  J Urol. 2000;163:1451-145610751856Google ScholarCrossref
Marks LS, Epstein JI, Partin AW. The role of prostate needle biopsy in evaluation of chemopreventive agents.  Urology. 2001;57:(suppl 1)  191-19311295625Google ScholarCrossref
Marks LS, Hess DL, Dorey FJ.  et al.  Tissue effects of saw palmetto and finasteride: use of biopsy cores for in situ quantification of prostatic androgens.  Urology. 2001;57:999-100511337315Google ScholarCrossref
Resko JA, Ellinwood WE, Pasztor LM, Huhl AE. Sex steroids in the umbilical circulation of fetal rhesus monkeys from the time of gonadal differentiation.  J Clin Endocrinol Metab. 1980;50:900-9056768761Google ScholarCrossref
Marks LS, Kojima M, Demarzo A.  et al.  Prostate cancer in native Japanese and Japanese-American men.  Urology. 2004;64:765-77115491717Google ScholarCrossref
Nelson PS, Pritchard C, Abbott D, Clegg N. The human (PEDB) and mouse (mPEDB) Prostate Expression Databases.  Nucleic Acids Res. 2002;30:218-22011752298Google ScholarCrossref
Pritchard CC, Hsu L, Delrow J, Nelson PS. Project normal: defining normal variance in mouse gene expression.  Proc Natl Acad Sci U S A. 2001;98:13266-1327111698685Google ScholarCrossref
Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response.  Proc Natl Acad Sci U S A. 2001;98:5116-512111309499Google ScholarCrossref
Hammes A, Andreassen TK, Spoelgen R.  et al.  Role of endocytosis in cellular uptake of sex steroids.  Cell. 2005;122:751-76216143106Google ScholarCrossref
Bhasin S, Woodhouse L, Casaburi R.  et al.  Testosterone dose-response relationships in healthy young men.  Am J Physiol Endocrinol Metab. 2001;281:E1172-E118111701431Google Scholar
Rhoden EL, Morgentaler A. Testosterone replacement therapy in hypogonadal men at high risk for prostate cancer.  J Urol. 2003;170:2348-235114634413Google ScholarCrossref
Roehl KA, Antenor JA, Catalona WJ. Serial biopsy results in prostate cancer screening study.  J Urol. 2002;167:2435-243911992052Google ScholarCrossref
Carter HB, Pearson JD, Metter EJ.  et al.  Longitudinal evaluation of prostate-specific antigen levels in men with and without prostate disease.  JAMA. 1992;267:2215-22201372942Google ScholarCrossref
McConnell JD, Wilson JD, George FW, Geller J, Pappas F, Stoner E. Finasteride, an inhibitor of 5 α-reductase, suppresses prostatic dihydrotestosterone in men with benign prostatic hyperplasia.  J Clin Endocrinol Metab. 1992;74:505-5081371291Google ScholarCrossref
Mohler JL, Gaston KE, Moore DT.  et al.  Racial differences in prostate androgen levels in men with clinically localized prostate cancer.  J Urol. 2004;171:2277-228015126802Google ScholarCrossref
Walsh PC, Hutchins GM, Ewing LL. Tissue content of dihydrotestosterone in human prostatic hyperplasis is not supranormal.  J Clin Invest. 1983;72:1772-17776195192Google ScholarCrossref
Coffey DS, Walsh PC. Clinical and experimental studies of benign prostatic hyperplasia.  Urol Clin North Am. 1990;17:461-4751695775Google Scholar
Karr JP, Kim U, Resko JA.  et al.  Induction of benign prostatic hypertrophy in baboons.  Urology. 1984;23:276-2896199881Google ScholarCrossref
Udayakumar TS, Tyagi A, Rajalakshmi M.  et al.  Changes in structure and functions of prostate by long-term administration of an androgen, testosterone enanthate, in rhesus monkey (Macaca mulatta).  Anat Rec. 1998;252:637-6459845214Google ScholarCrossref
Kamischke A, Weinbauer GF, Semjonow A, Lerchl A, Richter KD, Nieschlag E. Estradiol and high-dose dihydrotestosterone treatment causes changes in cynomolgus monkey prostate volume and histology identical to those caused by testosterone alone.  J Androl. 1999;20:601-61010520572Google Scholar
Ferrando AA, Sheffield-Moore M, Wolf SE, Herndon DN, Wolfe RR. Testosterone administration in severe burns ameliorates muscle catabolism.  Crit Care Med. 2001;29:1936-194211588456Google ScholarCrossref
Amory JK, Chansky HA, Chansky KL.  et al.  Preoperative supraphysiological testosterone in older men undergoing knee replacement surgery.  J Am Geriatr Soc. 2002;50:1698-170112366624Google ScholarCrossref
Kupelian V, Page ST, Araujo AB, Travison TG, Bremner WJ, McKinlay JB. Low sex hormone-binding globulin, total testosterone, and symptomatic androgen deficiency are associated with development of the metabolic syndrome in nonobese men.  J Clin Endocrinol Metab. 2006;91:843-85016394089Google ScholarCrossref
Schroeder ET, Zheng L, Ong MD.  et al.  Effects of androgen therapy on adipose tissue and metabolism in older men.  J Clin Endocrinol Metab. 2004;89:4863-487215472177Google ScholarCrossref
Preliminary Communication
November 15, 2006

Effect of Testosterone Replacement Therapy on Prostate Tissue in Men With Late-Onset Hypogonadism: A Randomized Controlled Trial

Author Affiliations

Author Affiliations: Department of Urology, Geffen School of Medicine, University of California, Los Angeles (Dr Marks); Urological Sciences Research Foundation, Culver City, Calif (Drs Marks and Macairan); Department of Medicine, Boston University School of Medicine, Boston, Mass (Dr Mazer); Oregon National Primate Research Center, Beaverton (Dr Hess); Department of Biostatistics at Children's Hospital, School of Medicine, University of Southern California, Los Angeles (Dr Dorey); Brady Urological Institute, Johns Hopkins University, Baltimore, Md (Drs Epstein, Veltri, Makarov, and Partin); Bostwick Laboratories, Richmond, Va (Dr Bostwick); and Fred Hutchinson Cancer Research Center and Department of Medicine, School of Medicine, University of Washington, Seattle (Drs Mostaghel and Nelson).

JAMA. 2006;296(19):2351-2361. doi:10.1001/jama.296.19.2351

Context Prostate safety is a primary concern when aging men receive testosterone replacement therapy (TRT), but little information is available regarding the effects of TRT on prostate tissue in men.

Objective To determine the effects of TRT on prostate tissue of aging men with low serum testosterone levels.

Design, Setting, and Participants Randomized, double-blind, placebo-controlled trial of 44 men, aged 44 to 78 years, with screening serum testosterone levels lower than 300 ng/dL (<10.4 nmol/L) and related symptoms, conducted at a US community-based research center between February 2003 and November 2004.

Intervention Participants were randomly assigned to receive 150 mg of testosterone enanthate or matching placebo intramuscularly every 2 weeks for 6 months.

Main Outcome Measures The primary outcome measure was the 6-month change in prostate tissue androgen levels (testosterone and dihydrotestosterone). Secondary outcome measures included 6-month changes in prostate-related clinical features, histology, biomarkers, and epithelial cell gene expression.

Results Of the 44 men randomized, 40 had prostate biopsies performed both at baseline and at 6 months and qualified for per-protocol analysis (TRT, n = 21; placebo, n = 19). Testosterone replacement therapy increased serum testosterone levels to the mid-normal range (median at baseline, 282 ng/dL [9.8 nmol/L]; median at 6 months, 640 ng/dL [22.2 nmol/L]) with no significant change in serum testosterone levels in matched, placebo-treated men. However, median prostate tissue levels of testosterone (0.91 ng/g) and dihydrotestosterone (6.79 ng/g) did not change significantly in the TRT group. No treatment-related change was observed in prostate histology, tissue biomarkers (androgen receptor, Ki-67, CD34), gene expression (including AR, PSA, PAP2A, VEGF, NXK3, CLU [Clusterin]), or cancer incidence or severity. Treatment-related changes in prostate volume, serum prostate-specific antigen, voiding symptoms, and urinary flow were minor.

Conclusions These preliminary data suggest that in aging men with late-onset hypogonadism, 6 months of TRT normalizes serum androgen levels but appears to have little effect on prostate tissue androgen levels and cellular functions. Establishment of prostate safety for large populations of older men undergoing longer duration of TRT requires further study.

Trial Registration clinicaltrials.gov Identifier: NCT00161304