Mortality Associated With Aprotinin During 5 Years Following Coronary Artery Bypass Graft Surgery | Cardiology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.175.212.130. Please contact the publisher to request reinstatement.
1.
Mangano DT, Tudor IC, Dietzel C.for the Multicenter Study of Perioperative Ischemia (McSPI) Research Group and the Ischemia Research and Education Foundation.  The risk associated with aprotinin in cardiac surgery.  N Engl J Med. 2006;354:353-36516436767Google ScholarCrossref
2.
US Food and Drug Administration.  Meeting of the cardiovascular and renal advisory committee, September 21, 2006. http://www.fda.gov/ohrms/dockets/ac/cder06.html#CardiovascularRenal. Accessed January 16, 2007
3.
US Food and Drug Administration.  Approval of aprotinin, press release 93-48, December 30, 1993. http://www.fda.gov/bbs/topics/NEWS/NEW00453.html. Accessed January 16, 2007
4.
Ad N, Barnett S, Hunt SL, Fitzgerald D, Speir AM.for INOVA Heart and Vascular Institute Falls Church, VA.  The use of aprotinin in cardiac surgery is associated with increased risk of renal failure and neurological events [abstract].  Circulation. 2006;114:(suppl II)  II476Google Scholar
5.
Brown JR, Birkmeyer NJ, O'Connor GT. Aprotinin in cardiac surgery.  N Engl J Med. 2006;354:1953-195716673531Google ScholarCrossref
6.
Karkouti K, Beattie WS, Dattilo KM.  et al.  Blood conservation and transfusion alternatives.  Transfusion. 2006;46:327-33816533273Google ScholarCrossref
7.
Cooper JR Jr, Abrams J, Frazier OH.  et al.  Fatal pulmonary microthrombi during surgical therapy for end-stage heart failure.  J Thorac Cardiovasc Surg. 2006;131:963-96816678576Google ScholarCrossref
8.
US Food and Drug Administration.  FDA public health advisory aprotinin injection (marketed as Trasylol), FDA alert P06-19, February 8, 2006. http://www.fda.gov/cder/drug/advisory/aprotinin.htm. Accessed January 16, 2007
9.
US Food and Drug Administration.  Questions and answers on aprotinin (marketed as Trasylol). http://www.fda.gov/cder/drug/infopage/aprotinin/aprotininQA.htm. Accessed January 16, 2007
10.
Havel MP, Griesmacher A, Weigel G.  et al.  Aprotinin decreases release of 6-keto-prostaglandin F1 alpha and increases release of thromboxane B2 in cultured human umbilical vein endothelial cells.  J Thorac Cardiovasc Surg. 1992;104:654-6581381028Google Scholar
11.
Hill GE, Taylor JA, Robbins RA. Differing effects of aprotinin and episolon-aminocaproic acid on cytokine-induced inducible nitric oxide synthase expression.  Ann Thorac Surg. 1997;63:74-778993244Google ScholarCrossref
12.
Samama CM, Mazoyer E, Bruneval P.  et al.  Aprotinin could promote arterial thrombosis in pigs.  Thromb Haemost. 1994;71:663-6697522355Google Scholar
13.
Ülker S, Pascal P, McKeown P, Bayraktutan U. Aprotinin impairs coronary endothelial function and down-regulates endothelial NOS in rat coronary microvascular endothelial cells.  Cardiovasc Res. 2002;55:830-83712176132Google ScholarCrossref
14.
Cosgrove DM III, Heric B, Lytle BW.  et al.  Aprotinin therapy for reoperative myocardial revascularization.  Ann Thorac Surg. 1992;54:1031-10381280411Google ScholarCrossref
15.
Saffitz JE, Stahl DJ, Sundt TM, Wareing TH, Kouchoukos NT. Disseminated intravascular coagulation after administration of aprotinin in combination with deep hypothermic circulatory arrest.  Am J Cardiol. 1993;72:1080-10827692717Google ScholarCrossref
16.
Alderman EL, Levy JH, Rich JB. Analyses of coronary graft patency after aprotinin use.  J Thorac Cardiovasc Surg. 1998;116:716-7309806378Google ScholarCrossref
17.
Alvarez JM, Chandraratna H, Newman MA, Levy JH. Case 3-1999: intraoperative coronary thrombosis in association with low-dose aprotinin therapy.  J Cardiothorac Vasc Anesth. 1999;13:623-62810527236Google ScholarCrossref
18.
Rodriguez A, Boullon F, Perez-Balino N.  et al.  Argentine randomized trial of percutaneous transluminal coronary angioplasty vs coronary artery bypass surgery in multivessel disease (ERACI).  J Am Coll Cardiol. 1993;22:1060-10678409041Google ScholarCrossref
19.
King SB III, Lembo NJ, Weintraub WS.  et al.  A randomized trial comparing coronary angioplasty with coronary bypass surgery.  N Engl J Med. 1994;331:1044-10508090163Google ScholarCrossref
20.
CABRI Trial Participants.  First-year results of CABRI (Coronary Angioplasty vs Bypass Revascularisation Investigation).  Lancet. 1995;346:1179-11847475656Google ScholarCrossref
21.
Fitzgibbon GM, Kafka HP, Leach AJ.  et al.  Coronary bypass graft fate and patient outcome.  J Am Coll Cardiol. 1996;28:616-6268772748Google ScholarCrossref
22.
The Writing Group for the Bypass Angioplasty Revascularization Investigators (BARI).  Five-year clinical and functional outcome comparing bypass surgery and angioplasty in patients with multivessel coronary disease.  JAMA. 1997;277:715-7219042843Google ScholarCrossref
23.
Henderson RA, Pocock SJ, Sharp SJ.  et al.  Long-term results of RITA-1.  Lancet. 1998;352:1419-14259807988Google ScholarCrossref
24.
Feit F, Brooks MM, Sopko G.  et al.  Long-term clinical outcome in the Bypass Angioplasty Revascularization Investigation Registry.  Circulation. 2000;101:2795-280210859284Google ScholarCrossref
25.
Keeley EC, Velez CA, O'Neill WW, Safian RD. Long-term clinical outcome and predictors of major adverse cardiac events after percutaneous interventions on saphenous vein grafts.  J Am Coll Cardiol. 2001;38:659-66511527613Google ScholarCrossref
26.
Kaehler J, Koester R, Billmann W.  et al.  13-Year follow-up of the German angioplasty bypass surgery investigation.  Eur Heart J. 2005;26:2148-215315975991Google ScholarCrossref
27.
 Ischemia Research and Education Foundation. http://www.iref.org/LTFU_Death_Appendices1_to_8.html. Accessed January 16, 2007
28.
Lee J, Yoshizawa C, Wilkens L, Lee HP. Covariance adjustment of survival curves based on Cox's proportional hazards regression model.  Comput Appl Biosci. 1992;8:23-271568122Google Scholar
29.
Nieto FJ, Coresh J. Adjusting survival curves for confounders.  Am J Epidemiol. 1996;143:1059-10688629613Google ScholarCrossref
30.
Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects.  Biometrika. 1983;70:41-55Google ScholarCrossref
31.
D'Agostino RB Jr. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group.  Stat Med. 1998;17:2265-22819802183Google ScholarCrossref
32.
Hunter D. First, gather the data.  N Engl J Med. 2006;354:329-33116436764Google ScholarCrossref
33.
Higgins TL, Estafanous FG, Loop FD, Beck GJ, Blum JM, Paranandi L. Stratification of morbidity and mortality outcome by preoperative risk factors in coronary artery bypass patients.  JAMA. 1992;267:2344-23481564774Google ScholarCrossref
34.
Brener SJ, Lytle BW, Casserly IP, Schneider JP, Topol EJ, Lauer MS. Propensity analysis of long-term survival after surgical or percutaneous revascularization in patients with multivessel coronary artery disease and high-risk features.  Circulation. 2004;109:2290-229515117846Google ScholarCrossref
35.
Hattler BG, Madia C, Johnson C.  et al.  Risk stratification using the Society of Thoracic Surgeons Program.  Ann Thorac Surg. 1994;58:1348-13527979657Google ScholarCrossref
36.
Papadimos TJ, Habib RH, Zacharias A.  et al.  Early efficacy of CABG care delivery in a low procedure-volume community hospital.  BMC Surg. 2005;5:1015865623Google ScholarCrossref
37.
Nashef SA, Roques F, Michel P.  et al.  European System for Cardiac Operative Risk Evaluation (EuroSCORE).  Eur J Cardiothorac Surg. 1999;16:9-1310456395Google ScholarCrossref
38.
Michel P, Roques F, Samer AM, Nashef SAM. Logistic or additive EuroSCORE for high-risk patients?  Eur J Cardiothorac Surg. 2003;23:684-68712754018Google ScholarCrossref
39.
Grover FL, Shroyer AL, Hammermeister KE. Calculating risk and outcome.  Ann Thorac Surg. 1996;62:(5 suppl)  S6-S118893627Google ScholarCrossref
40.
Gao D, Grunwald GK, Rumsfeld JS, Schooley L, MacKenzie T, Shroyer LW. Time-varying risk factors for long-term mortality after coronary artery bypass graft surgery.  Ann Thorac Surg. 2006;81:793-79916488675Google ScholarCrossref
41.
Nilsson J, Algotsson L, Höglund P.  et al.  Comparison of 19 pre-operative risk stratification models in open-heart surgery.  Eur Heart J. 2006;27:867-87416421172Google ScholarCrossref
42.
The GUSTO Angiographic Investigators.  The effects of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function, and survival after acute myocardial infarction.  N Engl J Med. 1993;329:1615-16228232430Google ScholarCrossref
43.
Bidstrup BP, Underwood SR, Sapsford RN.  et al.  Effect of aprotinin (Trasylol) on aorta-coronary bypass graft patency.  J Thorac Cardiovasc Surg. 1993;105:147-1537678314Google Scholar
44.
Lemmer JH Jr, Stanford W, Bonney SL.  et al.  Aprotinin for coronary bypass operations.  J Thorac Cardiovasc Surg. 1994;107:543-5537508070Google Scholar
45.
Havel M, Grabenwoger F, Schneider J.  et al.  Aprotinin does not decrease early graft patency after coronary artery bypass graft despite reducing postoperative bleeding and use of donated blood.  J Thorac Cardiovasc Surg. 1994;107:807-8107510351Google Scholar
46.
US Food and Drug Administration, Center for Drug Evaluation and Research.  Trasylol application 020304/S004: administrative documents/correspondence, medical officer review (part 2, pages 4, 5, 6), January 3, 1997. http://www.fda.gov/cder/foi/nda/98/020304s004.htm. Accessed January 16, 2007
47.
Westaby S, Katsumata T. Aprotinin and vein graft occlusion—the controversy continues.  J Thorac Cardiovasc Surg. 1998;116:731-7339806379Google ScholarCrossref
48.
Kaul P, Armstrong PW, Chang WC.  et al.  Long-term mortality of patients with acute myocardial infarction in the United States and Canada.  Circulation. 2004;110:1754-176015381645Google ScholarCrossref
49.
Franzosi MG, Santoro E, De Vita C.  et al.  Ten-year follow-up of the first megatrial testing thrombolytic therapy in patients with acute myocardial infarction.  Circulation. 1998;98:2659-26659851950Google ScholarCrossref
50.
Baigent C, Collins R, Appleby P.  et al.  10-Year survival among patients with suspected acute myocardial infarction in randomized comparison of intravenous streptokinase, oral aspirin, both, or neither.  BMJ. 1998;316:1337-13439563981Google ScholarCrossref
51.
Mangano DT, Layug EL, Wallace AW, Tateo IM.for the Multicenter Study of Perioperative Ischemia (McSPI) Research Group.  Effect of atenolol on mortality and cardiovascular morbidity after noncardiac surgery.  N Engl J Med. 1996;335:1713-17208929262Google ScholarCrossref
52.
Mangano DT, Browner WS, Hollenberg M, Li JM, Tateo IM.Study of Perioperative Ischemia (SPI) Research Group.  Long-term cardiac prognosis following noncardiac surgery.  JAMA. 1992;268:233-2391608143Google ScholarCrossref
53.
Browner WS, Li JM, Mangano DT.SPI Research Group.  In-hospital and long-term mortality in male veterans following noncardiac surgery.  JAMA. 1992;268:228-2321608142Google ScholarCrossref
54.
Concato J, Shah N, Horwitz RI. Randomized, controlled trials, observational studies, and the hierarchy of research designs.  N Engl J Med. 2000;342:1887-189210861325Google ScholarCrossref
55.
US Food and Drug Administration.  Report on the performance of drug and biologics firms in conducting postmarketing commitment studies; availability.  Fed Regist. 2006;71:10978-10979Google Scholar
Original Contribution
February 7, 2007

Mortality Associated With Aprotinin During 5 Years Following Coronary Artery Bypass Graft Surgery

Author Affiliations
 

Author Affiliations: Ischemia Research and Education Foundation, San Bruno, Calif (Drs Mangano, Miao, Titov, and Dietzel); Department of Anesthesia, Papworth Hospital, Cambridge, England (Dr Vuylsteke); Department of Anesthesia, Escorts Heart Institute, New Delhi, India (Dr Juneja); Department of Cardiac Anesthesia and Intensive Care, Institute of Cardiology, Bucharest, Romania (Dr Filipescu); Klinik und Poliklinik für Anaesthesiologie und Spezielle Intensivmedizin, University of Bonn, Bonn, Germany (Dr Hoeft); Department of Anesthesiology, Yale University, New Haven, Conn (Dr Fontes); Department of Cardiac Anesthesia, St Luke's Roosevelt Hospital, New York, NY (Dr Hillel); Institut für Anaesthesiologie, Ludwig-Maximilians Universität, Munich, Germany (Dr Ott); Department of Laboratory Medicine, University of California School of Medicine, San Francisco (Dr Levin). Dr Tudor is now with ALZA Corporation, Mountain View, Calif, and Dr Fontes is now with Weill Medical College of Cornell University, New York, NY.

JAMA. 2007;297(5):471-479. doi:10.1001/jama.297.5.471
Abstract

Context Acute safety concerns have been raised recently regarding certain hemorrhage-sparing medications commonly used in cardiac surgery. However, no comprehensive data exist regarding their associations with long-term mortality.

Objective To contrast long-term all-cause mortality in patients undergoing coronary artery bypass graft (CABG) surgery according to use of 2 lysine analog antifibrinolytics (aminocaproic acid and tranexamic acid), the serine protease inhibitor aprotinin, or no antibleeding agent.

Design, Setting, and Participants Observational study of mortality conducted between November 11, 1996, and December 7, 2006. Following index hospitalization (4374 patients; 69 medical centers), survival was prospectively assessed at 6 weeks, 6 months, and annually for 5 years after CABG surgery among 3876 patients enrolled in a 62-center international cohort study. The associations of survival with hemorrhage-sparing medications were compared using multivariable analyses including propensity adjustments.

Main Outcome Measure Death (all-cause) over 5 years.

Results Aprotinin treatment (223 deaths among 1072 patients [20.8% 5-year mortality]) was associated with significantly increased mortality compared with control (128 deaths among 1009 patients [12.7%]; covariate adjusted hazard ratio for death, 1.48; 95% confidence interval, 1.19-1.85), whereas neither aminocaproic acid (132 deaths among 834 patients [15.8%]; adjusted hazard ratio for death, 1.03; 95% confidence interval, 0.80-1.33) nor tranexamic acid (65 deaths among 442 patients [14.7%]; adjusted hazard ratio for death, 1.07; 95% confidence interval, 0.80-1.45) was associated with increased mortality. In multivariable logistic regression, either with propensity adjustment or without, aprotinin was independently predictive of 5-year mortality (adjusted odds ratio with propensity adjustment, 1.48; 95% confidence interval, 1.13-1.93; P = .005) among patients with diverse risk profiles, as well as among those surviving their index hospitalization. Neither aminocaproic nor tranexamic acid was associated with increased risk of death.

Conclusions These findings indicate that in addition to the previously reported acute renal and vascular safety concerns, aprotinin use is associated with an increased risk of long-term mortality following CABG surgery. Use of aprotinin among patients undergoing CABG surgery does not appear prudent because safer and less expensive alternatives (ie, aminocaproic acid and tranexamic acid) are available.

×