Autologous Nonmyeloablative Hematopoietic Stem Cell Transplantation in Newly Diagnosed Type 1 Diabetes Mellitus | Stem Cell Transplantation | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
American Diabetes Association.  Diagnosis and classification of diabetes.  Diabetes Care. 2004;27:(suppl I)  S5-S1014693921Google ScholarCrossref
Notkins AL, Lernmark A. Autoimmune type 1 diabetes: resolved and unresolved issues.  J Clin Invest. 2001;108:1247-125211696564Google Scholar
Nathan DM. Long term complications of diabetes mellitus.  N Engl J Med. 1993;328:1676-16858487827Google ScholarCrossref
Rubin RR, Peyrot M. Quality of life and diabetes.  Diabetes Metab Res Rev. 1999;15:205-21810441043Google ScholarCrossref
The Diabetes Control and Complications Trial Research Group.  The effect of intensive treatment of diabetes on the development and progression of long term complications in insulin-dependent diabetes mellitus.  N Engl J Med. 1993;329:977-9868366922Google ScholarCrossref
The Diabetes Control and Complications Trial Research Group.  Effect of intensive therapy on residual beta-cell function in patients with type 1 diabetes in the Diabetes Control and Complications Trial.  Ann Intern Med. 1998;128:517-5239518395Google ScholarCrossref
Elliott RB, Crossley JR, Berryman CC, James AG. Partial preservation of pancreatic beta-cell function in children with diabetes.  Lancet. 1981;19:631-6326116102Google ScholarCrossref
Harrison LC, Colman PG, Dean B, Baxter R, Martin FI. Increase in remission rate in newly diagnosed type 1 diabetic subjects treated with azathioprine.  Diabetes. 1985;34:1306-13083905463Google ScholarCrossref
Cook JJ, Hudson I, Harrison LC.  et al.  Double-blind controlled trial of azathioprine in children with newly diagnosed type 1 diabetes.  Diabetes. 1989;38:779-7832656346Google ScholarCrossref
Silverstein J, Maclaren N, Riley W.  et al.  Immunosupression with azatioprine and prednisone in recent-onset insulin-dependent diabetes mellitus.  N Engl J Med. 1988;319:599-6043045545Google ScholarCrossref
Canadian–European Randomized Control Trial Group.  Cyclosporin-induced remission of IDDM after early intervention: association of 1 yr of cyclosporin treatment with enhanced insulin secretion.  Diabetes. 1988;37:1574-15822903105Google ScholarCrossref
Herold KC, Hagopian W, Auger JA.  et al.  Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus.  N Engl J Med. 2002;346:1692-169812037148Google ScholarCrossref
Keymeulen B, Vandemeulebroucke E, Ziegler AG.  et al.  Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes.  N Engl J Med. 2005;352:2598-260815972866Google ScholarCrossref
Raz I, Elias D, Avron A, Metzger M, Cohen IR. Beta-cell function in newly-onset type 1 diabetes and immunomodulation with a heat shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial.  Lancet. 2001;358:1749-175311734230Google ScholarCrossref
Saudek F, Havrdova T, Boucek P, Novota P, Skibova J. Polyclonal anti-T-cell therapy for type 1 diabetes mellitus of recent onset.  Rev Diabet Stud. 2004;1:80-8817273515Google ScholarCrossref
Burt RK, Traynor A, Statkute L.  et al.  Nonmyeloablative hematopoietic stem cell transplantation for systemic lupus erythematous.  JAMA. 2006;295:527-53516449618Google ScholarCrossref
Burt RK, Slavin S, Burns WH, Marmont AM. Induction of tolerance in autoimmune diseases by hematopoietic stem cell transplantation: getting closer to a cure?  Blood. 2002;99:768-78411806976Google ScholarCrossref
Kang EM, Zickler PP, Burns S.  et al.  Hematopoietic stem cell transplantation prevents diabetes in NOD mice but does not contribute to significant islet cell regeneration once disease is established.  Exp Hematol. 2005;33:699-70515911094Google ScholarCrossref
Palmer JP, Fleming GA, Greenbaum CA.  et al.  C-peptide is the appropriate outcome measure for type 1 diabetes clinical trials to preserve beta-cell function.  Diabetes. 2004;53:250-26414693724Google ScholarCrossref
Weinhaus AJ, Bhagroo NV, Brelje TC, Sorenson RL. Dexamethasone counteracts the effect of prolactin on islet function: implications for islet regulation in late pregnancy.  Endocrinology. 2000;141:1384-139310746642Google ScholarCrossref
Steffes MW, Sibley S, Jackson M, Thomas W. Beta cell function and the development of diabetes-related complications in the diabetes control and complications trial.  Diabetes Care. 2003;26:832-83612610045Google ScholarCrossref
Au WY, Lie AK, Kung AW, Liang R, Hawkins BR, Kwong YL. Autoimmune thyroid dysfunction after hematopoietic stem cell transplantation.  Bone Marrow Transplant. 2005;35:383-38815640829Google ScholarCrossref
Eisenbarth GS, Gottlieb PA. Autoimmune polyendocrine syndromes.  N Engl J Med. 2004;350:2068-207915141045Google ScholarCrossref
Muraro PA, Douek DC, Packer A.  et al.  Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients.  J Exp Med. 2005;201:805-81615738052Google ScholarCrossref
Hussain MA, Theise ND. Stem-cell therapy for diabetes mellitus.  Lancet. 2004;364:203-20515246735Google ScholarCrossref
Couri CEB, Foss MC, Voltarelli JC. Secondary prevention of type 1 diabetes mellitus: stopping immune destruction and promoting beta-cell regeneration.  Braz J Med Biol Res. 2006;39:1271-128016941054Google ScholarCrossref
Nelson JL, Torrez R, Louie FM, Choe OS, Storb R, Sullivan KM. Pre-existing autoimmune disease in patients with long-term survival after allogeneic bone marrow transplantation.  J Rheumatol Suppl. 1997;48:23-29Google Scholar
Preliminary Communication
April 11, 2007

Autologous Nonmyeloablative Hematopoietic Stem Cell Transplantation in Newly Diagnosed Type 1 Diabetes Mellitus

Author Affiliations

Author Affiliations: Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil (Drs Voltarelli, Couri, Stracieri, Oliveira, Moraes, Pieroni, Coutinho, Malmegrim, Foss-Freitas, Simões, and Foss); Y's Therapeutic Inc, Bur lingame, Calif (Dr Squiers); and Division of Immunotherapy, Northwestern University, Chicago, Ill (Dr Burt).

JAMA. 2007;297(14):1568-1576. doi:10.1001/jama.297.14.1568

Context Type 1 diabetes mellitus (DM) results from a cell-mediated autoimmune attack against pancreatic beta cells. Previous animal and clinical studies suggest that moderate immunosuppression in newly diagnosed type 1 DM can prevent further loss of insulin production and can reduce insulin needs.

Objective To determine the safety and metabolic effects of high-dose immunosuppression followed by autologous nonmyeloablative hematopoietic stem cell transplantation (AHST) in newly diagnosed type 1 DM.

Design, Setting, and Participants A prospective phase 1/2 study of 15 patients with type 1 DM (aged 14-31 years) diagnosed within the previous 6 weeks by clinical findings and hyperglycemia and confirmed with positive antibodies against glutamic acid decarboxylase. Enrollment was November 2003-July 2006 with observation until February 2007 at the Bone Marrow Transplantation Unit of the School of Medicine of Ribeirão Preto, Ribeirão Preto, Brazil. Patients with previous diabetic ketoacidosis were excluded after the first patient with diabetic ketoacidosis failed to benefit from AHST. Hematopoietic stem cells were mobilized with cyclophosphamide (2.0 g/m2) and granulocyte colony-stimulating factor (10 μg/kg per day) and then collected from peripheral blood by leukapheresis and cryopreserved. The cells were injected intravenously after conditioning with cyclophosphamide (200 mg/kg) and rabbit antithymocyte globulin (4.5 mg/kg).

Main Outcome Measures Morbidity and mortality from transplantation and temporal changes in exogenous insulin requirements (daily dose and duration of usage). Secondary end points: serum levels of hemoglobin A1c, C-peptide levels during the mixed-meal tolerance test, and anti–glutamic acid decarboxylase antibody titers measured before and at different times following AHST.

Results During a 7- to 36-month follow-up (mean 18.8), 14 patients became insulin-free (1 for 35 months, 4 for at least 21 months, 7 for at least 6 months; and 2 with late response were insulin-free for 1 and 5 months, respectively). Among those, 1 patient resumed insulin use 1 year after AHST. At 6 months after AHST, mean total area under the C-peptide response curve was significantly greater than the pretreatment values, and at 12 and 24 months it did not change. Anti–glutamic acid decarboxylase antibody levels decreased after 6 months and stabilized at 12 and 24 months. Serum levels of hemoglobin A1c were maintained at less than 7% in 13 of 14 patients. The only acute severe adverse effect was culture-negative bilateral pneumonia in 1 patient and late endocrine dysfunction (hypothyroidism or hypogonadism) in 2 others. There was no mortality.

Conclusions High-dose immunosuppression and AHST were performed with acceptable toxicity in a small number of patients with newly diagnosed type 1 DM. With AHST, beta cell function was increased in all but 1 patient and induced prolonged insulin independence in the majority of the patients.

Trial Registration Identifier: NCT00315133