[Skip to Navigation]
Sign In
Figure 1.Plasmodium Life Cycle
Image description not available.

The morphology of Plasmodium life cycle stages varies between species. Those shown in the illustration are Plasmodium falciparum , except for the hypnozoite, which occurs only in Plasmodium vivax and Plasmodium ovale. In P falciparum , the mature asexual stages (eg, schizonts) are sequestered in the microvasculature of vital organs due to cytoadherence of infected erythrocytes to the capillary endothelium and are rarely seen circulating in the peripheral blood. (Blood film photomicrograph insets: Giemsa stain; source: Division of Parasitic Diseases/Centers for Disease Control and Prevention).

Figure 2. Malaria Treatment Algorithm
Image description not available.

*If species not yet identified is subsequently diagnosed as a non-falciparum infection, then complete treatment as per the identified species recommendations. G6PD indicates glucose-6-phosphate dehydrogenase. †Central America west of the Panama Canal, Mexico, Hispaniola, parts of China, and the Middle East. ‡All malaria-endemic countries except those listed in second footnote. §Contraindicated in pregnant women and children younger than 8 years of age. ∥Drug options for chloroquine-resistant P falciparum may also be used if chloroquine or hydroxychloroquine cannot be used.

Table. Antimalarial Drugs Available in the United States Recommended for Use in the Treatment of Malaria
Image description not available.
1.
Skarbinski J, James EM, Causer LM.  et al.  Malaria surveillance–United States, 2004.  MMWR Surveill Summ. 2006;55:23-3716723971Google Scholar
2.
Newman RD, Parise ME, Barber AM, Steketee RW. Malaria-related deaths among U.S. travelers, 1963-2001.  Ann Intern Med. 2004;141:547-55515466772Google ScholarCrossref
3.
Mendis K, Sina BJ, Marchesini P, Carter R. The neglected burden of Plasmodium vivax malaria.  Am J Trop Med Hyg. 2001;64:(1-2 suppl)  97-10615466772Google Scholar
4.
 Health Information for International Travel 2005-2006. Atlanta, Ga: Elsevier Inc; 2005
5.
Baird JK, Hoffman SL. Primaquine therapy for malaria.  Clin Infect Dis. 2004;39:1336-134515494911Google ScholarCrossref
6.
Marlar T, Myat Phone K, Aye Yu S, Khaing Khaing G, Ma S, Myint O. Development of resistance to chloroquine by Plasmodium vivax in Myanmar.  Trans R Soc Trop Med Hyg. 1995;89:307-3087660445Google ScholarCrossref
7.
Jamaiah I, Anuar AK, Najib NA, Zurainee MN. Imported malaria: a retrospective study in University Hospital, Kuala Lumpur, a ten-year experience.  Med J Malaysia. 1998;53:6-910968130Google Scholar
8.
Phan GT, De Vries PJ, Tran BQ.  et al.  Artemisinin or chloroquine for blood stage Plasmodium vivax malaria in Vietnam.  Trop Med Int Health. 2002;7:858-86412358621Google ScholarCrossref
9.
Singh RK. Emergence of chloroquine-resistant vivax malaria in south Bihar (India).  Trans R Soc Trop Med Hyg. 2000;94:32710975013Google ScholarCrossref
10.
Kurcer MA, Simsek Z, Kurcer Z. The decreasing efficacy of chloroquine in the treatment of Plasmodium vivax malaria, in Sanliurfa, south-eastern Turkey.  Ann Trop Med Parasitol. 2006;100:109-11316492358Google ScholarCrossref
11.
Kurcer MA, Simsek Z, Zeyrek FY.  et al.  Efficacy of chloroquine in the treatment of Plasmodium vivax malaria in Turkey.  Ann Trop Med Parasitol. 2004;98:447-45115257793Google ScholarCrossref
12.
Sinden REG. The malaria parasites. In: Warrell DA, Gilles HM, eds. Essential Malariology. 4th ed. London, England: Arnold; 2002:26, 30
13.
Molineaux L. The epidemiology of human malaria as an explanation of its distribution, including some implications for its control. In: Wernsdorfer WH, ed. Malaria, Principles and Practice of Malariology, Volume 2. Edinburgh, Scotland: Churchill Livingstone; 1988:927
14.
Garnham P. Malaria parasites of man: life-cycles and morphology. In: Wernsdorfer WH, McGregor I, eds. Malaria: Principles and Practice of Malariology, Volume 1. London, England: Churchill Livingstone; 1988:69
15.
Dorsey G, Gandhi M, Oyugi JH, Rosenthal PJ. Difficulties in the prevention, diagnosis, and treatment of imported malaria.  Arch Intern Med. 2000;160:2505-251010979063Google ScholarCrossref
16.
Moore TA, Tomayko JF Jr, Wierman AM, Rensimer ER, White AC Jr. Imported malaria in the 1990s: a report of 59 cases from Houston, Tex.  Arch Fam Med. 1994;3:130-1367994434Google ScholarCrossref
17.
Singh K, Wester WC, Trenholme GM. Problems in the therapy for imported malaria in the United States.  Arch Intern Med. 2003;163:2027-203014504115Google ScholarCrossref
18.
Svenson JE, MacLean JD, Gyorkos TW, Keystone J. Imported malaria: clinical presentation and examination of symptomatic travelers.  Arch Intern Med. 1995;155:861-8687717795Google ScholarCrossref
19.
Lynk A, Gold R. Review of 40 children with imported malaria.  Pediatr Infect Dis J. 1989;8:745-7502594448Google ScholarCrossref
20.
McCaslin RI, Pikis A, Rodriguez WJ. Pediatric Plasmodium falciparium malaria: a ten-year experience from Washington, DC.  Pediatr Infect Dis J. 1994;13:709-7157970971Google ScholarCrossref
21.
World Health Organization.  WHO Guidelines for the Treatment of Malaria. Geneva, Switzerland: WHO Press; 2000
22.
World Health Organization.  WHO Guidelines for the Treatment of Malaria. Geneva, Switzerland: WHO Press; 2006
23.
Beg MA, Khan R, Baig SM, Gulzar Z, Hussain R, Smego RA Jr. Cerebral involvement in benign tertian malaria.  Am J Trop Med Hyg. 2002;67:230-23212408660Google Scholar
24.
Curlin ME, Barat LM, Walsh DK, Granger DL. Noncardiogenic pulmonary edema during vivax malaria.  Clin Infect Dis. 1999;28:1166-116710452658Google ScholarCrossref
25.
Islam N, Qamruddin K. Unusual complications in benign tertian malaria.  Trop Geogr Med. 1995;47:141-1437483008Google Scholar
26.
Kochar DK, Saxena V, Singh N, Kochar SK, Kumar SV, Das A. Plasmodium vivax malaria.  Emerg Infect Dis. 2005;11:132-13415705338Google ScholarCrossref
27.
Muhlberger N, Jelinek T, Gascon J.  et al.  Epidemiology and clinical features of vivax malaria imported to Europe: sentinel surveillance data from TropNetEurop.  Malar J. 2004;3:515003128Google ScholarCrossref
28.
Sachdev HS, Mohan M. Vivax cerebral malaria.  J Trop Pediatr. 1985;31:213-2153900435Google ScholarCrossref
29.
Tanios MA, Kogelman L, McGovern B, Hassoun PM. Acute respiratory distress syndrome complicating Plasmodium vivax malaria.  Crit Care Med. 2001;29:665-66711373440Google ScholarCrossref
30.
Zingman BS, Viner BL. Splenic complications in malaria: case report and review.  Clin Infect Dis. 1993;16:223-2328443301Google ScholarCrossref
31.
Moody A. Rapid diagnostic tests for malaria parasites.  Clin Microbiol Rev. 2002;15:66-7811781267Google ScholarCrossref
32.
Greenwood BM, Bradley AK, Greenwood AM.  et al.  Mortality and morbidity from malaria among children in a rural area of The Gambia, West Africa.  Trans R Soc Trop Med Hyg. 1987;81:478-4863318021Google ScholarCrossref
33.
Kain KC, Gadd E, Gushulak B, McCarthy A, MacPherson D. Errors in treatment recommendations for severe malaria. Committee to Advise on Tropical Medicine and Travel (CATMAT).  Lancet. 1996;348:621-6228774603Google ScholarCrossref
34.
D’Acremont V, Landry P, Mueller I, Pecoud A, Genton B. Clinical and laboratory predictors of imported malaria in an outpatient setting: an aid to medical decision making in returning travelers with fever.  Am J Trop Med Hyg. 2002;66:481-48612201580Google Scholar
35.
Caillon E, Schmitt L, Moron P. Acute depressive symptoms after mefloquine treatment.  Am J Psychiatry. 1992;149:7121575269Google Scholar
36.
Ekue JM, Simooya OO, Sheth UK, Wernsdorfer WH, Njelesani EK. A double-blind clinical trial of a combination of mefloquine, sulfadoxine and pyrimethamine in symptomatic falciparum malaria.  Bull World Health Organ. 1985;63:339-3433893778Google Scholar
37.
Harinasuta T, Bunnag D, Wernsdorfer WH. A phase II clinical trial of mefloquine in patients with chloroquine-resistant falciparum malaria in Thailand.  Bull World Health Organ. 1983;61:299-3056345013Google Scholar
38.
Hennequin C, Bouree P, Bazin N, Bisaro F, Feline A. Severe psychiatric side effects observed during prophylaxis and treatment with mefloquine.  Arch Intern Med. 1994;154:2360-23627944858Google ScholarCrossref
39.
Luxemburger C, Nosten F, ter Kuiile F, Frejacques L, Chongsuphajaisiddhi T, White NJ. Mefloquine for multidrug-resistant malaria.  Lancet. 1991;338:12681682659Google ScholarCrossref
40.
Marsepoil T, Petithory J, Faucher JM, Ho P, Viriot E, Benaiche F. Encephalopathy and memory disorders during treatments with mefloquine [article in French].  Rev Med Interne. 1993;14:788-7918191092Google ScholarCrossref
41.
Patchen LC, Campbell CC, Williams SB. Neurologic reactions after a therapeutic dose of mefloquine.  N Engl J Med. 1989;321:1415-14162811953Google ScholarCrossref
42.
Phillips-Howard PA, ter Kuile FO. CNS adverse events associated with antimalarial agents: fact or fiction?  Drug Saf. 1995;12:370-3838527012Google ScholarCrossref
43.
Price R, van Vugt M, Phaipun L.  et al.  Adverse effects in patients with acute falciparum malaria treated with artemisinin derivatives.  Am J Trop Med Hyg. 1999;60:547-55510348227Google Scholar
44.
Rendi-Wagner P, Noedl H, Wernsdorfer WH, Wiedermann G, Mikolasek A, Kollaritsch H. Unexpected frequency, duration and spectrum of adverse events after therapeutic dose of mefloquine in healthy adults.  Acta Trop. 2002;81:167-17311801224Google ScholarCrossref
45.
Rouveix B, Bricaire F, Michon C.  et al.  Mefloquine and an acute brain syndrome.  Ann Intern Med. 1989;110:577-5782784297Google ScholarCrossref
46.
Sowunmi A. Acute psychosis after mefloquine: a case report.  East Afr Med J. 1994;71:818-8197705258Google Scholar
47.
Sowunmi A, Adio RA, Oduola AM, Ogundahunsi OA, Salako LA. Acute psychosis after mefloquine: report of six cases.  Trop Geogr Med. 1995;47:179-1808560592Google Scholar
48.
Sowunmi A, Salako LA, Oduola AM, Walker O, Akindele JA, Ogundahunsi OA. Neuropsychiatric side effects of mefloquine in Africans.  Trans R Soc Trop Med Hyg. 1993;87:462-4638249081Google ScholarCrossref
49.
Speich R, Haller A. Central anticholinergic syndrome with the antimalarial drug mefloquine.  N Engl J Med. 1994;331:57-588202114Google ScholarCrossref
50.
Weinke T, Trautmann M, Held T.  et al.  Neuropsychiatric side effects after the use of mefloquine.  Am J Trop Med Hyg. 1991;45:86-911867351Google Scholar
51.
Stuiver PC, Ligthelm RJ, Goud TJ. Acute psychosis after mefloquine.  Lancet. 1989;2:2822569094Google ScholarCrossref
52.
de Alencar FE, Cerutti C Jr, Durlacher RR.  et al.  Atovaquone and proguanil for the treatment of malaria in Brazil.  J Infect Dis. 1997;175:1544-15479180204Google ScholarCrossref
53.
Barata LC, Boulos M, Dutra AP. Use of tetracycline and quinine combination in the treatment of Plasmodium falciparum malaria [article in Portuguese].  Rev Soc Bras Med Trop. 1986;19:135-1373317560Google ScholarCrossref
54.
Bunnag D, Karbwang J, Na-Bangchang K, Thanavibul A, Chittamas S, Harinasuta T. Quinine-tetracycline for multidrug resistant falciparum malaria.  Southeast Asian J Trop Med Public Health. 1996;27:15-189031393Google Scholar
55.
Clyde DF, Gilman RH, McCarthy VC. Antimalarial effects of clindamycin in man.  Am J Trop Med Hyg. 1975;24:369-3701091172Google Scholar
56.
Colwell EJ, Hickman RL, Kosakal S. Quinine-tetracycline and quinine-bactrim treatment of acute falciparum malaria in Thailand.  Ann Trop Med Parasitol. 1973;67:125-1324578933Google Scholar
57.
Colwell EJ, Hickman RL, Kosakal S. Tetracycline treatment of chloroquine-resistant falciparum malaria in Thailand.  JAMA. 1972;220:684-6864553025Google ScholarCrossref
58.
Hall AP, Doberstyn EB, Nanokorn A, Sonkom P. Falciparum malaria semi-resistant to clindamycin.  Br Med J. 1975;2:12-141093609Google ScholarCrossref
59.
Karbwang J, Molunto P, Bunnag D, Harinasuta T. Plasma quinine levels in patients with falciparum malaria when given alone or in combination with tetracycline with or without primaquine.  Southeast Asian J Trop Med Public Health. 1991;22:72-761948263Google Scholar
60.
Karbwang J, Na-Bangchang K, Thanavibul A, Bunnag D, Chongsuphajaisiddhi T, Harinasuta T. Comparison of oral artesunate and quinine plus tetracycline in acute uncomplicated falciparum malaria.  Bull World Health Organ. 1994;72:233-2388205643Google Scholar
61.
Kremsner PG, Winkler S, Brandts C, Neifer S, Bienzle U, Graninger W. Clindamycin in combination with chloroquine or quinine is an effective therapy for uncomplicated Plasmodium falciparum malaria in children from Gabon.  J Infect Dis. 1994;169:467-4708106787Google ScholarCrossref
62.
Kremsner PG, Zotter GM, Feldmeier H, Graninger W, Rocha RM, Wiedermann G. A comparative trial of three regimens for treating uncomplicated falciparum malaria in Acre, Brazil.  J Infect Dis. 1988;158:1368-13713058821Google ScholarCrossref
63.
Looareesuwan S, Vanijanonta S, Viravan C.  et al.  Randomised trial of mefloquine-tetracycline and quinine-tetracycline for acute uncomplicated falciparum malaria.  Acta Trop. 1994;57:47-537942354Google ScholarCrossref
64.
Looareesuwan S, Wilairatana P, Vanijanonta S, Kyle D, Webster K. Efficacy of quinine-tetracycline for acute uncomplicated falciparum malaria in Thailand.  Lancet. 1992;339:3691346445Google ScholarCrossref
65.
McGready R, Cho T, Samuel .  et al.  Randomized comparison of quinine-clindamycin versus artesunate in the treatment of falciparum malaria in pregnancy.  Trans R Soc Trop Med Hyg. 2001;95:651-65611816439Google ScholarCrossref
66.
Metzger W, Mordmuller B, Graninger W, Bienzle U, Kremsner PG. High efficacy of short-term quinine-antibiotic combinations for treating adult malaria patients in an area in which malaria is hyperendemic.  Antimicrob Agents Chemother. 1995;39:245-2467695315Google ScholarCrossref
67.
Miller LH, Glew RH, Wyler DJ.  et al.  Evaluation of clindamycin in combination with quinine against multidrug-resistant strains of Plasmodium falciparum.  Am J Trop Med Hyg. 1974;23:565-5694603135Google Scholar
68.
Parola P, Ranque S, Badiaga S.  et al.  Controlled trial of 3-day quinine-clindamycin treatment versus 7-day quinine treatment for adult travelers with uncomplicated falciparum malaria imported from the tropics.  Antimicrob Agents Chemother. 2001;45:932-93511181383Google ScholarCrossref
69.
Pukrittayakamee S, Chantra A, Vanijanonta S, Clemens R, Looareesuwan S, White NJ. Therapeutic responses to quinine and clindamycin in multidrug-resistant falciparum malaria.  Antimicrob Agents Chemother. 2000;44:2395-239810952585Google ScholarCrossref
70.
Pukrittayakamee S, Chotivanich K, Chantra A, Clemens R, Looareesuwan S, White NJ. Activities of artesunate and primaquine against asexual- and sexual-stage parasites in falciparum malaria.  Antimicrob Agents Chemother. 2004;48:1329-133415047537Google ScholarCrossref
71.
Reacher M, Campbell CC, Freeman J, Doberstyn EB, Brandling-Bennett AD. Drug therapy for Plasmodium falciparum malaria resistant to pyrimethamine-sulfadoxine (Fansidar): a study of alternate regimens in Eastern Thailand, 1980.  Lancet. 1981;2:1066-10696118522Google ScholarCrossref
72.
Vaillant M, Millet P, Luty A.  et al.  Therapeutic efficacy of clindamycin in combination with quinine for treating uncomplicated malaria in a village dispensary in Gabon.  Trop Med Int Health. 1997;2:917-9199315051Google ScholarCrossref
73.
Vanijanonta S, Chantra A, Phophak N, Chindanond D, Clemens R, Pukrittayakamee S. Therapeutic effects of chloroquine in combination with quinine in uncomplicated falciparum malaria.  Ann Trop Med Parasitol. 1996;90:269-2758758141Google Scholar
74.
Andersen SL, Oloo AJ, Gordon DM.  et al.  Successful double-blinded, randomized, placebo-controlled field trial of azithromycin and doxycycline as prophylaxis for malaria in western Kenya.  Clin Infect Dis. 1998;26:146-1509455524Google ScholarCrossref
75.
Baudon D, Martet G, Pascal B, Bernard J, Keundjian A, Laroche R. Efficacy of daily antimalarial chemoprophylaxis in tropical Africa using either doxycycline or chloroquine-proguanil: a study conducted in 1996 in the French Army.  Trans R Soc Trop Med Hyg. 1999;93:302-30310492765Google ScholarCrossref
76.
Karwacki JJ, Shanks GD, Kummalue T, Watanasook C. Primaquine induced hemolysis in a Thai soldier.  Southeast Asian J Trop Med Public Health. 1989;20:555-5562639511Google Scholar
77.
Ohrt C, Richie TL, Widjaja H.  et al.  Mefloquine compared with doxycycline for the prophylaxis of malaria in Indonesian soldiers: a randomized, double-blind, placebo-controlled trial.  Ann Intern Med. 1997;126:963-9729182474Google ScholarCrossref
78.
Pang L, Limsomwong N, Singharaj P. Prophylactic treatment of vivax and falciparum malaria with low-dose doxycycline.  J Infect Dis. 1988;158:1124-11273053925Google ScholarCrossref
79.
Pang LW, Limsomwong N, Boudreau EF, Singharaj P. Doxycycline prophylaxis for falciparum malaria.  Lancet. 1987;1:1161-11642883488Google ScholarCrossref
80.
Rieckmann KH, Yeo AE, Davis DR, Hutton DC, Wheatley PF, Simpson R. Recent military experience with malaria chemoprophylaxis.  Med J Aust. 1993;158:446-4498469191Google Scholar
81.
Sanchez JL, DeFraites RF, Sharp TW, Hanson RK. Mefloquine or doxycycline prophylaxis in US troops in Somalia.  Lancet. 1993;341:1021-10228096898Google ScholarCrossref
82.
Shamiss A, Atar E, Zohar L, Cain Y. Mefloquine versus doxycycline for malaria prophylaxis in intermittent exposure of Israeli Air Force aircrew in Rwanda.  Aviat Space Environ Med. 1996;67:872-8739025805Google Scholar
83.
Shanks GD, Barnett A, Edstein MD, Rieckmann KH. Effectiveness of doxycycline combined with primaquine for malaria prophylaxis.  Med J Aust. 1995;162:306-307, 309-3107715493Google Scholar
84.
Shanks GD, Roessler P, Edstein MD, Rieckmann KH. Doxycycline for malaria prophylaxis in Australian soldiers deployed to United Nations missions in Somalia and Cambodia.  Mil Med. 1995;160:443-4457478027Google Scholar
85.
Taylor WR, Richie TL, Fryauff DJ.  et al.  Malaria prophylaxis using azithromycin: a double-blind, placebo-controlled trial in Irian Jaya, Indonesia.  Clin Infect Dis. 1999;28:74-8110028075Google ScholarCrossref
86.
Adehossi E, Parola P, Foucault C.  et al.  Three-day quinine-clindamycin treatment of uncomplicated falciparum malaria imported from the tropics.  Antimicrob Agents Chemother. 2003;47:117312604566Google ScholarCrossref
87.
Ramharter M, Oyakhirome S, Klouwenberg PK.  et al.  Artesunate-clindamycin versus quinine-clindamycin in the treatment of Plasmodium falciparum malaria: a randomized controlled trial.  Clin Infect Dis. 2005;40:1777-178415909266Google ScholarCrossref
88.
Duarte EC, Fontes CJ, Gyorkos TW, Abrahamowicz M. Randomized controlled trial of artesunate plus tetracycline versus standard treatment (quinine plus tetracycline) for uncomplicated Plasmodium falciparum malaria in Brazil.  Am J Trop Med Hyg. 1996;54:197-2028619447Google Scholar
89.
Silamut K, Molunto P, Ho M, Davis TM, White NJ. Alpha 1-acid glycoprotein (orosomucoid) and plasma protein binding of quinine in falciparum malaria.  Br J Clin Pharmacol. 1991;32:311-3151777366Google ScholarCrossref
90.
Winstanley P, Newton C, Watkins W.  et al.  Towards optimal regimens of parenteral quinine for young African children with cerebral malaria: the importance of unbound quinine concentration.  Trans R Soc Trop Med Hyg. 1993;87:201-2068337730Google ScholarCrossref
91.
White NJ. The treatment of malaria.  N Engl J Med. 1996;335:800-8068703186Google ScholarCrossref
92.
Di Perri G, Allegranzi B, Bonora S. Quinine-induced blindness reversed by an increase in alpha1-acid glycoprotein level.  Ann Intern Med. 2002;136:33911848734Google ScholarCrossref
93.
 Severe falciparum malaria: World Health Organization, Communicable Diseases Cluster.  Trans R Soc Trop Med Hyg. 2000;94:(suppl 1)  S1-S9011103309Google Scholar
94.
Anabwani G, Canfield CJ, Hutchinson DB. Combination atovaquone and proguanil hydrochloride vs. halofantrine for treatment of acute Plasmodium falciparum malaria in children.  Pediatr Infect Dis J. 1999;18:456-46110353520Google ScholarCrossref
95.
Blanchard TJ, Mabey DC, Hunt-Cooke A.  et al.  Multiresistant falciparum malaria cured using atovaquone and proguanil.  Trans R Soc Trop Med Hyg. 1994;88:6937886775Google ScholarCrossref
96.
Bouchaud O, Monlun E, Muanza K.  et al.  Atovaquone plus proguanil versus halofantrine for the treatment of imported acute uncomplicated Plasmodium falciparum malaria in non-immune adults: a randomized comparative trial.  Am J Trop Med Hyg. 2000;63:274-27911421377Google Scholar
97.
Bustos DG, Canfield CJ, Canete-Miguel E, Hutchinson DB. Atovaquone-proguanil compared with chloroquine and chloroquine-sulfadoxine-pyrimethamine for treatment of acute Plasmodium falciparum malaria in the Philippines.  J Infect Dis. 1999;179:1587-159010228090Google ScholarCrossref
98.
Giao PT, De Vries PJ, Hung LQ, Binh TQ, Nam NV, Kager PA. Atovaquone-proguanil for recrudescent Plasmodium falciparum in Vietnam.  Ann Trop Med Parasitol. 2003;97:575-58014511555Google ScholarCrossref
99.
Lacy MD, Maguire JD, Barcus MJ.  et al.  Atovaquone/proguanil therapy for Plasmodium falciparum and Plasmodium vivax malaria in Indonesians who lack clinical immunity.  Clin Infect Dis. 2002;35:e92-e9512384852Google ScholarCrossref
100.
Llanos-Cuentas A, Campos P, Clendenes M, Canfield CJ, Hutchinson DB. Atovaquone and proguani hydrochloride compared with chloroquine or pyrimethamine/sulfodaxine for treatment of acute Plasmodium falciparum malaria in Peru.  Braz J Infect Dis. 2001;5:67-7211493411Google ScholarCrossref
101.
Looareesuwan S, Viravan C, Webster HK, Kyle DE, Hutchinson DB, Canfield CJ. Clinical studies of atovaquone, alone or in combination with other antimalarial drugs, for treatment of acute uncomplicated malaria in Thailand.  Am J Trop Med Hyg. 1996;54:62-668651372Google Scholar
102.
Looareesuwan S, Wilairatana P, Chalermarut K, Rattanapong Y, Canfield CJ, Hutchinson DB. Efficacy and safety of atovaquone/proguanil compared with mefloquine for treatment of acute Plasmodium falciparum malaria in Thailand.  Am J Trop Med Hyg. 1999;60:526-53210348224Google Scholar
103.
Malvy D, Djossou F, Vatan R.  et al.  Experience with the combination atovaquone-proguanil in the treatment of uncomplicated Plasmodium falciparum malaria—report of 112 cases [article in French].  Med Trop (Mars). 2002;62:229-23112244916Google Scholar
104.
Mulenga M, Sukwa TY, Canfield CJ, Hutchinson DB. Atovaquone and proguanil versus pyrimethamine/sulfadoxine for the treatment of acute falciparum malaria in Zambia.  Clin Ther. 1999;21:841-85210397379Google ScholarCrossref
105.
Radloff PD, Philipps J, Nkeyi M, Hutchinson D, Kremsner PG. Atovaquone and proguanil for Plasmodium falciparum malaria.  Lancet. 1996;347:1511-15148684102Google ScholarCrossref
106.
Sabchareon A, Attanath P, Phanuaksook P.  et al.  Efficacy and pharmacokinetics of atovaquone and proguanil in children with multidrug-resistant Plasmodium falciparum malaria.  Trans R Soc Trop Med Hyg. 1998;92:201-2069764334Google ScholarCrossref
107.
Thybo S, Gjorup I, Ronn AM, Meyrowitsch D, Bygberg IC. Atovaquone-proguanil (malarone): an effective treatment for uncomplicated Plasmodium falciparum malaria in travelers from Denmark.  J Travel Med. 2004;11:220-22315541224Google ScholarCrossref
108.
Uchiyama H, Okamoto A, Sato K.  et al.  Quinine-resistant severe falciparum malaria effectively treated with atovaquone and proguanil hydrochloride combination therapy.  Intern Med. 2004;43:624-62715335195Google ScholarCrossref
109.
van Vugt M, Leonardi E, Phaipun L.  et al.  Treatment of uncomplicated multidrug-resistant falciparum malaria with artesunate-atovaquone-proguanil.  Clin Infect Dis. 2002;35:1498-150412471569Google ScholarCrossref
110.
David KP, Alifrangis M, Salanti A, Vestergaard LS, Ronn A, Bygbjerg IB. Atovaquone/proguanil resistance in Africa: a case report.  Scand J Infect Dis. 2003;35:897-89814723376Google ScholarCrossref
111.
Farnert A, Lindberg J, Gil P.  et al.  Evidence of Plasmodium falciparum malaria resistant to atovaquone and proguanil hydrochloride: case reports.  BMJ. 2003;326:628-62912649236Google ScholarCrossref
112.
Fivelman QL, Butcher GA, Adagu IS, Warhurst DC, Pasvol G. Malarone treatment failure and in vitro confirmation of resistance of Plasmodium falciparum isolate from Lagos, Nigeria.  Malar J. 2002;1:112057021Google ScholarCrossref
113.
Schwartz E, Bujanover S, Kain KC. Genetic confirmation of atovaquone-proguanil-resistant Plasmodium falciparum malaria acquired by a nonimmune traveler to East Africa.  Clin Infect Dis. 2003;37:450-45112884171Google ScholarCrossref
114.
Wichmann O, Muehlen M, Gruss H, Mockenhaupt FP, Suttorp N, Jelinek T. Malarone treatment failure not associated with previously described mutations in the cytochrome b gene.  Malar J. 2004;3:1415186499Google ScholarCrossref
115.
Kuhn S, Gill MJ, Kain KC. Emergence of atovaquone-proguanil resistance during treatment of Plasmodium falciparum malaria acquired by a non-immune north American traveller to west Africa.  Am J Trop Med Hyg. 2005;72:407-40915827276Google Scholar
116.
Schwobel B, Alifrangis M, Salanti A, Jelinek T. Different mutation patterns of atovaquone resistance to Plasmodium falciparum in vitro and in vivo: rapid detection of codon 268 polymorphisms in the cytochrome b as potential in vivo resistance marker.  Malar J. 2003;2:512665429Google ScholarCrossref
117.
Boggild AK, Parise ME.  et al.  Atovaquone-proguanil: report from a CDC expert meeting on malaria chemoprophylaxis (II).  Am J Trop Med Hyg. 2007;76:208-22317297027Google Scholar
118.
 Health Information for International Travel 2007-2008. Atlanta, Ga: Elsevier; 2007
119.
 Product information: Larium brand of mefloquine hydrochloride tablets. Bas, Switzerland: Hoffman-La Roche; 2002
120.
Hall AP, Doberstyn EB, Karnchanachetanee C.  et al.  Sequential treatment with quinine and mefloquine or quinine and pyrimethamine-sulfadoxine for falciparum malaria.  Br Med J. 1977;1:1626-1628326337Google ScholarCrossref
121.
Baird JK, Sustriayu Nalim MF, Basri H.  et al.  Survey of resistance to chloroquine by Plasmodium vivax in Indonesia.  Trans R Soc Trop Med Hyg. 1996;90:409-4118882190Google ScholarCrossref
122.
Baird JK, Wiady I, Fryauff DJ.  et al.  In vivo resistance to chloroquine by Plasmodium vivax and Plasmodium falciparum at Nabire, Irian Jaya, Indonesia.  Am J Trop Med Hyg. 1997;56:627-6319230793Google Scholar
123.
Fryauff DJ, Tuti S, Mardi A.  et al.  Chloroquine-resistant Plasmodium vivax in transmigration settlements of West Kalimantan, Indonesia.  Am J Trop Med Hyg. 1998;59:513-5189790420Google Scholar
124.
Murphy GS, Basri H, Purnomo HB.  et al.  Vivax malaria resistant to treatment and prophylaxis with chloroquine.  Lancet. 1993;341:96-1008093414Google ScholarCrossref
125.
Rieckmann KH, Davis DR, Hutton DC. Plasmodium vivax resistance to chloroquine?  Lancet. 1989;2:1183-11842572903Google ScholarCrossref
126.
Schuurkamp GJ, Spicer PE, Kereu RK, Bulungol PK, Rieckmann KH. Chloroquine-resistant Plasmodium vivax in Papua New Guinea.  Trans R Soc Trop Med Hyg. 1992;86:121-1221440763Google ScholarCrossref
127.
Sumawinata IW, Subianto B, Leksana B.  et al.  Very high risk of therapeutic failure with chloroquine for uncomplicated Plasmodium falciparum and P. vivax malaria in Indonesian Papua.  Am J Trop Med Hyg. 2003;68:416-42012875290Google Scholar
128.
Whitby M, Wood G, Veenendaal JR, Rieckmann K. Chloroquine-resistant Plasmodium vivax.  Lancet. 1989;2:13952574333Google ScholarCrossref
129.
Alcantara AK, Uylangco CV, Sangalang RP, Cross JH. A comparative clinical study of mefloquine and chloroquine in the treatment of vivax malaria.  Southeast Asian J Trop Med Public Health. 1985;16:534-5383915155Google Scholar
130.
Collignon P. Chloroquine resistance in Plasmodium vivax.  J Infect Dis. 1991;164:222-2232056216Google ScholarCrossref
131.
Dixon KE, Pitaktong U, Phintuyothin P. A clinical trial of mefloquine in the treatment of Plasmodium vivax malaria.  Am J Trop Med Hyg. 1985;34:435-4373890575Google Scholar
132.
Hanna J. Chloroquine-resistant Plasmodium vivax: how common?  Med J Aust. 1993;158:502-5038469207Google Scholar
133.
Harinasuta T, Bunnag D, Lasserre R, Leimer R, Vinijanont S. Trials of mefloquine in vivax and of mefloquine plus “fansidar” in falciparum malaria.  Lancet. 1985;1:885-8882858743Google ScholarCrossref
134.
Pukrittayakamee S, Chantra A, Simpson JA.  et al.  Therapeutic responses to different antimalarial drugs in vivax malaria.  Antimicrob Agents Chemother. 2000;44:1680-168510817728Google ScholarCrossref
135.
Schwartz IK, Lackritz EM, Patchen LC. Chloroquine-resistant Plasmodium vivax from Indonesia.  N Engl J Med. 1991;324:9272000121Google ScholarCrossref
136.
Maguire JD, Krisin , Marwoto H, Richie TL, Fryauff DJ, Baird JK. Mefloquine is highly efficacious against chloroquine-resistant Plasmodium vivax malaria and Plasmodium falciparum malaria in Papua, Indonesia.  Clin Infect Dis. 2006;42:1067-107216575721Google ScholarCrossref
137.
Looareesuwan S, Wilairatana P, Glanarongran R.  et al.  Atovaquone and proguanil hydrochloride followed by primaquine for treatment of Plasmodium vivax malaria in Thailand.  Trans R Soc Trop Med Hyg. 1999;93:637-64010717754Google ScholarCrossref
138.
Baird JK, Basri H, Subianto B.  et al.  Treatment of chloroquine-resistant Plasmodium vivax with chloroquine and primaquine or halofantrine.  J Infect Dis. 1995;171:1678-16827769318Google ScholarCrossref
139.
 Glucose-6-phosphate dehydrogenase deficiency.  Bull World Health Organ. 1989;67:601-6112633878Google Scholar
140.
Hill DR, Baird JK, Parise ME, Lewis LS, Ryan ET, Magill AJ. Primaquine: report from CDC expert meeting on malaria chemoprophylaxis I.  Am J Trop Med Hyg. 2006;75:402-41516968913Google Scholar
141.
Povinelli L, Monson TA, Fox BC, Parise ME, Morrisey JM, Vaidya AB. Plasmodium vivax malaria in spite of atovaquone/proguanil (malarone) prophylaxis.  J Travel Med. 2003;10:353-35514642204Google ScholarCrossref
142.
Jimenez BC, Navarro M, Huerga H, Lopez-Roman E, Mendoza A, Lopez-Velez R. Tertian malaria (Plasmodium vivax and Plasmodium ovale) in two travelers despite atovaquone-proguanil prophylaxis.  J Travel Med. 2006;13:373-37517107431Google ScholarCrossref
143.
Alving AS, Johnson CF, Tarlov AR, Brewer GJ, Kellermeyer RW, Carson PE. Mitigation of the haemolytic effect of primaquine and enhancement of its action against exoerythrocytic forms of the Chesson strain of Plasmodium vivax by intermittent regimens of drug administration: a preliminary report.  Bull World Health Organ. 1960;22:621-63113793053Google Scholar
144.
Myat-Phone K, Myint O, Myint L, Thaw Z, Kyin Hla A, Nwe Nwe Y. Emergence of chloroquine-resistant Plasmodium vivax in Myanmar (Burma).  Trans R Soc Trop Med Hyg. 1993;87:6878296378Google ScholarCrossref
145.
Miller KD, Greenberg AE, Campbell CC. Treatment of severe malaria in the United States with a continuous infusion of quinidine gluconate and exchange transfusion.  N Engl J Med. 1989;321:65-702659994Google ScholarCrossref
146.
Phillips RE, Warrell DA, White NJ, Looareesuwan S, Karbwang J. Intravenous quinidine for the treatment of severe falciparum malaria: clinical and pharmacokinetic studies.  N Engl J Med. 1985;312:1273-12783887162Google ScholarCrossref
147.
van Hensbroek MB, Onyiorah E, Jaffar S.  et al.  A trial of artemether or quinine in children with cerebral malaria.  N Engl J Med. 1996;335:69-758649492Google ScholarCrossref
148.
Newton PN, Angus BJ, Chierakul W.  et al.  Randomized comparison of artesunate and quinine in the treatment of severe falciparum malaria.  Clin Infect Dis. 2003;37:7-1612830403Google ScholarCrossref
149.
Molyneux ME, Taylor TE, Thomas CG, Mansor S, Wirima JJ. Efficacy of quinine for falciparum malaria according to previous chloroquine exposure.  Lancet. 1991;337:1379-13801674766Google ScholarCrossref
150.
Zucker JR, Campbell CC. Malaria: principles of prevention and treatment.  Infect Dis Clin North Am. 1993;7:547-5678254159Google Scholar
151.
White NJ, Looareesuwan S, Warrell DA, Chongsuphajaisiddhi T, Bunnag D, Harinasuta T. Quinidine in falciparum malaria.  Lancet. 1981;2:1069-10716118523Google ScholarCrossref
152.
 Availability and use of parenteral quinidine gluconate for severe or complicated malaria.  MMWR Morb Mortal Wkly Rep. 2000;49:1138-114011190119Google Scholar
153.
Humar A, Sharma S, Zoutman D, Kain KC. Fatal falciparum malaria in Canadian travellers.  CMAJ. 1997;156:1165-11679141989Google Scholar
154.
Rosenthal PJ, Peterson C, Geertsma FR, Kohl S. Availability of intravenous quinidine for falciparum malaria.  N Engl J Med. 1996;335:1388649491Google ScholarCrossref
155.
Murphy S, English M, Waruiru C.  et al.  An open randomized trial of artemether versus quinine in the treatment of cerebral malaria in African children.  Trans R Soc Trop Med Hyg. 1996;90:298-3018758084Google ScholarCrossref
156.
Warrell DA, Looareesuwan S, Warrell MJ.  et al.  Dexamethasone proves deleterious in cerebral malaria: a double-blind trial in 100 comatose patients.  N Engl J Med. 1982;306:313-3197033788Google ScholarCrossref
157.
White NJ, Warrell DA. Managing cerebral malaria.  Br Med J (Clin Res Ed). 1982;285:439-4406809117Google ScholarCrossref
158.
Dondorp A, Nosten F, Stepniewska K, Day N, White N. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial.  Lancet. 2005;366:717-72516125588Google ScholarCrossref
159.
Hoontrakoon S, Suputtamongkol Y. Exchange transfusion as an adjunct to the treatment of severe falciparum malaria.  Trop Med Int Health. 1998;3:156-1619537279Google ScholarCrossref
160.
Looareesuwan S, Phillips RE, Karbwang J, White NJ, Flegg PJ, Warrell DA. Plasmodium falciparum hyperparasitaemia: use of exchange transfusion in seven patients and a review of the literature.  Q J Med. 1990;75:471-4812201995Google Scholar
161.
Burchard GD, Kroger J, Knobloch J.  et al.  Exchange blood transfusion in severe falciparum malaria: retrospective evaluation of 61 patients treated with, compared to 63 patients treated without, exchange transfusion.  Trop Med Int Health. 1997;2:733-7409294542Google ScholarCrossref
162.
Powell VI, Grima K. Exchange transfusion for malaria and Babesia infection.  Transfus Med Rev. 2002;16:239-25012075561Google ScholarCrossref
163.
Pasvol G, Jacobs M. What is the future of exchange transfusion for falciparum malaria?  J Infect. 1999;39:183-18410714791Google ScholarCrossref
164.
Riddle MS, Jackson JL, Sanders JW, Blazes DL. Exchange transfusion as an adjunct therapy in severe Plasmodium falciparum malaria: a meta-analysis.  Clin Infect Dis. 2002;34:1192-119811941545Google ScholarCrossref
165.
Crawley J, Waruiru C, Mithwani S.  et al.  Effect of phenobarbital on seizure frequency and mortality in childhood cerebral malaria: a randomised, controlled intervention study.  Lancet. 2000;355:701-70610703801Google ScholarCrossref
166.
Kochar D, Kumawat B, Bajiya HN, Chauhan S, Kochar SK, Agarwal RP. Prophylactic role of single dose phenobarbitone in preventing convulsions in cerebral malaria.  J Assoc Physicians India. 1997;45:123-124Google Scholar
167.
White NJ, Looareesuwan S, Phillips RE, Chanthavanich P, Warrell DA. Single dose phenobarbitone prevents convulsions in cerebral malaria.  Lancet. 1988;2:64-662898696Google ScholarCrossref
168.
Hoffman SL, Rustama D, Punjabi NH.  et al.  High-dose dexamethasone in quinine-treated patients with cerebral malaria: a double-blind, placebo-controlled trial.  J Infect Dis. 1988;158:325-3313042874Google ScholarCrossref
169.
Prasad K, Garner P. Steroids for treating cerebral malaria.  Cochrane Database Syst Rev. 2000;(2):CD00097210796562Google Scholar
170.
Borochovitz D, Crosley AL, Metz J. Disseminated intravascular coagulation with fatal haemorrhage in cerebral malaria.  Br Med J. 1970;2:7105429658Google ScholarCrossref
171.
Hemmer CJ. Neither heparin nor acetylsalicylic acid influence the clinical course in human Plasmodium falciparum malaria: a prospective randomized study.  Am J Trop Med Hyg. 1991;45:608-6121951871Google Scholar
172.
Munir M, Tjandra H, Rampengan TH, Mustadjab I, Wulur FH. Heparin in the treatment of cerebral malaria.  Paediatr Indones. 1980;20:47-506988763Google Scholar
173.
Punyagupta S, Srichaikul T, Akarawong K. The use of heparin in fatal pulmonary edema due to acute falciparum malaria.  J Med Assoc Thai. 1972;55:121-1314552547Google Scholar
174.
Punyagupta S, Srichaikul T, Nitiyanant P, Petchclai B. Acute pulmonary insufficiency in falciparum malaria: summary of 12 cases with evidence of disseminated intravascular coagulation.  Am J Trop Med Hyg. 1974;23:551-5594603133Google Scholar
175.
Rampengan TH. Cerebral malaria in children: comparative study between heparin, dexamethasone and placebo.  Paediatr Indones. 1991;31:59-661852471Google Scholar
176.
Reid HA. Letter: Adjuvant treatment of severe falciparum malaria, intravascular coagulation, and heparin.  Lancet. 1975;1:167-16846084Google ScholarCrossref
177.
Thuma PE, Mabeza GF, Biemba G.  et al.  Effect of iron chelation therapy on mortality in Zambian children with cerebral malaria.  Trans R Soc Trop Med Hyg. 1998;92:214-2189764337Google ScholarCrossref
178.
Thuma PE, Olivieri NF, Mabeza GF.  et al.  Assessment of the effect of the oral iron chelator deferiprone on asymptomatic Plasmodium falciparum parasitemia in humans.  Am J Trop Med Hyg. 1998;58:358-3649546419Google Scholar
179.
Looareesuwan S, Wilairatana P, Vannaphan S.  et al.  Pentoxifylline as an ancillary treatment for severe falciparum malaria in Thailand.  Am J Trop Med Hyg. 1998;58:348-3539546417Google Scholar
180.
Agbenyega T, Planche T, Bedu-Addo G.  et al.  Population kinetics, efficacy, and safety of dichloroacetate for lactic acidosis due to severe malaria in children.  J Clin Pharmacol. 2003;43:386-39612723459Google ScholarCrossref
181.
Parise M, Lewis LS. Severe malaria: North American perspective. In: Feldman CSG, ed. Tropical and Parasitic Infections in the ICU. New York, NY: Springer Science+Business Media Inc; 2005:17-37
182.
Phillips RE, Looareesuwan S, White NJ.  et al.  Hypoglycaemia and antimalarial drugs: quinidine and release of insulin.  Br Med J (Clin Res Ed). 1986;292:1319-13213085830Google ScholarCrossref
183.
White NJ, Warrell DA, Chanthavanich P.  et al.  Severe hypoglycemia and hyperinsulinemia in falciparum malaria.  N Engl J Med. 1983;309:61-666343877Google ScholarCrossref
184.
White N. Controversies in the management of severe falciparum malaria. In: Pasvol G, ed. Balliere's Clinical Infectious Diseases: Malaria [Volume 2]. London, England: Baillière Tindall; 1995:309-330
185.
Butler T, Tong MJ, Fletcher JR, Dostalek RJ, Robbins TO. Blood coagulation studies in Plasmodium falciparum malaria.  Am J Med Sci. 1973;265:63-674571281Google ScholarCrossref
186.
Phillips RE, Looareesuwan S, Warrell DA.  et al.  The importance of anaemia in cerebral and uncomplicated falciparum malaria: role of complications, dyserythropoiesis and iron sequestration.  Q J Med. 1986;58:305-3233526385Google Scholar
187.
Marino P. The ICU Book. 2nd ed. Baltimore, Md: Williams & Wilkins; 1998
188.
Davis TM, Pukrittayakamee S, Woodhead JS, Holloway P, Chaivisuth B, White NJ. Calcium and phosphate metabolism in acute falciparum malaria.  Clin Sci (Lond). 1991;81:297-3041655329Google Scholar
189.
Newton CR, Hien TT, White N. Cerebral malaria.  J Neurol Neurosurg Psychiatry. 2000;69:433-44110990500Google ScholarCrossref
190.
U.D.E. Group, ed.  USP DI Drug Information for the Healthcare Provider. 23rd ed. Taunton, Mass: Micromedex Inc; 2003
191.
Conchie JM, Munroe JD, Anderson DO. The incidence of staining of permanent teeth by the tetracyclines.  Can Med Assoc J. 1970;203:351-3565447715Google Scholar
192.
Dubos F, Delattre P, Demar M, Carme B, Gendrel D. Safety of mefloquine in infants with acute falciparum malaria.  Pediatr Infect Dis J. 2004;23:679-68115247612Google ScholarCrossref
193.
Luxemburger C, Price RN, Nosten F, Ter Kuile FO, Chongsuphajaisiddhi T, White NJ. Mefloquine in infants and young children.  Ann Trop Paediatr. 1996;16:281-2868985524Google Scholar
194.
Sowunmi A, Oduola AM. Open comparison of mefloquine, mefloquine/sulfadoxine/pyrimethamine and chloroquine in acute uncomplicated falciparum malaria in children.  Trans R Soc Trop Med Hyg. 1995;89:303-3057660443Google ScholarCrossref
195.
ter Kuile FO, Nosten F, Luxemburger C.  et al.  Mefloquine treatment of acute falciparum malaria: a prospective study of non-serious adverse effects in 3673 patients.  Bull World Health Organ. 1995;73:631-6428846489Google Scholar
196.
ter Kuile FO, Nosten F, Thieren M.  et al.  High-dose mefloquine in the treatment of multidrug-resistant falciparum malaria.  J Infect Dis. 1992;166:1393-14001431257Google ScholarCrossref
197.
 Canadian recommendations for the prevention and treatment of malaria among international travellers. Committee to Advise on Tropical Medicine and Travel CATMAT), Laboratory for Disease Control.  Can Commun Dis Rep. 2000;26:(suppl 2)  i-vi, 1-4211055082Google Scholar
198.
Looareesuwan S, Phillips RE, White NJ.  et al.  Quinine and severe falciparum malaria in late pregnancy.  Lancet. 1985;2:4-82861481Google ScholarCrossref
199.
McGready R, Keo NK, Villegas L, White NJ, Looareesuwan S, Nosten F. Artesunate-atovaquone-proguanil rescue treatment of multidrug-resistant Plasmodium falciparum malaria in pregnancy: a preliminary report.  Trans R Soc Trop Med Hyg. 2003;97:592-59415307434Google ScholarCrossref
200.
McGready R, Stepniewska K, Edstein MD.  et al.  The pharmacokinetics of atovaquone and proguanil in pregnant women with acute falciparum malaria.  Eur J Clin Pharmacol. 2003;59:545-55212955371Google ScholarCrossref
201.
Nosten F, Vincenti M, Simpson J.  et al.  The effects of mefloquine treatment in pregnancy.  Clin Infect Dis. 1999;28:808-81510825043Google ScholarCrossref
202.
Nosten F, Karbwang J, White NJ.  et al.  Mefloquine antimalarial prophylaxis in pregnancy: dose finding and pharmacokinetic study.  Br J Clin Pharmacol. 1990;30:79-852390434Google ScholarCrossref
203.
Nosten F, ter Kuile F, Maelankiri L.  et al.  Mefloquine prophylaxis prevents malaria during pregnancy: a double-blind, placebo-controlled study.  J Infect Dis. 1994;169:595-6038158032Google ScholarCrossref
204.
Phillips-Howard PA, Steffen R, Kerr L.  et al.  Safety of mefloquine and other antimalarial agents in the first trimester of pregnancy.  J Travel Med. 1998;5:121-1269772329Google ScholarCrossref
205.
Steketee RW, Wirima JJ, Slutsker L, Khoromana CO, Heymann DL, Breman JG. Malaria treatment and prevention in pregnancy: indications for use and adverse events associated with use of chloroquine or mefloquine.  Am J Trop Med Hyg. 1996;55:(suppl)  50-568702037Google Scholar
206.
Vanhauwere B, Maradit H, Kerr L. Post-marketing surveillance of prophylactic mefloquine (Lariam) use in pregnancy.  Am J Trop Med Hyg. 1998;58:17-219452285Google Scholar
207.
Lackritz EM, Lobel HO, Howell BJ, Bloland P, Campbell CC. Imported Plasmodium falciparum malaria in American travelers to Africa: implications for prevention strategies.  JAMA. 1991;265:383-3851984539Google ScholarCrossref
208.
Lobel HO, Campbell CC, Schwartz IK, Roberts JM. Recent trends in the importation of malaria caused by Plasmodium falciparum into the United States from Africa.  J Infect Dis. 1985;152:613-6173897400Google ScholarCrossref
209.
Nahlen BL, Lobel HO, Cannon SE, Campbell CC. Reassessment of blood donor selection criteria for United States travelers to malarious areas.  Transfusion. 1991;31:798-8041755083Google ScholarCrossref
Clinical Review
Clinician's Corner
May 23/30, 2007

Treatment of Malaria in the United States: A Systematic Review

Author Affiliations
 

Clinical Review Section Editor: Michael S. Lauer, MD. We encourage authors to submit papers for consideration as a Clinical Review. Please contact Michael S. Lauer, MD, at lauerm@ccf.org.

 

Author Affiliations: Malaria Branch, Division of Parasitic Diseases, National Center for Zoonotic, Vector-Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Ga (Drs Griffith and Parise and Ms Mali); and Butte County Department of Public Health, Oroville, Calif (Dr Lewis). Dr Griffith is now with the Bacterial Diseases Branch, Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vector-Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention. Dr Parise is now with the Parasitic Diseases Branch, Division of Parasitic Diseases, National Center for Zoonotic, Vector-Borne and Enteric Diseases, Centers for Disease Control and Prevention.

JAMA. 2007;297(20):2264-2277. doi:10.1001/jama.297.20.2264
Abstract

Context Many US clinicians and laboratory personnel are unfamiliar with the diagnosis and treatment of malaria.

Objectives To examine the evidence base for management of uncomplicated and severe malaria and to provide clinicians with practical recommendations for the diagnosis and treatment of malaria in the United States.

Evidence Acquisition Systematic MEDLINE search from 1966 to 2006 using the search term malaria (with the subheadings congenital, diagnosis, drug therapy, epidemiology, and therapy). Additional references were obtained from searching the bibliographies of pertinent articles and by reviewing articles suggested by experts in the treatment of malaria in North America.

Evidence Synthesis Important measures to reduce morbidity and mortality from malaria in the United States include the following: obtaining a travel history, considering malaria in the differential diagnosis of fever based on the travel history, and prompt and accurate diagnosis and treatment. Chloroquine remains the treatment of choice for Plasmodium falciparum acquired in areas without chloroquine-resistant strains. In areas with chloroquine resistance, a combination of atovaquone and proguanil or quinine plus tetracycline or doxycycline or clindamycin are the best treatment options. Chloroquine remains the treatment of choice for all other malaria species, with the exception of P vivax acquired in Indonesia or Papua New Guinea, in which case atovaquone-proguanil is best, with mefloquine or quinine plus tetracycline or doxycycline as alternatives. Quinidine is currently the recommended treatment for severe malaria in the United States because the artemisinins are not yet available. Severe malaria occurs when a patient with asexual malaria parasitemia, and no other confirmed cause of symptoms, has 1 or more designated clinical or laboratory findings. The only adjunctive measure recommended in severe malaria is exchange transfusion.

Conclusions Malaria remains a diagnostic and treatment challenge for US clinicians as increasing numbers of persons travel to and emigrate from malarious areas. A strong evidence base exists to help clinicians rapidly initiate appropriate therapy and minimize the major mortality and morbidity burdens caused by this disease.

Even though endemic malaria has been eliminated from the United States, it remains a leading infectious disease worldwide. As a consequence, every year in the United States an average 1200 cases of malaria are reported, almost all imported, resulting in up to 13 deaths per year.1 The unfamiliarity of US clinicians and laboratory personnel with malaria and drug resistance patterns has contributed to delays in diagnosis and treatment, at times with adverse outcomes.2

To address this problem, we provide clinicians with practical recommendations for the diagnosis and treatment of malaria in the United States, based on published evidence; the Centers for Disease Control and Prevention (CDC) experience in assisting US clinicians; and the available drugs and diagnostic modalities used in this country.

Methods

We performed a systematic MEDLINE search from 1966 to 2006 using the search term malaria (with the subheadings congenital, diagnosis, drug therapy, epidemiology, and therapy). This search was conducted on August 1, 2006, and resulted in 5588 potentially relevant articles. We reviewed titles and/or abstracts of all articles to determine relevance to this article, hand searched bibliographies of pertinent articles, and reviewed articles suggested by experts in the treatment of malaria in North America. Recommendations are based on randomized controlled trials, observational studies, and consensus expert opinion.

Biological and epidemiologic considerations

In the Plasmodium life cycle (Figure 1), the asexual blood stages (rings, trophozoites, schizonts) are responsible for the symptoms of malaria, and thus are the main target of chemotherapy. The sexual blood stages (gametocytes) do not cause any known pathology and thus are not a primary target of treatment. Dormant liver stage parasites (hypnozoites) of Plasmodium vivax and Plasmodium ovale may reactivate weeks or months after the initial infection, producing relapses.

Quiz Ref IDOf the 4 Plasmodium species that infect humans, Plasmodium falciparum is the one with potential to rapidly progress to severe illness or death. It predominates in sub-Saharan Africa, Hispaniola, and Papua New Guinea. Among the other species, P vivax is the most common3 and predominates in South Asia, Eastern Europe and Northern Asia, and Central and most of South America.4Plasmodium ovale occurs mostly in West Africa and is occasionally encountered in Southeast Asia and Papua New Guinea. Plasmodium malariae occurs at low frequency in a patchy distribution worldwide. Plasmodium falciparum accounts for slightly more than 50% and P vivax approximately 25% of reported cases in the United States.1,2

Chloroquine-resistant strains of P falciparum occur in all endemic areas except Central America west of the Panama Canal, Mexico, Hispaniola, and parts of China and the Middle East, and multidrug-resistant strains occur in Southeast Asia, South America, and sub-Saharan Africa. Due to increasing resistance of P falciparum to the drug combination of sulfadoxine and pyrimethamine, the CDC no longer recommends sulfadoxine-pyrimethamine for treatment of malaria in the United States or as standby treatment for US travelers. A high prevalence of chloroquine-resistant P vivax (CRPV) is found in Papua New Guinea and Indonesia. Baird and Hoffman have written an excellent review on CRPV (which details well its geographic distribution).5 There is evidence for rates up to 25% in a few sites in Burma,6 Malaysia,7 Vietnam,8 India,9 and Turkey.10,11

Recognition and diagnosis

Quiz Ref IDConsideration of malaria based on travel history is the key to diagnosis. Any patient who has been in an endemic area in the year preceding the onset of malarial symptoms should be evaluated for the disease. The typical incubation period usually varies between 9 and 18 days for P falciparum, P vivax, and P ovale12; it is longer (18-40 days) for P malariae and may be as short as 7 days for P falciparum.13 However, symptoms may occur weeks or even months after exposure as a result of inadequate prophylaxis or treatment, immune response, or relapses. Some temperate strains of P vivax, such as the North Indian and North Korean strains, can exhibit delayed primary attacks, occurring 12 to 18 months after an infected mosquito bite.14 Of cases reported in the United States from 1995 to 2004, 98% (n = 3626) of patients with P falciparum malaria experienced their first symptoms within the first 3 months of arrival in the United States, and 57% (n = 1743) and 96% (n = 2906) of patients with non-falciparum malaria had symptom onset within the first 3 and 12 months, respectively. During this same time period, 85% of patients with imported P falciparum malaria acquired their infection in Africa.

Absence of a travel history does not rule out malaria. Patients may provide an inaccurate history or may have been infected in the United States through other rarely occurring mechanisms such as transfusion, congenital transmission, or local mosquito-borne transmission.1

Quiz Ref IDThe initial presentation of malaria is nonspecific and similar to that of many other febrile illnesses. Fever is the most commonly reported symptom, being present in 78% to 100% of case patients,2,15-18 but fever periodicity is often not seen.15,19,20 Patients may experience a wide spectrum of other symptoms including chills, headache, malaise, nausea, vomiting, diarrhea, abdominal pain, myalgias, back pain, weakness, dizziness, confusion, cough, and/or coma. Splenomegaly is a frequent physical finding (24%-40% of case patients).15,16,18 Severe malaria is characterized by 1 or more of the signs or symptoms shown in the Box. Severe malaria is almost invariably caused by P falciparum, with rare reports of severe malaria caused by P vivax.2,23-30

Box Section Ref IDBox. Manifestations of Severe Malaria*

  • Prostration

  • Impaired consciousness/coma

  • Respiratory distress (acidotic breathing)

  • Multiple convulsions

  • Circulatory shock

  • Pulmonary edema

  • Acute respiratory distress syndrome

  • Abnormal bleeding

  • Jaundice

  • Severe anemia

  • Acute renal failure

  • Disseminated intravascular coagulation

  • Acidosis

  • Hemoglobinuria

  • Parasitemia >5%

*Sources: WHO Management of Severe Malaria (2000)21 and WHO Guidelines for the Treatment of Malaria (2006).22

Diagnostic confirmation is obtained by microscopic demonstration of malaria parasites on Giemsa-stained thick and thin blood films, which should be examined as soon as possible but within 12 hours of the presentation of any patient with suspected malaria. Institutions unfamiliar with malaria diagnosis should not delay microscopic diagnosis (eg, by sending the films out to a laboratory that cannot provide same-day results), but should promptly refer the patient to a more experienced institution or consult with more experienced personnel at other institutions, their state department of health, or submit digital images captured from stained films directly to the CDC's telediagnosis service (dpdx@cdc.gov, or through the CDC Malaria Hotline or CDC Emergency Operations Center [Malaria Hotline 770-488-7788 Monday-Friday, 8 AM to 4:30 PM. Off-hours, weekends, and federal holidays, CDC clinicians can be reached by calling the CDC Emergency Operations Center at 770-488-7100 and asking for the malaria clinician on-call to be paged]).

The parasite density (ie, percentage of infected erythrocytes on a thin film) should be quantified as 1 measure of the severity of the disease and its response to treatment, which should be closely monitored. If the initial film is negative and the patient is suspected of having malaria, blood films should be repeated at 12- to 24-hour intervals for 48 to 72 hours. If the diagnosis is clinically suspected and proficient laboratory diagnosis is impossible, empirical treatment for P falciparum malaria, as discussed below, should be initiated, pending referral of the patient and/or specimen. It is important that a differential identification of Babesia sp (which may be morphologically similar to P falciparum) be made during microscopic examination. Although nonspecific, thrombocytopenia, a low white blood cell count, and signs of hemolysis, such as an elevated bilirubin level, found during general laboratory testing are possible clues to the presence of malaria.

In addition to microscopy, polymerase chain reaction and rapid immunochromatographic diagnostic tests31 are alternate diagnostic tools that are not routinely available. Rapid immunochromatographic diagnostic tests are not yet licensed for use in the United States. Serological tests document past exposure and are thus of limited use in acute case management.

Clinical situations and recommended treatment
General

Quiz Ref IDTo manage malaria successfully, treating physicians should seek the answer to the following 5 questions: (1) What is the species? (2) What is the density of parasitemia? (3) What is the drug-resistant pattern where the infection was acquired? (4) Are there signs of severe malaria? and (5) Can the patient tolerate oral medication?

Patients with malaria should be treated immediately because P falciparum infections can rapidly progress to severe illness or death in as little as 1 to 2 days.32 Immunity wanes in the absence of continued antigen exposure and thus semi-immune persons who have left an endemic area for an extended period of time and then return are susceptible to severe disease and death. If the species cannot be identified, the patient should be treated as if infected with P falciparum until the infecting species can be identified. The patient's travel history provides useful clues for selecting an effective antimalarial drug, in terms of risk of drug resistance. Because base and salt conversions for antimalarial drugs are a source of confusion and can result in treatment errors,33 where pertinent, the base equivalency is followed by the salt equivalency in parentheses (Table).

There has been some controversy about the need for initial hospital admission for all patients with P falciparum malaria, and some authors have tried to define triage criteria for which patients need to be admitted vs those who can be followed as outpatients.34 However, since these patients can deteriorate rapidly and progress to death within 1 to 2 days,32 and many centers do not have the expertise to adequately triage (eg, to accurately quantify the parasite density), the CDC advises that patients infected with P falciparum or an unidentified Plasmodium species should be initially admitted to ensure that the medication is tolerated and the patient is improving clinically and parasitologically. Blood films should be repeated to ensure clearance of P falciparum parasitemia. Patients who are not responding clinically (with defervescence within 72 hours) need follow-up malaria blood films and may also require a search for other causes of fever. Of note, gametocytes may be less susceptible to many antimalarial drugs than are asexual parasites, and their persistence in the blood in the absence of asexual parasites does not indicate drug resistance.

Uncomplicated Falciparum Malaria

For P falciparum malaria acquired in a limited number of areas (Figure 2),4 chloroquine (with hydroxychloroquine as a second-line alternative) remains the treatment of choice (Table). Chloroquine-resistant P falciparum strains are found in all other malarious areas, where 3 treatment options are currently recommended: (1) oral quinine plus either tetracycline, doxycycline, or clindamycin; (2) atovaquone-proguanil; or (3) mefloquine. The first 2 options are preferred due to a higher rate of moderate to severe neuropsychiatric reactions seen when mefloquine is used at treatment doses35-50 compared with persons taking the drug for prophylaxis. The incidence rate for moderate or severe neuropsychiatric adverse reactions at mefloquine treatment doses has been estimated to be 1 in 215 to 1 in 1754 treatments.39,50 None of the reported neuropsychiatric adverse reactions were lethal and most resolved spontaneously.35,37,39,41,42,46,47,50,51 Atovaquone-proguanil was better tolerated than the combination of quinine and tetracycline in one trial that directly compared the 2 regimens.52

Quinine has a rapid onset of action and, in combination with either tetracycline, doxycycline, or clindamycin, has been shown to be a very efficacious treatment option for P falciparum infections acquired in regions with chloroquine-resistant strains.52-73 For P falciparum infections acquired in Southeast Asia, a 7-day course of both quinine and the accompanying antibiotic is recommended54,59,60,63,64,69,70,73; for infections acquired outside Southeast Asia, a 3-day course of quinine and a 7-day course of the accompanying antibiotic is recommended.52,53,66 The quinine and antibiotic should be started at the same time or should at least overlap by 2 days. Although published treatment trials mainly used quinine in combination with tetracycline, doxycycline has excellent antimalarial efficacy in chemoprophylaxis trials and is considered an equally efficacious substitute.74-85 Tetracycline or doxycycline is generally preferred to clindamycin as the accompanying antibiotic because of more extensive efficacy data and field experience. The quinine and clindamycin regimen also has been shown to be efficacious against P falciparum infections acquired in areas with chloroquine resistance55,58,61,62,65-69,72,86,87 and is useful in treatment of pregnant women and children younger than 8 years in whom tetracyclines and doxycycline are contraindicated.

Quinine is commercially available in the United States only as an oral medication. Cinchonism (a complex of symptoms including nausea, vomiting, headache, tinnitus, deafness, dizziness, and visual disturbances) is common with quinine or quinidine (the isomer of quinine) use. For example, tinnitus was reported in 13% to 94% of patients taking quinine in clinical trials,52,60,65,68,69,88 and the syndrome of cinchonism was reported in 94% of patients in another trial.63 Quinine binding to plasma proteins, principally to α-1-glycoprotein, is increased in malaria.89,90 This explains why plasma quinine levels that have been associated with blindness and deafness after self-poisoning, and which are common during the treatment of malaria, extremely rarely cause such adverse effects in patients with malaria.91,92 Life-threatening toxicity is rare and the symptoms of cinchonism are rarely sufficient to warrant discontinuing quinine or quinidine treatment.93

The tetracyclines (tetracycline and doxycycline) and clindamycin should always be used in combination with a faster-acting antimalarial drug such as quinine and never as monotherapy.

Atovaquone-proguanil has reported cure rates of 94% to 100% for P falciparum infections acquired in Southeast Asia, Africa, and South America.52,94-109 To date, there have been 12 published cases of atovaquone-proguanil failure for the treatment of P falciparum malaria (from East, West, and Central Africa), 7 of which have had isolates with genetically confirmed markers of resistance (ie, mutations in the cytochrome b gene),110-117 and thus, clinicians should remain aware of the rare possibility of atovaquone-proguanil treatment failures.

Mefloquine should not be used to treat P falciparum infections acquired on the borders of Thailand with Burma (Myanmar) and Cambodia, in the western provinces of Cambodia, in the eastern states of Burma (Myanmar), on the border between Burma and China, in Laos along the borders of Laos and Burma and the adjacent parts of the Thailand Cambodia border, as well as in southern Vietnam, because of reports of a high prevalence of mefloquine-resistant P falciparum in these areas.118

Although mefloquine is contraindicated for chemoprophylactic use in persons with active or recent history of depression, generalized anxiety disorder, psychosis, or other major psychiatric disorder, or in persons with a history of seizures, it can be used for treatment in persons with these conditions if the benefits are judged to outweigh the risks.119 If related compounds (chloroquine, quinine, or quinidine) have been given for chemoprophylaxis or initial treatment, mefloquine administration should be delayed at least 12 hours after the last dose of the related compound to minimize the risk of adverse events such as electrocardiographic abnormalities.119,120

Antimalarial drugs that are not recommended, even though they may be available in other countries, include sulfadoxine-pyrimethamine, amodiaquine, and halofantrine because of resistance and/or toxicity problems.

Uncomplicated Non-Falciparum Malaria

Chloroquine remains the treatment of choice for all P malariae and P ovale infections and for P vivax infections acquired outside Papua New Guinea and Indonesia; hydroxychloroquine is a second-line alternative. Currently, there are limited data on optimal treatment options for P vivax infections acquired in areas with highly prevalent chloroquine resistance (Papua New Guinea and Indonesia). The best option may be atovaquone-proguanil, with mefloquine or quinine plus tetracycline or doxycycline as alternatives. Both quinine (3 days) and either tetracycline or doxycycline (7 days)121-128 and mefloquine129-135 have been historically used successfully in case reports or small case series. More recently, both atovaquone-proguanil, in a relatively small study,99 and mefloquine (at 15 mg/kg)136 have effectively treated P vivax malaria in Indonesia, where high rates of CRPV exist. Of note, although initial studies of atovaquone-proguanil showed high (68%) rates of recurrent parasitemia before 28 days of follow-up101 (some of which may have been relapses), subsequent (albeit small) studies have demonstrated excellent efficacy (>95%) of atovaquone-proguanil against P vivax malaria.99,137 Data are too limited to recommend quinine-clindamycin69 for first-line treatment of P vivax, including CRPV, infections. Baird and colleagues demonstrated 85% efficacy of chloroquine and high-dose (2.5 mg/kg base over 3 days) primaquine for treatment of CRPV.138 The CDC has not recommended this regimen due to relative inexperience with high-dose primaquine and suboptimal efficacy.

Infections with P vivax and P ovale should be treated with primaquine to prevent potential relapses. To achieve more reliable eradication of hypnozoites, the CDC now recommends a regimen of 0.5 mg/kg to a maximum of 30 mg of primaquine base daily for 14 days. The most common severe adverse effect associated with primaquine is intravascular hemolysis in persons with glucose-6-phosphate dehydrogenase (G6PD) deficiency, a contraindication to the use of this drug. Patients must be screened for G6PD prior to use of primaquine. Primaquine treatment should, if possible, overlap with the blood schizonticidal treatment.138-140

Patients who are not able to take primaquine should be counseled on the possibility of having a relapsing infection (estimated to be approximately 20% [range, 5%-80%])5 and the need to seek treatment if similar symptoms recur. Another potential option for patients unable to take primaquine who are experiencing frequent relapses is chloroquine (or mefloquine, in the case of CRPV) prophylaxis for the period of time that relapses are most likely to occur (ie, a few years). Although atovaquone-proguanil has “causal prophylactic activity” (ie, the ability to prevent blood stage infection by killing developing liver stage parasites), it does not appear to eradicate hypnozoites101,102 and may not prevent the establishment of hypnozoites.141,142 Thus, patients with P vivax or P ovale malaria who have been treated with atovaquone-proguanil also need primaquine. Although a modified regimen of 45 mg (base) of primaquine weekly for 8 weeks has been suggested as an alternative for patients with mild G6PD deficiency,143,144 the data on both safety and efficacy of such a regimen are very limited. Primaquine for “radical cure” (ie, primaquine used in conjunction with an effective blood schizonticide for the treatment of a patient with Pvivax or Povale malaria) in a known G6PD-deficient individual should be used only after a careful risk/benefit assessment and under strict medical supervision.140

Severe Malaria

The single most important step in the management of severe malaria is immediate initiation of appropriate parenteral treatment. In the United States, the only parenteral drug currently available is quinidine gluconate. Blood films should be examined every 12 hours until negative for malaria parasites.91 Parasite density typically decreases by 90% over the first 48 hours with quinine or quinidine therapy.145-149 If parasitemia has not decreased as expected, potential causes of the problem should be investigated (eg, by checking the quinidine level). Quinidine levels should be maintained in the range of 3 to 8 mg/L.91,150

Quinidine is more cardiotoxic than quinine and should be administered in an intensive care unit with continuous electrocardiographic and frequent blood pressure monitoring.145 Quinidine-related cardiovascular adverse effects are potentially serious and may be more frequent if the drug is administered rapidly.151 The risk of cardiotoxicity is increased with bradycardia, hypokalemia, and hypomagnesemia152 and if the patient has received other drugs that may prolong the QTc interval (eg, quinine, mefloquine, or macrolide antibiotics).

Because newer antiarrhythmic agents have displaced quinidine gluconate, quinidine is often not stocked in many hospitals.152-154 Hospital drug services should maintain or add quinidine gluconate to their formularies. If they do not stock the drug, they must be able to immediately locate a nearby source. Otherwise, the hospital should contact their local or regional distributor to request the drug or contact the Eli Lilly Co directly (telephone: 1-800-821-0538).152 Assistance from the company to arrange a rapid shipment of the drug is available between the hours of 6 AM and 6 PM. If further assistance is needed in managing patients with malaria, health care professionals can contact the CDC Malaria Hotline.

Because most deaths from severe malaria occur within the first 24 to 48 hours of treatment, an initial loading dose of quinidine is recommended to achieve therapeutic levels as rapidly as possible145,155,156 unless the patient has received more than 40 mg/kg quinine in the previous 2 days or has received mefloquine in the previous 12 hours (in which case the loading dose is not given but a continuous quinidine infusion is still administered).93 The quinidine infusion should be temporarily slowed or stopped if the QT interval increases to greater than 0.6 seconds, the QRS complex increases greater than 50%, the QTc interval is prolonged by more than 25% of the baseline value, or if hypotension unresponsive to fluid challenge develops.150,155 If significant electrocardiographic changes persist or malignant arrhythmias develop, physicians should treat the arrhythmias and consider expert consultation through the CDC Malaria Hotline or other tropical medicine experts. Options in such severe situations may include administration of alternative antimalarial drugs via nasogastric tube along with exchange transfusion. Quinidine continuous infusion should be continued during exchange transfusion.

Initial (including loading) doses of parenteral quinine or quinidine need not be reduced in persons with renal failure. The pharmacokinetic properties of the cinchona alkaloids are altered in malaria, with a contraction in the volume of distribution that is proportional to the severity of malarial illness.91,157 If renal failure persists or the patient's clinical condition does not improve, the maintenance dosage should be reduced by one third to one half on the third treatment day.91

The artemisinin derivatives clear parasites very rapidly, are now a key component of malaria treatment worldwide, and have been shown to reduce mortality in severe malaria compared with parenteral quinine.158 These drugs are not yet available in the United States, but the CDC hopes to make intravenous artesunate available under an Investigational New Drug protocol in 2007.

Exchange transfusion has been used in the treatment of severe malaria since 1974 with apparent benefit,145,159,160 potentially due to rapid reduction of parasitemia by direct parasite removal, reduction of toxic byproducts, and/or improved rheology with transfused cells.161,162 The technical aspects of exchange transfusion have been discussed in an excellent review by Powell and Grima.162 However, exchange transfusion and its indications will remain controversial until a carefully controlled, adequately powered comparative study is conducted, an unlikely probability.163,164 In the decision to use exchange transfusion, the potential risks of exchange transfusion, including fluid overload, febrile and allergic reactions, metabolic disturbances, red blood cell alloantibody sensitization, transmissible infection, cerebral hemorrhage, and line sepsis, must be weighed against potential benefits.163 The CDC recommends that exchange transfusion be strongly considered for persons with a parasitemia higher than 10% or if complications such as cerebral malaria, nonvolume overload pulmonary edema, or renal compromise exist.150

Various adjunctive treatments appear in the literature that are either unproven or are harmful in the treatment of severe malaria and are not currently recommended. They include phenobarbital for prophylaxis of seizures165-167; dexamethasone for treatment of cerebral malaria156,168,169; heparin for treatment of thrombocytopenia and/or fibrinogenemia170-176; iron chelators that aim to reduce parasite clearance time125,177,178; pentoxifylline for inhibition of tumor necrosis factor synthesis179; and dichloroacetate for treatment of metabolic acidosis.180

Potential complications of severe malaria181 should be recognized and treated. Hypoglycemia may be masked by the manifestations of cerebral malaria, and thus frequent plasma glucose determination is essential. Severe and recurrent hypoglycemia may be caused by hyperinsulinemia induced by quinine or quinidine or by endotoxin or by parasite consumption.182,183 Hyperpyrexia can be treated with acetominophen; nonsteroidal anti-inflammatory drugs are not recommended, given the frequency of thrombocytopenia and coagulation abnormalities. Pulmonary edema may be due to either fluid overload or adult respiratory distress syndrome and can be minimized by keeping patients euvolemic. Acute renal failure is generally oliguric. With dialysis, renal function can be expected to return after a median of 4 days, although some patients may require dialysis for 2 to 3 weeks.184 Thrombocytopenia is common in severe malaria. Laboratory evidence of activated coagulation is more common than is disseminated intravascular coagulation with bleeding.181,185,186 Hyponatremia,187 hypocalcemia, hypophosphatemia and hyperphosphatemia, and hypomagnesemia and hypermagnesemia188 have all been reported in patients with P falciparum malaria.181

In patients with suspected cerebral malaria, a lumbar puncture should be performed to rule out bacterial meningitis,157 and magnetic resonance imaging or computed tomographic scans should be performed to rule out intracerebral bleeding, cerebral edema, and cerebral/medullary herniation. Most survivors with cerebral malaria regain consciousness within 2 to 3 days, although it may occasionally take more than a week.189

Induced Malaria

Because malaria acquired through bloodborne transmission (eg, blood transfusion or organ transplantation) has no exoerythrocytic stage, primaquine treatment is not needed in induced P vivax or P ovale infections.

Self-treatment

The CDC recommends the use of malaria prophylaxis, rather than self-treatment, for travelers to malarious areas. However, travelers who elect not to take prophylaxis, who do not choose an optimal drug regimen (eg, chloroquine for travel to an area with chloroquine-resistant P falciparum malaria), or those who require a less than optimal drug regimen are at greater risk for acquiring malaria and needing prompt treatment. Travelers who are taking effective prophylaxis but who will be in very remote areas may decide, in consultation with their clinician, to take along a dose of antimalarial medication for self-treatment. The only drug recommended for self-treatment for US travelers is atovaquone-proguanil. It should not be used in patients on atovaquone-proguanil prophylaxis because of the risk of breakthrough parasitemia due to a resistant organism in those patients. In such cases, specialized tropical medicine consultation should be sought. Quinine-doxycycline is a suboptimal alternative due to potential adverse drug reactions and the complexity of the regimen. Travelers should be advised that self-treatment of a possible malaria infection is only a temporary measure and that prompt medical evaluation is imperative.4

Malaria in Children

Tetracycline and doxycycline have a relative contraindication for use in infants and children younger than 8 years of age due to reports of drug deposition in calcifying areas of bones and teeth that result in permanent tooth staining, enamel hypoplasia, and decreased linear skeletal growth rate190,191;clindamycin in combination with quinine should be used instead. While the US package insert recommends mefloquine for use in children older than 6 months of age,119 the drug is generally well tolerated in children weighing more than 5 kg,192-195 with vomiting as the principal adverse effect.192-196 Although few studies document the safety and tolerability of primaquine in children, the drug has been used for more than 50 years with no apparent safety problems. There is no evidence to suggest that the drug cannot be used in children of any age who do not have G6PD deficiency.140 Neither the American Academy of Pediatrics nor US4 or Canadian197 public health authorities list a lower age limit for primaquine use.

Malaria in Pregnant Women

Malaria infection in pregnant women is associated with high risks of both maternal and perinatal morbidity and mortality, including spontaneous abortion, stillbirth, premature delivery, low birth weight, congenital infection, and/or neonatal death. For uncomplicated P falciparum infections acquired in regions with chloroquine-resistant strains, quinine plus clindamycin has been shown to be safe and efficacious and is recommended.65 Concerns that quinine may cause fetal toxicity or induce labor when given late in pregnancy have not been substantiated at the doses used for treatment of malaria.198 An important adverse effect of quinine in pregnant patients is hyperinsulinemia, which can precipitate or worsen hypoglycemia.198 Late in pregnancy, quinine is distributed to the fetus, raising concerns about quinine triggering insulin release and resulting in fetal hypoglycemia.182 However, the risks of untreated falciparum malaria during pregnancy outweigh the potential risk of adverse drug effects from quinine or quinidine.

Atovaquone-proguanil or mefloquine are not currently recommended for treatment in pregnancy and should only be used if quinine plus clindamycin or quinine monotherapy is not available or is not being tolerated. Tetracycline and doxycycline are contraindicated. Although 2 recent studies of the atovaquone-proguanil and artesunate combination treatment for P falciparum infections in pregnant women showed the regimen to be well-tolerated with no evidence of toxicity to the mother or fetus,199,200 further study is needed before atovaquone-proguanil can be recommended for use during pregnancy.

Because primaquine can potentially cause hemolytic disease in a G6PD-deficient fetus, primaquine is contraindicated in pregnancy. Pregnant women treated for P ovale and P vivax infections should also receive chemoprophylaxis until delivery. The prophylaxis regimen should consist of either chloroquine, 300-mg base (= 500 mg salt) orally once per week; or, for P vivax infections acquired in areas with chloroquine-resistant strains, mefloquine 228-mg base (= 250 mg salt) orally once per week. While mefloquine is not recommended for malaria treatment during pregnancy,201 several studies support its safety as chemoprophylaxis during pregnancy.202-206 After delivery, women should be treated with primaquine as recommended for nonpregnant adult patients.

Congenital Malaria

There are approximately 2 cases of congenital malaria reported in the United States annually. Infants typically present at 1 to 2 months of age with fever, anemia, failure to thrive, and splenomegaly. As with induced malaria, there is no exoerythrocytic phase and thus no need for primaquine treatment in P vivax or P ovale congenital infections. For mothers who are parasitemic either during pregnancy or at delivery, clinicians should judge management of the infant in each case individually, factoring in such issues as reliability of follow-up and access to medical care. In some cases it may be appropriate to simply educate the mother about the risk of congenital malaria and instruct her to seek medical care if the baby develops symptoms of malaria. In others, presumptive treatment of the newborn may be warranted.

Clinical Assistance and Reporting

The CDC posts current treatment recommendations on its Web site at www.cdc.gov/malaria and has clinicians on call 24 hours to provide advice to clinicians on the diagnosis and treatment of malaria.

Quiz Ref IDMalaria is a nationally notifiable disease and all cases should be reported to the appropriate state health department. Case reporting is critical to monitor trends in disease acquisition and to provide recommendations for malaria chemoprophylaxis and treatment.2,207-209

Conclusions

Malaria will remain a diagnostic and treatment challenge for US clinicians as increasing numbers of persons travel to and emigrate from malarious areas. In a review of all malaria deaths in the US from 1963-2001, failure to diagnose malaria on initial presentation, promptly initiate treatment after diagnosis, and/or prescribe an appropriate antimalarial drug, were substantial contributing factors in malaria deaths.2 Clinicians must remain alert to the possibility of this disease and take immediate measures toward prompt accurate diagnosis and treatment.

Back to top
Article Information

Corresponding Author: Monica E. Parise, MD, Parasitic Diseases Branch, Division of Parasitic Diseases, National Center for Zoonotic, Vector-Borne and Enteric Diseases, Centers for Disease Control and Prevention, 4770 Buford Hwy NE MS F22, Atlanta, GA 30341 (MParise@cdc.gov).

Author Contributions: Drs Griffith, Lewis, and Parise had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Griffith, Lewis, Parise.

Acquisition of data: Griffith, Lewis, Mali, Parise.

Analysis and interpretation of data: Griffith, Lewis, Parise.

Drafting of the manuscript: Griffith, Lewis, Parise.

Critical revision of the manuscript for important intellectual content: Griffith, Lewis, Mali, Parise.

Administrative, technical, or material support: Griffith, Lewis, Mali.

Study supervision: Parise.

Financial Disclosures: None reported.

Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Acknowledgment: We thank Phuc Nguyen-Dinh, MD, MPH, Malaria Branch, Division of Parasitic Diseases, Centers for Disease Control and Prevention (retired in February 2007), for his thorough review and critical comments on the manuscript. He did not receive any compensation for his contribution.

References
1.
Skarbinski J, James EM, Causer LM.  et al.  Malaria surveillance–United States, 2004.  MMWR Surveill Summ. 2006;55:23-3716723971Google Scholar
2.
Newman RD, Parise ME, Barber AM, Steketee RW. Malaria-related deaths among U.S. travelers, 1963-2001.  Ann Intern Med. 2004;141:547-55515466772Google ScholarCrossref
3.
Mendis K, Sina BJ, Marchesini P, Carter R. The neglected burden of Plasmodium vivax malaria.  Am J Trop Med Hyg. 2001;64:(1-2 suppl)  97-10615466772Google Scholar
4.
 Health Information for International Travel 2005-2006. Atlanta, Ga: Elsevier Inc; 2005
5.
Baird JK, Hoffman SL. Primaquine therapy for malaria.  Clin Infect Dis. 2004;39:1336-134515494911Google ScholarCrossref
6.
Marlar T, Myat Phone K, Aye Yu S, Khaing Khaing G, Ma S, Myint O. Development of resistance to chloroquine by Plasmodium vivax in Myanmar.  Trans R Soc Trop Med Hyg. 1995;89:307-3087660445Google ScholarCrossref
7.
Jamaiah I, Anuar AK, Najib NA, Zurainee MN. Imported malaria: a retrospective study in University Hospital, Kuala Lumpur, a ten-year experience.  Med J Malaysia. 1998;53:6-910968130Google Scholar
8.
Phan GT, De Vries PJ, Tran BQ.  et al.  Artemisinin or chloroquine for blood stage Plasmodium vivax malaria in Vietnam.  Trop Med Int Health. 2002;7:858-86412358621Google ScholarCrossref
9.
Singh RK. Emergence of chloroquine-resistant vivax malaria in south Bihar (India).  Trans R Soc Trop Med Hyg. 2000;94:32710975013Google ScholarCrossref
10.
Kurcer MA, Simsek Z, Kurcer Z. The decreasing efficacy of chloroquine in the treatment of Plasmodium vivax malaria, in Sanliurfa, south-eastern Turkey.  Ann Trop Med Parasitol. 2006;100:109-11316492358Google ScholarCrossref
11.
Kurcer MA, Simsek Z, Zeyrek FY.  et al.  Efficacy of chloroquine in the treatment of Plasmodium vivax malaria in Turkey.  Ann Trop Med Parasitol. 2004;98:447-45115257793Google ScholarCrossref
12.
Sinden REG. The malaria parasites. In: Warrell DA, Gilles HM, eds. Essential Malariology. 4th ed. London, England: Arnold; 2002:26, 30
13.
Molineaux L. The epidemiology of human malaria as an explanation of its distribution, including some implications for its control. In: Wernsdorfer WH, ed. Malaria, Principles and Practice of Malariology, Volume 2. Edinburgh, Scotland: Churchill Livingstone; 1988:927
14.
Garnham P. Malaria parasites of man: life-cycles and morphology. In: Wernsdorfer WH, McGregor I, eds. Malaria: Principles and Practice of Malariology, Volume 1. London, England: Churchill Livingstone; 1988:69
15.
Dorsey G, Gandhi M, Oyugi JH, Rosenthal PJ. Difficulties in the prevention, diagnosis, and treatment of imported malaria.  Arch Intern Med. 2000;160:2505-251010979063Google ScholarCrossref
16.
Moore TA, Tomayko JF Jr, Wierman AM, Rensimer ER, White AC Jr. Imported malaria in the 1990s: a report of 59 cases from Houston, Tex.  Arch Fam Med. 1994;3:130-1367994434Google ScholarCrossref
17.
Singh K, Wester WC, Trenholme GM. Problems in the therapy for imported malaria in the United States.  Arch Intern Med. 2003;163:2027-203014504115Google ScholarCrossref
18.
Svenson JE, MacLean JD, Gyorkos TW, Keystone J. Imported malaria: clinical presentation and examination of symptomatic travelers.  Arch Intern Med. 1995;155:861-8687717795Google ScholarCrossref
19.
Lynk A, Gold R. Review of 40 children with imported malaria.  Pediatr Infect Dis J. 1989;8:745-7502594448Google ScholarCrossref
20.
McCaslin RI, Pikis A, Rodriguez WJ. Pediatric Plasmodium falciparium malaria: a ten-year experience from Washington, DC.  Pediatr Infect Dis J. 1994;13:709-7157970971Google ScholarCrossref
21.
World Health Organization.  WHO Guidelines for the Treatment of Malaria. Geneva, Switzerland: WHO Press; 2000
22.
World Health Organization.  WHO Guidelines for the Treatment of Malaria. Geneva, Switzerland: WHO Press; 2006
23.
Beg MA, Khan R, Baig SM, Gulzar Z, Hussain R, Smego RA Jr. Cerebral involvement in benign tertian malaria.  Am J Trop Med Hyg. 2002;67:230-23212408660Google Scholar
24.
Curlin ME, Barat LM, Walsh DK, Granger DL. Noncardiogenic pulmonary edema during vivax malaria.  Clin Infect Dis. 1999;28:1166-116710452658Google ScholarCrossref
25.
Islam N, Qamruddin K. Unusual complications in benign tertian malaria.  Trop Geogr Med. 1995;47:141-1437483008Google Scholar
26.
Kochar DK, Saxena V, Singh N, Kochar SK, Kumar SV, Das A. Plasmodium vivax malaria.  Emerg Infect Dis. 2005;11:132-13415705338Google ScholarCrossref
27.
Muhlberger N, Jelinek T, Gascon J.  et al.  Epidemiology and clinical features of vivax malaria imported to Europe: sentinel surveillance data from TropNetEurop.  Malar J. 2004;3:515003128Google ScholarCrossref
28.
Sachdev HS, Mohan M. Vivax cerebral malaria.  J Trop Pediatr. 1985;31:213-2153900435Google ScholarCrossref
29.
Tanios MA, Kogelman L, McGovern B, Hassoun PM. Acute respiratory distress syndrome complicating Plasmodium vivax malaria.  Crit Care Med. 2001;29:665-66711373440Google ScholarCrossref
30.
Zingman BS, Viner BL. Splenic complications in malaria: case report and review.  Clin Infect Dis. 1993;16:223-2328443301Google ScholarCrossref
31.
Moody A. Rapid diagnostic tests for malaria parasites.  Clin Microbiol Rev. 2002;15:66-7811781267Google ScholarCrossref
32.
Greenwood BM, Bradley AK, Greenwood AM.  et al.  Mortality and morbidity from malaria among children in a rural area of The Gambia, West Africa.  Trans R Soc Trop Med Hyg. 1987;81:478-4863318021Google ScholarCrossref
33.
Kain KC, Gadd E, Gushulak B, McCarthy A, MacPherson D. Errors in treatment recommendations for severe malaria. Committee to Advise on Tropical Medicine and Travel (CATMAT).  Lancet. 1996;348:621-6228774603Google ScholarCrossref
34.
D’Acremont V, Landry P, Mueller I, Pecoud A, Genton B. Clinical and laboratory predictors of imported malaria in an outpatient setting: an aid to medical decision making in returning travelers with fever.  Am J Trop Med Hyg. 2002;66:481-48612201580Google Scholar
35.
Caillon E, Schmitt L, Moron P. Acute depressive symptoms after mefloquine treatment.  Am J Psychiatry. 1992;149:7121575269Google Scholar
36.
Ekue JM, Simooya OO, Sheth UK, Wernsdorfer WH, Njelesani EK. A double-blind clinical trial of a combination of mefloquine, sulfadoxine and pyrimethamine in symptomatic falciparum malaria.  Bull World Health Organ. 1985;63:339-3433893778Google Scholar
37.
Harinasuta T, Bunnag D, Wernsdorfer WH. A phase II clinical trial of mefloquine in patients with chloroquine-resistant falciparum malaria in Thailand.  Bull World Health Organ. 1983;61:299-3056345013Google Scholar
38.
Hennequin C, Bouree P, Bazin N, Bisaro F, Feline A. Severe psychiatric side effects observed during prophylaxis and treatment with mefloquine.  Arch Intern Med. 1994;154:2360-23627944858Google ScholarCrossref
39.
Luxemburger C, Nosten F, ter Kuiile F, Frejacques L, Chongsuphajaisiddhi T, White NJ. Mefloquine for multidrug-resistant malaria.  Lancet. 1991;338:12681682659Google ScholarCrossref
40.
Marsepoil T, Petithory J, Faucher JM, Ho P, Viriot E, Benaiche F. Encephalopathy and memory disorders during treatments with mefloquine [article in French].  Rev Med Interne. 1993;14:788-7918191092Google ScholarCrossref
41.
Patchen LC, Campbell CC, Williams SB. Neurologic reactions after a therapeutic dose of mefloquine.  N Engl J Med. 1989;321:1415-14162811953Google ScholarCrossref
42.
Phillips-Howard PA, ter Kuile FO. CNS adverse events associated with antimalarial agents: fact or fiction?  Drug Saf. 1995;12:370-3838527012Google ScholarCrossref
43.
Price R, van Vugt M, Phaipun L.  et al.  Adverse effects in patients with acute falciparum malaria treated with artemisinin derivatives.  Am J Trop Med Hyg. 1999;60:547-55510348227Google Scholar
44.
Rendi-Wagner P, Noedl H, Wernsdorfer WH, Wiedermann G, Mikolasek A, Kollaritsch H. Unexpected frequency, duration and spectrum of adverse events after therapeutic dose of mefloquine in healthy adults.  Acta Trop. 2002;81:167-17311801224Google ScholarCrossref
45.
Rouveix B, Bricaire F, Michon C.  et al.  Mefloquine and an acute brain syndrome.  Ann Intern Med. 1989;110:577-5782784297Google ScholarCrossref
46.
Sowunmi A. Acute psychosis after mefloquine: a case report.  East Afr Med J. 1994;71:818-8197705258Google Scholar
47.
Sowunmi A, Adio RA, Oduola AM, Ogundahunsi OA, Salako LA. Acute psychosis after mefloquine: report of six cases.  Trop Geogr Med. 1995;47:179-1808560592Google Scholar
48.
Sowunmi A, Salako LA, Oduola AM, Walker O, Akindele JA, Ogundahunsi OA. Neuropsychiatric side effects of mefloquine in Africans.  Trans R Soc Trop Med Hyg. 1993;87:462-4638249081Google ScholarCrossref
49.
Speich R, Haller A. Central anticholinergic syndrome with the antimalarial drug mefloquine.  N Engl J Med. 1994;331:57-588202114Google ScholarCrossref
50.
Weinke T, Trautmann M, Held T.  et al.  Neuropsychiatric side effects after the use of mefloquine.  Am J Trop Med Hyg. 1991;45:86-911867351Google Scholar
51.
Stuiver PC, Ligthelm RJ, Goud TJ. Acute psychosis after mefloquine.  Lancet. 1989;2:2822569094Google ScholarCrossref
52.
de Alencar FE, Cerutti C Jr, Durlacher RR.  et al.  Atovaquone and proguanil for the treatment of malaria in Brazil.  J Infect Dis. 1997;175:1544-15479180204Google ScholarCrossref
53.
Barata LC, Boulos M, Dutra AP. Use of tetracycline and quinine combination in the treatment of Plasmodium falciparum malaria [article in Portuguese].  Rev Soc Bras Med Trop. 1986;19:135-1373317560Google ScholarCrossref
54.
Bunnag D, Karbwang J, Na-Bangchang K, Thanavibul A, Chittamas S, Harinasuta T. Quinine-tetracycline for multidrug resistant falciparum malaria.  Southeast Asian J Trop Med Public Health. 1996;27:15-189031393Google Scholar
55.
Clyde DF, Gilman RH, McCarthy VC. Antimalarial effects of clindamycin in man.  Am J Trop Med Hyg. 1975;24:369-3701091172Google Scholar
56.
Colwell EJ, Hickman RL, Kosakal S. Quinine-tetracycline and quinine-bactrim treatment of acute falciparum malaria in Thailand.  Ann Trop Med Parasitol. 1973;67:125-1324578933Google Scholar
57.
Colwell EJ, Hickman RL, Kosakal S. Tetracycline treatment of chloroquine-resistant falciparum malaria in Thailand.  JAMA. 1972;220:684-6864553025Google ScholarCrossref
58.
Hall AP, Doberstyn EB, Nanokorn A, Sonkom P. Falciparum malaria semi-resistant to clindamycin.  Br Med J. 1975;2:12-141093609Google ScholarCrossref
59.
Karbwang J, Molunto P, Bunnag D, Harinasuta T. Plasma quinine levels in patients with falciparum malaria when given alone or in combination with tetracycline with or without primaquine.  Southeast Asian J Trop Med Public Health. 1991;22:72-761948263Google Scholar
60.
Karbwang J, Na-Bangchang K, Thanavibul A, Bunnag D, Chongsuphajaisiddhi T, Harinasuta T. Comparison of oral artesunate and quinine plus tetracycline in acute uncomplicated falciparum malaria.  Bull World Health Organ. 1994;72:233-2388205643Google Scholar
61.
Kremsner PG, Winkler S, Brandts C, Neifer S, Bienzle U, Graninger W. Clindamycin in combination with chloroquine or quinine is an effective therapy for uncomplicated Plasmodium falciparum malaria in children from Gabon.  J Infect Dis. 1994;169:467-4708106787Google ScholarCrossref
62.
Kremsner PG, Zotter GM, Feldmeier H, Graninger W, Rocha RM, Wiedermann G. A comparative trial of three regimens for treating uncomplicated falciparum malaria in Acre, Brazil.  J Infect Dis. 1988;158:1368-13713058821Google ScholarCrossref
63.
Looareesuwan S, Vanijanonta S, Viravan C.  et al.  Randomised trial of mefloquine-tetracycline and quinine-tetracycline for acute uncomplicated falciparum malaria.  Acta Trop. 1994;57:47-537942354Google ScholarCrossref
64.
Looareesuwan S, Wilairatana P, Vanijanonta S, Kyle D, Webster K. Efficacy of quinine-tetracycline for acute uncomplicated falciparum malaria in Thailand.  Lancet. 1992;339:3691346445Google ScholarCrossref
65.
McGready R, Cho T, Samuel .  et al.  Randomized comparison of quinine-clindamycin versus artesunate in the treatment of falciparum malaria in pregnancy.  Trans R Soc Trop Med Hyg. 2001;95:651-65611816439Google ScholarCrossref
66.
Metzger W, Mordmuller B, Graninger W, Bienzle U, Kremsner PG. High efficacy of short-term quinine-antibiotic combinations for treating adult malaria patients in an area in which malaria is hyperendemic.  Antimicrob Agents Chemother. 1995;39:245-2467695315Google ScholarCrossref
67.
Miller LH, Glew RH, Wyler DJ.  et al.  Evaluation of clindamycin in combination with quinine against multidrug-resistant strains of Plasmodium falciparum.  Am J Trop Med Hyg. 1974;23:565-5694603135Google Scholar
68.
Parola P, Ranque S, Badiaga S.  et al.  Controlled trial of 3-day quinine-clindamycin treatment versus 7-day quinine treatment for adult travelers with uncomplicated falciparum malaria imported from the tropics.  Antimicrob Agents Chemother. 2001;45:932-93511181383Google ScholarCrossref
69.
Pukrittayakamee S, Chantra A, Vanijanonta S, Clemens R, Looareesuwan S, White NJ. Therapeutic responses to quinine and clindamycin in multidrug-resistant falciparum malaria.  Antimicrob Agents Chemother. 2000;44:2395-239810952585Google ScholarCrossref
70.
Pukrittayakamee S, Chotivanich K, Chantra A, Clemens R, Looareesuwan S, White NJ. Activities of artesunate and primaquine against asexual- and sexual-stage parasites in falciparum malaria.  Antimicrob Agents Chemother. 2004;48:1329-133415047537Google ScholarCrossref
71.
Reacher M, Campbell CC, Freeman J, Doberstyn EB, Brandling-Bennett AD. Drug therapy for Plasmodium falciparum malaria resistant to pyrimethamine-sulfadoxine (Fansidar): a study of alternate regimens in Eastern Thailand, 1980.  Lancet. 1981;2:1066-10696118522Google ScholarCrossref
72.
Vaillant M, Millet P, Luty A.  et al.  Therapeutic efficacy of clindamycin in combination with quinine for treating uncomplicated malaria in a village dispensary in Gabon.  Trop Med Int Health. 1997;2:917-9199315051Google ScholarCrossref
73.
Vanijanonta S, Chantra A, Phophak N, Chindanond D, Clemens R, Pukrittayakamee S. Therapeutic effects of chloroquine in combination with quinine in uncomplicated falciparum malaria.  Ann Trop Med Parasitol. 1996;90:269-2758758141Google Scholar
74.
Andersen SL, Oloo AJ, Gordon DM.  et al.  Successful double-blinded, randomized, placebo-controlled field trial of azithromycin and doxycycline as prophylaxis for malaria in western Kenya.  Clin Infect Dis. 1998;26:146-1509455524Google ScholarCrossref
75.
Baudon D, Martet G, Pascal B, Bernard J, Keundjian A, Laroche R. Efficacy of daily antimalarial chemoprophylaxis in tropical Africa using either doxycycline or chloroquine-proguanil: a study conducted in 1996 in the French Army.  Trans R Soc Trop Med Hyg. 1999;93:302-30310492765Google ScholarCrossref
76.
Karwacki JJ, Shanks GD, Kummalue T, Watanasook C. Primaquine induced hemolysis in a Thai soldier.  Southeast Asian J Trop Med Public Health. 1989;20:555-5562639511Google Scholar
77.
Ohrt C, Richie TL, Widjaja H.  et al.  Mefloquine compared with doxycycline for the prophylaxis of malaria in Indonesian soldiers: a randomized, double-blind, placebo-controlled trial.  Ann Intern Med. 1997;126:963-9729182474Google ScholarCrossref
78.
Pang L, Limsomwong N, Singharaj P. Prophylactic treatment of vivax and falciparum malaria with low-dose doxycycline.  J Infect Dis. 1988;158:1124-11273053925Google ScholarCrossref
79.
Pang LW, Limsomwong N, Boudreau EF, Singharaj P. Doxycycline prophylaxis for falciparum malaria.  Lancet. 1987;1:1161-11642883488Google ScholarCrossref
80.
Rieckmann KH, Yeo AE, Davis DR, Hutton DC, Wheatley PF, Simpson R. Recent military experience with malaria chemoprophylaxis.  Med J Aust. 1993;158:446-4498469191Google Scholar
81.
Sanchez JL, DeFraites RF, Sharp TW, Hanson RK. Mefloquine or doxycycline prophylaxis in US troops in Somalia.  Lancet. 1993;341:1021-10228096898Google ScholarCrossref
82.
Shamiss A, Atar E, Zohar L, Cain Y. Mefloquine versus doxycycline for malaria prophylaxis in intermittent exposure of Israeli Air Force aircrew in Rwanda.  Aviat Space Environ Med. 1996;67:872-8739025805Google Scholar
83.
Shanks GD, Barnett A, Edstein MD, Rieckmann KH. Effectiveness of doxycycline combined with primaquine for malaria prophylaxis.  Med J Aust. 1995;162:306-307, 309-3107715493Google Scholar
84.
Shanks GD, Roessler P, Edstein MD, Rieckmann KH. Doxycycline for malaria prophylaxis in Australian soldiers deployed to United Nations missions in Somalia and Cambodia.  Mil Med. 1995;160:443-4457478027Google Scholar
85.
Taylor WR, Richie TL, Fryauff DJ.  et al.  Malaria prophylaxis using azithromycin: a double-blind, placebo-controlled trial in Irian Jaya, Indonesia.  Clin Infect Dis. 1999;28:74-8110028075Google ScholarCrossref
86.
Adehossi E, Parola P, Foucault C.  et al.  Three-day quinine-clindamycin treatment of uncomplicated falciparum malaria imported from the tropics.  Antimicrob Agents Chemother. 2003;47:117312604566Google ScholarCrossref
87.
Ramharter M, Oyakhirome S, Klouwenberg PK.  et al.  Artesunate-clindamycin versus quinine-clindamycin in the treatment of Plasmodium falciparum malaria: a randomized controlled trial.  Clin Infect Dis. 2005;40:1777-178415909266Google ScholarCrossref
88.
Duarte EC, Fontes CJ, Gyorkos TW, Abrahamowicz M. Randomized controlled trial of artesunate plus tetracycline versus standard treatment (quinine plus tetracycline) for uncomplicated Plasmodium falciparum malaria in Brazil.  Am J Trop Med Hyg. 1996;54:197-2028619447Google Scholar
89.
Silamut K, Molunto P, Ho M, Davis TM, White NJ. Alpha 1-acid glycoprotein (orosomucoid) and plasma protein binding of quinine in falciparum malaria.  Br J Clin Pharmacol. 1991;32:311-3151777366Google ScholarCrossref
90.
Winstanley P, Newton C, Watkins W.  et al.  Towards optimal regimens of parenteral quinine for young African children with cerebral malaria: the importance of unbound quinine concentration.  Trans R Soc Trop Med Hyg. 1993;87:201-2068337730Google ScholarCrossref
91.
White NJ. The treatment of malaria.  N Engl J Med. 1996;335:800-8068703186Google ScholarCrossref
92.
Di Perri G, Allegranzi B, Bonora S. Quinine-induced blindness reversed by an increase in alpha1-acid glycoprotein level.  Ann Intern Med. 2002;136:33911848734Google ScholarCrossref
93.
 Severe falciparum malaria: World Health Organization, Communicable Diseases Cluster.  Trans R Soc Trop Med Hyg. 2000;94:(suppl 1)  S1-S9011103309Google Scholar
94.
Anabwani G, Canfield CJ, Hutchinson DB. Combination atovaquone and proguanil hydrochloride vs. halofantrine for treatment of acute Plasmodium falciparum malaria in children.  Pediatr Infect Dis J. 1999;18:456-46110353520Google ScholarCrossref
95.
Blanchard TJ, Mabey DC, Hunt-Cooke A.  et al.  Multiresistant falciparum malaria cured using atovaquone and proguanil.  Trans R Soc Trop Med Hyg. 1994;88:6937886775Google ScholarCrossref
96.
Bouchaud O, Monlun E, Muanza K.  et al.  Atovaquone plus proguanil versus halofantrine for the treatment of imported acute uncomplicated Plasmodium falciparum malaria in non-immune adults: a randomized comparative trial.  Am J Trop Med Hyg. 2000;63:274-27911421377Google Scholar
97.
Bustos DG, Canfield CJ, Canete-Miguel E, Hutchinson DB. Atovaquone-proguanil compared with chloroquine and chloroquine-sulfadoxine-pyrimethamine for treatment of acute Plasmodium falciparum malaria in the Philippines.  J Infect Dis. 1999;179:1587-159010228090Google ScholarCrossref
98.
Giao PT, De Vries PJ, Hung LQ, Binh TQ, Nam NV, Kager PA. Atovaquone-proguanil for recrudescent Plasmodium falciparum in Vietnam.  Ann Trop Med Parasitol. 2003;97:575-58014511555Google ScholarCrossref
99.
Lacy MD, Maguire JD, Barcus MJ.  et al.  Atovaquone/proguanil therapy for Plasmodium falciparum and Plasmodium vivax malaria in Indonesians who lack clinical immunity.  Clin Infect Dis. 2002;35:e92-e9512384852Google ScholarCrossref
100.
Llanos-Cuentas A, Campos P, Clendenes M, Canfield CJ, Hutchinson DB. Atovaquone and proguani hydrochloride compared with chloroquine or pyrimethamine/sulfodaxine for treatment of acute Plasmodium falciparum malaria in Peru.  Braz J Infect Dis. 2001;5:67-7211493411Google ScholarCrossref
101.
Looareesuwan S, Viravan C, Webster HK, Kyle DE, Hutchinson DB, Canfield CJ. Clinical studies of atovaquone, alone or in combination with other antimalarial drugs, for treatment of acute uncomplicated malaria in Thailand.  Am J Trop Med Hyg. 1996;54:62-668651372Google Scholar
102.
Looareesuwan S, Wilairatana P, Chalermarut K, Rattanapong Y, Canfield CJ, Hutchinson DB. Efficacy and safety of atovaquone/proguanil compared with mefloquine for treatment of acute Plasmodium falciparum malaria in Thailand.  Am J Trop Med Hyg. 1999;60:526-53210348224Google Scholar
103.
Malvy D, Djossou F, Vatan R.  et al.  Experience with the combination atovaquone-proguanil in the treatment of uncomplicated Plasmodium falciparum malaria—report of 112 cases [article in French].  Med Trop (Mars). 2002;62:229-23112244916Google Scholar
104.
Mulenga M, Sukwa TY, Canfield CJ, Hutchinson DB. Atovaquone and proguanil versus pyrimethamine/sulfadoxine for the treatment of acute falciparum malaria in Zambia.  Clin Ther. 1999;21:841-85210397379Google ScholarCrossref
105.
Radloff PD, Philipps J, Nkeyi M, Hutchinson D, Kremsner PG. Atovaquone and proguanil for Plasmodium falciparum malaria.  Lancet. 1996;347:1511-15148684102Google ScholarCrossref
106.
Sabchareon A, Attanath P, Phanuaksook P.  et al.  Efficacy and pharmacokinetics of atovaquone and proguanil in children with multidrug-resistant Plasmodium falciparum malaria.  Trans R Soc Trop Med Hyg. 1998;92:201-2069764334Google ScholarCrossref
107.
Thybo S, Gjorup I, Ronn AM, Meyrowitsch D, Bygberg IC. Atovaquone-proguanil (malarone): an effective treatment for uncomplicated Plasmodium falciparum malaria in travelers from Denmark.  J Travel Med. 2004;11:220-22315541224Google ScholarCrossref
108.
Uchiyama H, Okamoto A, Sato K.  et al.  Quinine-resistant severe falciparum malaria effectively treated with atovaquone and proguanil hydrochloride combination therapy.  Intern Med. 2004;43:624-62715335195Google ScholarCrossref
109.
van Vugt M, Leonardi E, Phaipun L.  et al.  Treatment of uncomplicated multidrug-resistant falciparum malaria with artesunate-atovaquone-proguanil.  Clin Infect Dis. 2002;35:1498-150412471569Google ScholarCrossref
110.
David KP, Alifrangis M, Salanti A, Vestergaard LS, Ronn A, Bygbjerg IB. Atovaquone/proguanil resistance in Africa: a case report.  Scand J Infect Dis. 2003;35:897-89814723376Google ScholarCrossref
111.
Farnert A, Lindberg J, Gil P.  et al.  Evidence of Plasmodium falciparum malaria resistant to atovaquone and proguanil hydrochloride: case reports.  BMJ. 2003;326:628-62912649236Google ScholarCrossref
112.
Fivelman QL, Butcher GA, Adagu IS, Warhurst DC, Pasvol G. Malarone treatment failure and in vitro confirmation of resistance of Plasmodium falciparum isolate from Lagos, Nigeria.  Malar J. 2002;1:112057021Google ScholarCrossref
113.
Schwartz E, Bujanover S, Kain KC. Genetic confirmation of atovaquone-proguanil-resistant Plasmodium falciparum malaria acquired by a nonimmune traveler to East Africa.  Clin Infect Dis. 2003;37:450-45112884171Google ScholarCrossref
114.
Wichmann O, Muehlen M, Gruss H, Mockenhaupt FP, Suttorp N, Jelinek T. Malarone treatment failure not associated with previously described mutations in the cytochrome b gene.  Malar J. 2004;3:1415186499Google ScholarCrossref
115.
Kuhn S, Gill MJ, Kain KC. Emergence of atovaquone-proguanil resistance during treatment of Plasmodium falciparum malaria acquired by a non-immune north American traveller to west Africa.  Am J Trop Med Hyg. 2005;72:407-40915827276Google Scholar
116.
Schwobel B, Alifrangis M, Salanti A, Jelinek T. Different mutation patterns of atovaquone resistance to Plasmodium falciparum in vitro and in vivo: rapid detection of codon 268 polymorphisms in the cytochrome b as potential in vivo resistance marker.  Malar J. 2003;2:512665429Google ScholarCrossref
117.
Boggild AK, Parise ME.  et al.  Atovaquone-proguanil: report from a CDC expert meeting on malaria chemoprophylaxis (II).  Am J Trop Med Hyg. 2007;76:208-22317297027Google Scholar
118.
 Health Information for International Travel 2007-2008. Atlanta, Ga: Elsevier; 2007
119.
 Product information: Larium brand of mefloquine hydrochloride tablets. Bas, Switzerland: Hoffman-La Roche; 2002
120.
Hall AP, Doberstyn EB, Karnchanachetanee C.  et al.  Sequential treatment with quinine and mefloquine or quinine and pyrimethamine-sulfadoxine for falciparum malaria.  Br Med J. 1977;1:1626-1628326337Google ScholarCrossref
121.
Baird JK, Sustriayu Nalim MF, Basri H.  et al.  Survey of resistance to chloroquine by Plasmodium vivax in Indonesia.  Trans R Soc Trop Med Hyg. 1996;90:409-4118882190Google ScholarCrossref
122.
Baird JK, Wiady I, Fryauff DJ.  et al.  In vivo resistance to chloroquine by Plasmodium vivax and Plasmodium falciparum at Nabire, Irian Jaya, Indonesia.  Am J Trop Med Hyg. 1997;56:627-6319230793Google Scholar
123.
Fryauff DJ, Tuti S, Mardi A.  et al.  Chloroquine-resistant Plasmodium vivax in transmigration settlements of West Kalimantan, Indonesia.  Am J Trop Med Hyg. 1998;59:513-5189790420Google Scholar
124.
Murphy GS, Basri H, Purnomo HB.  et al.  Vivax malaria resistant to treatment and prophylaxis with chloroquine.  Lancet. 1993;341:96-1008093414Google ScholarCrossref
125.
Rieckmann KH, Davis DR, Hutton DC. Plasmodium vivax resistance to chloroquine?  Lancet. 1989;2:1183-11842572903Google ScholarCrossref
126.
Schuurkamp GJ, Spicer PE, Kereu RK, Bulungol PK, Rieckmann KH. Chloroquine-resistant Plasmodium vivax in Papua New Guinea.  Trans R Soc Trop Med Hyg. 1992;86:121-1221440763Google ScholarCrossref
127.
Sumawinata IW, Subianto B, Leksana B.  et al.  Very high risk of therapeutic failure with chloroquine for uncomplicated Plasmodium falciparum and P. vivax malaria in Indonesian Papua.  Am J Trop Med Hyg. 2003;68:416-42012875290Google Scholar
128.
Whitby M, Wood G, Veenendaal JR, Rieckmann K. Chloroquine-resistant Plasmodium vivax.  Lancet. 1989;2:13952574333Google ScholarCrossref
129.
Alcantara AK, Uylangco CV, Sangalang RP, Cross JH. A comparative clinical study of mefloquine and chloroquine in the treatment of vivax malaria.  Southeast Asian J Trop Med Public Health. 1985;16:534-5383915155Google Scholar
130.
Collignon P. Chloroquine resistance in Plasmodium vivax.  J Infect Dis. 1991;164:222-2232056216Google ScholarCrossref
131.
Dixon KE, Pitaktong U, Phintuyothin P. A clinical trial of mefloquine in the treatment of Plasmodium vivax malaria.  Am J Trop Med Hyg. 1985;34:435-4373890575Google Scholar
132.
Hanna J. Chloroquine-resistant Plasmodium vivax: how common?  Med J Aust. 1993;158:502-5038469207Google Scholar
133.
Harinasuta T, Bunnag D, Lasserre R, Leimer R, Vinijanont S. Trials of mefloquine in vivax and of mefloquine plus “fansidar” in falciparum malaria.  Lancet. 1985;1:885-8882858743Google ScholarCrossref
134.
Pukrittayakamee S, Chantra A, Simpson JA.  et al.  Therapeutic responses to different antimalarial drugs in vivax malaria.  Antimicrob Agents Chemother. 2000;44:1680-168510817728Google ScholarCrossref
135.
Schwartz IK, Lackritz EM, Patchen LC. Chloroquine-resistant Plasmodium vivax from Indonesia.  N Engl J Med. 1991;324:9272000121Google ScholarCrossref
136.
Maguire JD, Krisin , Marwoto H, Richie TL, Fryauff DJ, Baird JK. Mefloquine is highly efficacious against chloroquine-resistant Plasmodium vivax malaria and Plasmodium falciparum malaria in Papua, Indonesia.  Clin Infect Dis. 2006;42:1067-107216575721Google ScholarCrossref
137.
Looareesuwan S, Wilairatana P, Glanarongran R.  et al.  Atovaquone and proguanil hydrochloride followed by primaquine for treatment of Plasmodium vivax malaria in Thailand.  Trans R Soc Trop Med Hyg. 1999;93:637-64010717754Google ScholarCrossref
138.
Baird JK, Basri H, Subianto B.  et al.  Treatment of chloroquine-resistant Plasmodium vivax with chloroquine and primaquine or halofantrine.  J Infect Dis. 1995;171:1678-16827769318Google ScholarCrossref
139.
 Glucose-6-phosphate dehydrogenase deficiency.  Bull World Health Organ. 1989;67:601-6112633878Google Scholar
140.
Hill DR, Baird JK, Parise ME, Lewis LS, Ryan ET, Magill AJ. Primaquine: report from CDC expert meeting on malaria chemoprophylaxis I.  Am J Trop Med Hyg. 2006;75:402-41516968913Google Scholar
141.
Povinelli L, Monson TA, Fox BC, Parise ME, Morrisey JM, Vaidya AB. Plasmodium vivax malaria in spite of atovaquone/proguanil (malarone) prophylaxis.  J Travel Med. 2003;10:353-35514642204Google ScholarCrossref
142.
Jimenez BC, Navarro M, Huerga H, Lopez-Roman E, Mendoza A, Lopez-Velez R. Tertian malaria (Plasmodium vivax and Plasmodium ovale) in two travelers despite atovaquone-proguanil prophylaxis.  J Travel Med. 2006;13:373-37517107431Google ScholarCrossref
143.
Alving AS, Johnson CF, Tarlov AR, Brewer GJ, Kellermeyer RW, Carson PE. Mitigation of the haemolytic effect of primaquine and enhancement of its action against exoerythrocytic forms of the Chesson strain of Plasmodium vivax by intermittent regimens of drug administration: a preliminary report.  Bull World Health Organ. 1960;22:621-63113793053Google Scholar
144.
Myat-Phone K, Myint O, Myint L, Thaw Z, Kyin Hla A, Nwe Nwe Y. Emergence of chloroquine-resistant Plasmodium vivax in Myanmar (Burma).  Trans R Soc Trop Med Hyg. 1993;87:6878296378Google ScholarCrossref
145.
Miller KD, Greenberg AE, Campbell CC. Treatment of severe malaria in the United States with a continuous infusion of quinidine gluconate and exchange transfusion.  N Engl J Med. 1989;321:65-702659994Google ScholarCrossref
146.
Phillips RE, Warrell DA, White NJ, Looareesuwan S, Karbwang J. Intravenous quinidine for the treatment of severe falciparum malaria: clinical and pharmacokinetic studies.  N Engl J Med. 1985;312:1273-12783887162Google ScholarCrossref
147.
van Hensbroek MB, Onyiorah E, Jaffar S.  et al.  A trial of artemether or quinine in children with cerebral malaria.  N Engl J Med. 1996;335:69-758649492Google ScholarCrossref
148.
Newton PN, Angus BJ, Chierakul W.  et al.  Randomized comparison of artesunate and quinine in the treatment of severe falciparum malaria.  Clin Infect Dis. 2003;37:7-1612830403Google ScholarCrossref
149.
Molyneux ME, Taylor TE, Thomas CG, Mansor S, Wirima JJ. Efficacy of quinine for falciparum malaria according to previous chloroquine exposure.  Lancet. 1991;337:1379-13801674766Google ScholarCrossref
150.
Zucker JR, Campbell CC. Malaria: principles of prevention and treatment.  Infect Dis Clin North Am. 1993;7:547-5678254159Google Scholar
151.
White NJ, Looareesuwan S, Warrell DA, Chongsuphajaisiddhi T, Bunnag D, Harinasuta T. Quinidine in falciparum malaria.  Lancet. 1981;2:1069-10716118523Google ScholarCrossref
152.
 Availability and use of parenteral quinidine gluconate for severe or complicated malaria.  MMWR Morb Mortal Wkly Rep. 2000;49:1138-114011190119Google Scholar
153.
Humar A, Sharma S, Zoutman D, Kain KC. Fatal falciparum malaria in Canadian travellers.  CMAJ. 1997;156:1165-11679141989Google Scholar
154.
Rosenthal PJ, Peterson C, Geertsma FR, Kohl S. Availability of intravenous quinidine for falciparum malaria.  N Engl J Med. 1996;335:1388649491Google ScholarCrossref
155.
Murphy S, English M, Waruiru C.  et al.  An open randomized trial of artemether versus quinine in the treatment of cerebral malaria in African children.  Trans R Soc Trop Med Hyg. 1996;90:298-3018758084Google ScholarCrossref
156.
Warrell DA, Looareesuwan S, Warrell MJ.  et al.  Dexamethasone proves deleterious in cerebral malaria: a double-blind trial in 100 comatose patients.  N Engl J Med. 1982;306:313-3197033788Google ScholarCrossref
157.
White NJ, Warrell DA. Managing cerebral malaria.  Br Med J (Clin Res Ed). 1982;285:439-4406809117Google ScholarCrossref
158.
Dondorp A, Nosten F, Stepniewska K, Day N, White N. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial.  Lancet. 2005;366:717-72516125588Google ScholarCrossref
159.
Hoontrakoon S, Suputtamongkol Y. Exchange transfusion as an adjunct to the treatment of severe falciparum malaria.  Trop Med Int Health. 1998;3:156-1619537279Google ScholarCrossref
160.
Looareesuwan S, Phillips RE, Karbwang J, White NJ, Flegg PJ, Warrell DA. Plasmodium falciparum hyperparasitaemia: use of exchange transfusion in seven patients and a review of the literature.  Q J Med. 1990;75:471-4812201995Google Scholar
161.
Burchard GD, Kroger J, Knobloch J.  et al.  Exchange blood transfusion in severe falciparum malaria: retrospective evaluation of 61 patients treated with, compared to 63 patients treated without, exchange transfusion.  Trop Med Int Health. 1997;2:733-7409294542Google ScholarCrossref
162.
Powell VI, Grima K. Exchange transfusion for malaria and Babesia infection.  Transfus Med Rev. 2002;16:239-25012075561Google ScholarCrossref
163.
Pasvol G, Jacobs M. What is the future of exchange transfusion for falciparum malaria?  J Infect. 1999;39:183-18410714791Google ScholarCrossref
164.
Riddle MS, Jackson JL, Sanders JW, Blazes DL. Exchange transfusion as an adjunct therapy in severe Plasmodium falciparum malaria: a meta-analysis.  Clin Infect Dis. 2002;34:1192-119811941545Google ScholarCrossref
165.
Crawley J, Waruiru C, Mithwani S.  et al.  Effect of phenobarbital on seizure frequency and mortality in childhood cerebral malaria: a randomised, controlled intervention study.  Lancet. 2000;355:701-70610703801Google ScholarCrossref
166.
Kochar D, Kumawat B, Bajiya HN, Chauhan S, Kochar SK, Agarwal RP. Prophylactic role of single dose phenobarbitone in preventing convulsions in cerebral malaria.  J Assoc Physicians India. 1997;45:123-124Google Scholar
167.
White NJ, Looareesuwan S, Phillips RE, Chanthavanich P, Warrell DA. Single dose phenobarbitone prevents convulsions in cerebral malaria.  Lancet. 1988;2:64-662898696Google ScholarCrossref
168.
Hoffman SL, Rustama D, Punjabi NH.  et al.  High-dose dexamethasone in quinine-treated patients with cerebral malaria: a double-blind, placebo-controlled trial.  J Infect Dis. 1988;158:325-3313042874Google ScholarCrossref
169.
Prasad K, Garner P. Steroids for treating cerebral malaria.  Cochrane Database Syst Rev. 2000;(2):CD00097210796562Google Scholar
170.
Borochovitz D, Crosley AL, Metz J. Disseminated intravascular coagulation with fatal haemorrhage in cerebral malaria.  Br Med J. 1970;2:7105429658Google ScholarCrossref
171.
Hemmer CJ. Neither heparin nor acetylsalicylic acid influence the clinical course in human Plasmodium falciparum malaria: a prospective randomized study.  Am J Trop Med Hyg. 1991;45:608-6121951871Google Scholar
172.
Munir M, Tjandra H, Rampengan TH, Mustadjab I, Wulur FH. Heparin in the treatment of cerebral malaria.  Paediatr Indones. 1980;20:47-506988763Google Scholar
173.
Punyagupta S, Srichaikul T, Akarawong K. The use of heparin in fatal pulmonary edema due to acute falciparum malaria.  J Med Assoc Thai. 1972;55:121-1314552547Google Scholar
174.
Punyagupta S, Srichaikul T, Nitiyanant P, Petchclai B. Acute pulmonary insufficiency in falciparum malaria: summary of 12 cases with evidence of disseminated intravascular coagulation.  Am J Trop Med Hyg. 1974;23:551-5594603133Google Scholar
175.
Rampengan TH. Cerebral malaria in children: comparative study between heparin, dexamethasone and placebo.  Paediatr Indones. 1991;31:59-661852471Google Scholar
176.
Reid HA. Letter: Adjuvant treatment of severe falciparum malaria, intravascular coagulation, and heparin.  Lancet. 1975;1:167-16846084Google ScholarCrossref
177.
Thuma PE, Mabeza GF, Biemba G.  et al.  Effect of iron chelation therapy on mortality in Zambian children with cerebral malaria.  Trans R Soc Trop Med Hyg. 1998;92:214-2189764337Google ScholarCrossref
178.
Thuma PE, Olivieri NF, Mabeza GF.  et al.  Assessment of the effect of the oral iron chelator deferiprone on asymptomatic Plasmodium falciparum parasitemia in humans.  Am J Trop Med Hyg. 1998;58:358-3649546419Google Scholar
179.
Looareesuwan S, Wilairatana P, Vannaphan S.  et al.  Pentoxifylline as an ancillary treatment for severe falciparum malaria in Thailand.  Am J Trop Med Hyg. 1998;58:348-3539546417Google Scholar
180.
Agbenyega T, Planche T, Bedu-Addo G.  et al.  Population kinetics, efficacy, and safety of dichloroacetate for lactic acidosis due to severe malaria in children.  J Clin Pharmacol. 2003;43:386-39612723459Google ScholarCrossref
181.
Parise M, Lewis LS. Severe malaria: North American perspective. In: Feldman CSG, ed. Tropical and Parasitic Infections in the ICU. New York, NY: Springer Science+Business Media Inc; 2005:17-37
182.
Phillips RE, Looareesuwan S, White NJ.  et al.  Hypoglycaemia and antimalarial drugs: quinidine and release of insulin.  Br Med J (Clin Res Ed). 1986;292:1319-13213085830Google ScholarCrossref
183.
White NJ, Warrell DA, Chanthavanich P.  et al.  Severe hypoglycemia and hyperinsulinemia in falciparum malaria.  N Engl J Med. 1983;309:61-666343877Google ScholarCrossref
184.
White N. Controversies in the management of severe falciparum malaria. In: Pasvol G, ed. Balliere's Clinical Infectious Diseases: Malaria [Volume 2]. London, England: Baillière Tindall; 1995:309-330
185.
Butler T, Tong MJ, Fletcher JR, Dostalek RJ, Robbins TO. Blood coagulation studies in Plasmodium falciparum malaria.  Am J Med Sci. 1973;265:63-674571281Google ScholarCrossref
186.
Phillips RE, Looareesuwan S, Warrell DA.  et al.  The importance of anaemia in cerebral and uncomplicated falciparum malaria: role of complications, dyserythropoiesis and iron sequestration.  Q J Med. 1986;58:305-3233526385Google Scholar
187.
Marino P. The ICU Book. 2nd ed. Baltimore, Md: Williams & Wilkins; 1998
188.
Davis TM, Pukrittayakamee S, Woodhead JS, Holloway P, Chaivisuth B, White NJ. Calcium and phosphate metabolism in acute falciparum malaria.  Clin Sci (Lond). 1991;81:297-3041655329Google Scholar
189.
Newton CR, Hien TT, White N. Cerebral malaria.  J Neurol Neurosurg Psychiatry. 2000;69:433-44110990500Google ScholarCrossref
190.
U.D.E. Group, ed.  USP DI Drug Information for the Healthcare Provider. 23rd ed. Taunton, Mass: Micromedex Inc; 2003
191.
Conchie JM, Munroe JD, Anderson DO. The incidence of staining of permanent teeth by the tetracyclines.  Can Med Assoc J. 1970;203:351-3565447715Google Scholar
192.
Dubos F, Delattre P, Demar M, Carme B, Gendrel D. Safety of mefloquine in infants with acute falciparum malaria.  Pediatr Infect Dis J. 2004;23:679-68115247612Google ScholarCrossref
193.
Luxemburger C, Price RN, Nosten F, Ter Kuile FO, Chongsuphajaisiddhi T, White NJ. Mefloquine in infants and young children.  Ann Trop Paediatr. 1996;16:281-2868985524Google Scholar
194.
Sowunmi A, Oduola AM. Open comparison of mefloquine, mefloquine/sulfadoxine/pyrimethamine and chloroquine in acute uncomplicated falciparum malaria in children.  Trans R Soc Trop Med Hyg. 1995;89:303-3057660443Google ScholarCrossref
195.
ter Kuile FO, Nosten F, Luxemburger C.  et al.  Mefloquine treatment of acute falciparum malaria: a prospective study of non-serious adverse effects in 3673 patients.  Bull World Health Organ. 1995;73:631-6428846489Google Scholar
196.
ter Kuile FO, Nosten F, Thieren M.  et al.  High-dose mefloquine in the treatment of multidrug-resistant falciparum malaria.  J Infect Dis. 1992;166:1393-14001431257Google ScholarCrossref
197.
 Canadian recommendations for the prevention and treatment of malaria among international travellers. Committee to Advise on Tropical Medicine and Travel CATMAT), Laboratory for Disease Control.  Can Commun Dis Rep. 2000;26:(suppl 2)  i-vi, 1-4211055082Google Scholar
198.
Looareesuwan S, Phillips RE, White NJ.  et al.  Quinine and severe falciparum malaria in late pregnancy.  Lancet. 1985;2:4-82861481Google ScholarCrossref
199.
McGready R, Keo NK, Villegas L, White NJ, Looareesuwan S, Nosten F. Artesunate-atovaquone-proguanil rescue treatment of multidrug-resistant Plasmodium falciparum malaria in pregnancy: a preliminary report.  Trans R Soc Trop Med Hyg. 2003;97:592-59415307434Google ScholarCrossref
200.
McGready R, Stepniewska K, Edstein MD.  et al.  The pharmacokinetics of atovaquone and proguanil in pregnant women with acute falciparum malaria.  Eur J Clin Pharmacol. 2003;59:545-55212955371Google ScholarCrossref
201.
Nosten F, Vincenti M, Simpson J.  et al.  The effects of mefloquine treatment in pregnancy.  Clin Infect Dis. 1999;28:808-81510825043Google ScholarCrossref
202.
Nosten F, Karbwang J, White NJ.  et al.  Mefloquine antimalarial prophylaxis in pregnancy: dose finding and pharmacokinetic study.  Br J Clin Pharmacol. 1990;30:79-852390434Google ScholarCrossref
203.
Nosten F, ter Kuile F, Maelankiri L.  et al.  Mefloquine prophylaxis prevents malaria during pregnancy: a double-blind, placebo-controlled study.  J Infect Dis. 1994;169:595-6038158032Google ScholarCrossref
204.
Phillips-Howard PA, Steffen R, Kerr L.  et al.  Safety of mefloquine and other antimalarial agents in the first trimester of pregnancy.  J Travel Med. 1998;5:121-1269772329Google ScholarCrossref
205.
Steketee RW, Wirima JJ, Slutsker L, Khoromana CO, Heymann DL, Breman JG. Malaria treatment and prevention in pregnancy: indications for use and adverse events associated with use of chloroquine or mefloquine.  Am J Trop Med Hyg. 1996;55:(suppl)  50-568702037Google Scholar
206.
Vanhauwere B, Maradit H, Kerr L. Post-marketing surveillance of prophylactic mefloquine (Lariam) use in pregnancy.  Am J Trop Med Hyg. 1998;58:17-219452285Google Scholar
207.
Lackritz EM, Lobel HO, Howell BJ, Bloland P, Campbell CC. Imported Plasmodium falciparum malaria in American travelers to Africa: implications for prevention strategies.  JAMA. 1991;265:383-3851984539Google ScholarCrossref
208.
Lobel HO, Campbell CC, Schwartz IK, Roberts JM. Recent trends in the importation of malaria caused by Plasmodium falciparum into the United States from Africa.  J Infect Dis. 1985;152:613-6173897400Google ScholarCrossref
209.
Nahlen BL, Lobel HO, Cannon SE, Campbell CC. Reassessment of blood donor selection criteria for United States travelers to malarious areas.  Transfusion. 1991;31:798-8041755083Google ScholarCrossref
×