Invasive Methicillin-Resistant Staphylococcus aureus Infections in the United States | Infectious Diseases | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Saravolatz LD, Markowitz N, Arking L, Pohlod D, Fisher E. Methicillin-resistant Staphylococcus aureus: epidemiologic observations during a community-acquired outbreak.  Ann Intern Med. 1982;96(1):11-167053683Google ScholarCrossref
Centers for Disease Control and Prevention.  Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus—Minnesota and North Dakota, 1997-1999. MMWR Morb Mortal Wkly Rep. 1999;48(32):707-710. Accessibility verified September 25, 2007
Moran GJ, Krishnadasan A, Gorwitz RJ.  et al.  Methicillin-resistant S. aureus infections among patients in the emergency department.  N Engl J Med. 2006;355(7):666-67416914702Google ScholarCrossref
Baggett HC, Hennessy TW, Rudolph K.  et al.  Community-onset methicillin-resistant Staphylococcus aureus associated with antibiotic use and the cytotoxin Panton-Valentine leukocidin during a furunculosis outbreak in rural Alaska.  J Infect Dis. 2004;189(9):1565-157315116291Google ScholarCrossref
Centers for Disease Control and Prevention.  Methicillin-resistant Staphylococcus aureus infections among competitive sports participants—Colorado, Indiana, Pennsylvania, and Los Angeles County, 2000-2003.  MMWR Morb Mortal Wkly Rep. 2003;52(33):793-79512931079Google Scholar
Begier EM, Frenette K, Barrett NL.  et al.  A high-morbidity outbreak of methicillin-resistant Staphylococcus aureus among players on a college football team, facilitated by cosmetic body shaving and turf burns.  Clin Infect Dis. 2004;39(10):1446-145315546080Google ScholarCrossref
Centers for Disease Control and Prevention.  Outbreaks of community-associated methicillin-resistant Staphylococcus aureus skin infections—Los Angeles County, California, 2002-2003.  MMWR Morb Mortal Wkly Rep. 2003;52(5):8812588006Google Scholar
Adcock PM, Pastor P, Medley F, Patterson JE, Murphy TV. Methicillin-resistant Staphylococcus aureus in two child care centers.  J Infect Dis. 1998;178(2):577-5809697748Google ScholarCrossref
Zetola N, Francis JS, Nuermberger EL, Bishai WR. Community-acquired meticillin-resistant Staphylococcus aureus: an emerging threat.  Lancet Infect Dis. 2005;5(5):275-28615854883Google ScholarCrossref
Naimi TS, LeDell KH, Como-Sabetti KM.  et al.  Comparison of community-and health care–associated methicillin-resistant Staphylococcus aureus infection.  JAMA. 2003;290(22):2976-298414665659Google ScholarCrossref
Kaplan SL, Hulten KG, Gonzalez BE.  et al.  Three-year surveillance of community-acquired Staphylococcus aureus infections in children.  Clin Infect Dis. 2005;40(12):1785-179115909267Google ScholarCrossref
Francis JS, Doherty MC, Lopatin U.  et al.  Severe community-onset pneumonia in healthy adults caused by methicillin-resistant Staphylococcus aureus carrying the Panton-Valentine leukocidin genes.  Clin Infect Dis. 2005;40(1):100-10715614698Google ScholarCrossref
Fridkin SK, Hageman JC, Morrison M.  et al.  Methicillin-resistant Staphylococcus aureus disease in three communities.  N Engl J Med. 2005;352(14):1436-144415814879Google ScholarCrossref
Ma XX, Ito T, Tiensasitorn C.  et al.  Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains.  Antimicrob Agents Chemother. 2002;46(4):1147-115211897611Google ScholarCrossref
Lina G, Piédmont Y, Godaíl-Gamot F.  et al.  Involvement of Panton-Valentine Leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia.  Clin Infect Dis. 1999;29(5):1128-113210524952Google ScholarCrossref
Tenover FC, McDougal LK, Goering RV.  et al.  Characterization of a strain of community-associated methicillin-resistant Staphylococcus aureus widely disseminated in the United States.  J Clin Microbiol. 2006;44(1):108-11816390957Google ScholarCrossref
McDougal LK, Wenming Z, Patel JB, Tenover FC. Characterization of two new community-associated oxacillin-resistant Staphylococcus aureus pulsed-field types consisting of U.S. isolates that carry SCCmecIV and the Panton-Valentine leukocidin gene [abstract]. Presented at: American Society for Microbiology 104th General Meeting; May 23-27, 2004; New Orleans, LA
McDougal LK, Steward CD, Killgore GE, Chaitram JM, McAllister SK, Tenover FC. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database.  J Clin Microbiol. 2003;41(11):5113-512014605147Google ScholarCrossref
Boyce JM. Methicillin-resistant Staphylococcus aureus in hospitals and long-term care facilities: microbiology, epidemiology, and preventive measures.  Infect Control Hosp Epidemiol. 1992;13(12):725-7371289400Google ScholarCrossref
Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study.  Clin Infect Dis. 2004;39(3):309-31715306996Google ScholarCrossref
Klevens RM, Edwards JR, Tenover FC, McDonald LC, Horan T, Gaynes R. Changes in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in U.S. hospitals, 1992-2003.  Clin Infect Dis. 2006;42(3):389-39116392087Google ScholarCrossref
Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchemer AW, Carmeli Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis.  Clin Infect Dis. 2003;36(1):53-5912491202Google ScholarCrossref
Engemann JJ, Carmeli Y, Cosgrove SE.  et al.  Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection.  Clin Infect Dis. 2003;36(5):592-59812594640Google ScholarCrossref
Cosgrove SE, Qi Y, Kaye KS, Harbarth S, Karchmer AW, Carmeli Y. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges.  Infect Control Hosp Epidemiol. 2005;26(2):166-17415756888Google ScholarCrossref
Schuchat A, Robinson K, Wenger JD.  et al.  Bacterial meningitis in the United States in 1995.  N Engl J Med. 1997;337(14):970-9769395430Google ScholarCrossref
Whitney CG, Farley MM, Hadler J.  et al.  Increasing prevalence of multidrug-resistant Streptococcus pneumoniae in the United States.  N Engl J Med. 2000;343(26):1917-192411136262Google ScholarCrossref
Centers for Disease Control and Prevention.  Active Bacterial Core Surveillance: methodology—case definition and ascertainment. Accessibility verified September 21, 2007
Klevens RM, Morrison MA, Fridkin SK.  et al.  Spread of community-associated methicillin-resistant Staphylococcus aureus (MRSA) strains in healthcare settings  Emerg Infect Dis. 2006;12(12):1991-199317326962Google ScholarCrossref
Morin CA, Hadler JL. Population-based incidence and characteristics of community-onset Staphylococcus aureus infections with bacteremia in 4 metropolitan Connecticut areas, 1998.  J Infect Dis. 2001;184(8):1029-103411574918Google ScholarCrossref
Schramm GE, Johnson JA, Doherty JA, Micek ST, Kollef MH. Increasing incidence of sterile-site infections due to non-multidrug-resistant, oxacillin-resistant Staphylococcus aureus among hospitalized patients.  Infect Control Hosp Epidemiol. 2007;28(1):95-9717230396Google ScholarCrossref
Centers for Disease Control and Prevention.  Progress toward elimination of Haemophilus influenzae type b invasive disease among infants and children, United States, 1998–2000.  MMWR Morb Mortal Wkly Rep. 2002;51(11):234-23711925021Google Scholar
Rosenstein NEPB, Stephens DS, Popovic T, Hughes JM. Meningococcal disease.  N Engl J Med. 2001;344(18):1378-138811333996Google ScholarCrossref
Whitney CG, Farley MM, Schaffner W.  et al.  Effectiveness of seven-valent pneumococcal conjugate vaccine against invasive pneumococcal disease: a matched case-control study.  Lancet. 2006;368(9546):1495-150217071283Google ScholarCrossref
Kuehnert MJ, Hill HA, Kupronis BA, Tokars JI, Solomon SL, Jernigan DB. Methicillin-resistant Staphylococcus aureus hospitalizations, United States.  Emerg Infect Dis. 2005;11(6):868-87215963281Google ScholarCrossref
Klevens RM, Edwards JR, Richards CL.  et al.  Estimating healthcare-associated infections and deaths in U.S. hospitals, 2002.  Public Health Rep. 2007;122(2):160-16617357358Google Scholar
Seybold U, Kourbatova EV, Johnson JG.  et al.  Emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream infections.  Clin Infect Dis. 2006;42(5):647-65616447110Google ScholarCrossref
Laupland KB, Church DL, Mucenski M, Sutherland LR, Davies HD. Population-based study of the epidemiology of and the risk factors for invasive Staphylococcus aureus infections.  J Infect Dis. 2003;187(9):1452-145912717627Google ScholarCrossref
Mokdad AH, Ford ES, Bowman BA.  et al.  Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001.  JAMA. 2003;289(1):76-7912503980Google ScholarCrossref
Kyaw MH, Rose CE Jr, Fry AM.  et al. Active Bacterial Core Surveillance Program of the Emerging INfections Program Network.  The influence of chronic illnesses on the incidence of invasive pneumococcal disease in adults.  J Infect Dis. 2005;192(3):377-38615995950Google ScholarCrossref
Bagger JP, Zindrou D, Taylor KM. Postoperative infection with methicillin-resistant Staphylococcus aureus and socioeconomic background.  Lancet. 2004;363(9410):706-70815001331Google ScholarCrossref
Hidron AI, Kourbatova EV, Halvosa JS.  et al.  Risk factors for colonization with methicillin-resistant Staphylococcus aureus (MRSA) in patients admitted to an urban hospital: emergence of community-associated MRSA nasal carriage.  Clin Infect Dis. 2005;41(2):159-16615983910Google ScholarCrossref
Muto CA, Jernigan JA, Ostrowsky BE.  et al. SHEA.  SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and Enterococcus.  Infect Control Hosp Epidemiol. 2003;24(5):362-38612785411Google ScholarCrossref
Siegel JD, Jackson M, Chiarello L.Healthcare Infection Control Practices Advisory Committee.  Management of multidrug-resistant organisms in healthcare settings, 2006. 2006. Accessed June 29, 2007
Sunenshine RH, Liedtke LA, Fridkin SK, Strausbaugh LJ.Infectious Diseases Society of America Emerging Infections Network.  Management of inpatients colonized or infected with antimicrobial-resistant bacteria in hospitals in the United States.  Infect Control Hosp Epidemiol. 2005;26(2):138-14315756883Google ScholarCrossref
Centers for Disease Control and Prevention.  Methicillin-resistant Staphylococcus aureus infections in correctional facilities—Georgia, California, and Texas, 2001-2003.  MMWR Morb Mortal Wkly Rep. 2003;52(41):992-99614561958Google Scholar
Zinderman CE, Conner B, Malakooti MA, LaMar JE, Armstrong A, Bohnker BK. Community-acquired methicillin-resistant Staphylococcus aureus among military recruits.  Emerg Infect Dis. 2004;10(5):941-94415200838Google ScholarCrossref
Wootton SH, Arnold K, Hill HA.  et al.  Intervention to reduce the incidence of methicillin-resistant Staphylococcus aureus skin infections in a correctional facility in Georgia.  Infect Control Hosp Epidemiol. 2004;25(5):402-40715188846Google ScholarCrossref
Original Contribution
October 17, 2007

Invasive Methicillin-Resistant Staphylococcus aureus Infections in the United States

Author Affiliations

Author Affiliations: Centers for Disease Control and Prevention, Atlanta, Georgia (Drs Klevens, Carey, and Fridkin and Mss Morrison, Zell, and McDougal and Mr Fosheim); California Emerging Infections Program, Oakland (Ms Nadle); Connecticut Department of Health, Hartford (Ms Petit); Colorado Emerging Infections Program, Denver (Dr Gershman); Grady Memorial Hospital, Atlanta (Dr Ray); Maryland Emerging Infections Program and Johns Hopkins Bloomberg School of Public Health, Baltimore (Dr Harrison); Minnesota Department of Health, Minneapolis (Dr Lynfield); University of Rochester, Rochester General Hospital, Rochester, New York (Dr Dumyati); Oregon Health & Science University, Portland (Dr Townes); and Tennessee Department of Health, Nashville (Dr Craig).

JAMA. 2007;298(15):1763-1771. doi:10.1001/jama.298.15.1763

Context As the epidemiology of infections with methicillin-resistant Staphylococcus aureus (MRSA) changes, accurate information on the scope and magnitude of MRSA infections in the US population is needed.

Objectives To describe the incidence and distribution of invasive MRSA disease in 9 US communities and to estimate the burden of invasive MRSA infections in the United States in 2005.

Design and Setting Active, population-based surveillance for invasive MRSA in 9 sites participating in the Active Bacterial Core surveillance (ABCs)/Emerging Infections Program Network from July 2004 through December 2005. Reports of MRSA were investigated and classified as either health care–associated (either hospital-onset or community-onset) or community-associated (patients without established health care risk factors for MRSA).

Main Outcome Measures Incidence rates and estimated number of invasive MRSA infections and in-hospital deaths among patients with MRSA in the United States in 2005; interval estimates of incidence excluding 1 site that appeared to be an outlier with the highest incidence; molecular characterization of infecting strains.

Results There were 8987 observed cases of invasive MRSA reported during the surveillance period. Most MRSA infections were health care–associated: 5250 (58.4%) were community-onset infections, 2389 (26.6%) were hospital-onset infections; 1234 (13.7%) were community-associated infections, and 114 (1.3%) could not be classified. In 2005, the standardized incidence rate of invasive MRSA was 31.8 per 100 000 (interval estimate, 24.4-35.2). Incidence rates were highest among persons 65 years and older (127.7 per 100 000; interval estimate, 92.6-156.9), blacks (66.5 per 100 000; interval estimate, 43.5-63.1), and males (37.5 per 100 000; interval estimate, 26.8-39.5). There were 1598 in-hospital deaths among patients with MRSA infection during the surveillance period. In 2005, the standardized mortality rate was 6.3 per 100 000 (interval estimate, 3.3-7.5). Molecular testing identified strains historically associated with community-associated disease outbreaks recovered from cultures in both hospital-onset and community-onset health care–associated infections in all surveillance areas.

Conclusions Invasive MRSA infection affects certain populations disproportionately. It is a major public health problem primarily related to health care but no longer confined to intensive care units, acute care hospitals, or any health care institution.