High-Trauma Fractures and Low Bone Mineral Density in Older Women and Men | Orthopedics | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Riggs BL, Melton LJ III. The worldwide problem of osteoporosis: insights afforded by epidemiology.  Bone. 1995;17(5):(suppl)  505S-511S8573428Google ScholarCrossref
Papadimitropoulos EA, Coyte PC, Josse RG, Greenwood CE. Current and projected rates of hip fracture in Canada.  CMAJ. 1997;157(10):1357-13639371065Google Scholar
Cooper C, Campion G, Melton LJ III. Hip fractures in the elderly: a world-wide projection.  Osteoporos Int. 1992;2(6):285-2891421796Google ScholarCrossref
Melton LJ III, Thamer M, Ray NF.  et al.  Fractures attributable to osteoporosis: report from the National Osteoporosis Foundation.  J Bone Miner Res. 1997;12(1):16-239240721Google ScholarCrossref
Seeley DG, Browner WS, Nevitt MC, Genant HK, Scott JC, Cummings SR.Study of Osteoporotic Fractures Research Group.  Which fractures are associated with low appendicular bone mass in elderly women?  Ann Intern Med. 1991;115(11):837-8421952469Google ScholarCrossref
Stone KL, Seeley DG, Lui LY.  et al.  BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures.  J Bone Miner Res. 2003;18(11):1947-195414606506Google ScholarCrossref
Center JR, Bliuc D, Nguyen TV, Eisman JA. Risk of subsequent fracture after low-trauma fracture in men and women.  JAMA. 2007;297(4):387-39417244835Google ScholarCrossref
Cummings SR, Nevitt MC, Browner WS.  et al. Study of Osteoporotic Fractures Research Group.  Risk factors for hip fracture in white women.  N Engl J Med. 1995;332(12):767-7737862179Google ScholarCrossref
 Osteoporosis: review of the evidence for prevention, diagnosis and treatment and cost-effectiveness analysis.  Osteoporos Int. 2004;8:(suppl 4)  S7-S8010197173Google Scholar
Bone Health and Osteoporosis.  A Report of the Surgeon General 2004. Rockville, MD: US Dept of Health and Human Services, Office of the Surgeon General; 2004
Black DM, Cummings SR, Karpf DB.  et al. Fracture Intervention Trial Research Group.  Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures.  Lancet. 1996;348(9041):1535-15418950879Google ScholarCrossref
Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD. Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study.  J Bone Miner Res. 2000;15(8):1526-153610934651Google ScholarCrossref
Meier C, Nguyen TV, Center JR, Seibel MJ, Eisman JA. Bone resorption and osteoporotic fractures in elderly men: the Dubbo osteoporosis epidemiology study.  J Bone Miner Res. 2005;20(4):579-58715765176Google ScholarCrossref
Melton LJ III, Atkinson EJ, O’Connor MK, O’Fallon WM, Riggs BL. Bone density and fracture risk in men.  J Bone Miner Res. 1998;13(12):1915-19239844110Google ScholarCrossref
Papaioannou A, Joseph L, Ioannidis G.  et al.  Risk factors associated with incident clinical vertebral and nonvertebral fractures in postmenopausal women: the Canadian Multicentre Osteoporosis Study (CaMos).  Osteoporos Int. 2005;16(5):568-57815517191Google ScholarCrossref
Sanders KM, Pasco JA, Ugoni AM.  et al.  The exclusion of high trauma fractures may underestimate the prevalence of bone fragility fractures in the community: the Geelong Osteoporosis Study.  J Bone Miner Res. 1998;13(8):1337-13429718203Google ScholarCrossref
Wasnich RD, Davis JW, Ross PD. Spine fracture risk is predicted by non-spine fractures.  Osteoporos Int. 1994;4(1):1-58148565Google ScholarCrossref
Cuddihy MT, Gabriel SE, Crowson CS, O’Fallon WM, Melton LJ III. Forearm fractures as predictors of subsequent osteoporotic fractures.  Osteoporos Int. 1999;9(6):469-47510624452Google Scholar
Kanis JA, Johnell O, De Laet C.  et al.  A meta-analysis of previous fracture and subsequent fracture risk.  Bone. 2004;35(2):375-38215268886Google ScholarCrossref
Karlsson MK, Hasserius R, Obrant KJ. Individuals who sustain nonosteoporotic fractures continue to also sustain fragility fractures.  Calcif Tissue Int. 1993;53(4):229-2318275349Google ScholarCrossref
Cummings SR, Black DM, Nevitt MC.  et al. Study of Osteoporotic Fractures Research Group.  Appendicular bone density and age predict hip fracture in women.  JAMA. 1990;263(5):665-6682404146Google ScholarCrossref
Blank JB, Cawthon PM, Carrion-Petersen ML.  et al.  Overview of recruitment for the osteoporotic fractures in men study (MrOS).  Contemp Clin Trials. 2005;26(5):557-56816085466Google ScholarCrossref
Orwoll E, Blank JB, Barrett-Connor E.  et al.  Design and baseline characteristics of the osteoporotic fractures in men (MrOS) study—a large observational study of the determinants of fracture in older men.  Contemp Clin Trials. 2005;26(5):569-58516084776Google ScholarCrossref
Steiger P, Cummings SR, Black DM, Spencer NE, Genant HK. Age-related decrements in bone mineral density in women over 65.  J Bone Miner Res. 1992;7(6):625-6321414480Google ScholarCrossref
Albrand G, Munoz F, Sornay-Rendu E, DuBoeuf F, Delmas PD. Independent predictors of all osteoporosis-related fractures in healthy postmenopausal women: the OFELY study.  Bone. 2003;32(1):78-8512584039Google ScholarCrossref
Dargent-Molina P, Favier F, Grandjean H.  et al.  Fall-related factors and risk of hip fracture: the EPIDOS prospective study.  Lancet. 1996;348(9021):145-1498684153Google ScholarCrossref
Cummings SR, Cawthon PM, Ensrud KE, Cauley JA, Fink HA, Orwoll ES. BMD and risk of hip and nonvertebral fractures in older men: a prospective study and comparison with older women.  J Bone Miner Res. 2006;21(10):1550-155616995809Google ScholarCrossref
Looker AC, Wahner HW, Dunn WL.  et al.  Updated data on proximal femur bone mineral levels of US adults.  Osteoporos Int. 1998;8(5):468-4899850356Google ScholarCrossref
Hayes WC, Myers ER, Robinovitch SN, Van Den Kroonenberg A, Courtney AC, McMahon TA. Etiology and prevention of age-related hip fractures.  Bone. 1996;18(1):(suppl)  77S-86S8717551Google ScholarCrossref
Courtney AC, Wachtel EF, Myers ER, Hayes WC. Age-related reductions in the strength of the femur tested in a fall-loading configuration.  J Bone Joint Surg Am. 1995;77(3):387-3957890787Google Scholar
Robinovitch SN, Hayes WC, McMahon TA. Prediction of femoral impact forces in falls on the hip.  J Biomech Eng. 1991;113(4):366-3741762432Google ScholarCrossref
Owen RA, Melton LJ III, Johnson KA, Ilstrup DM, Riggs BL. Incidence of Colles' fracture in a North American community.  Am J Public Health. 1982;72(6):605-6077072880Google ScholarCrossref
Melton LJ III, Ilstrup DM, Riggs BL, Beckenbaugh RD. Fifty-year trend in hip fracture incidence.  Clin Orthop Relat Res. 1982;(162):144-1497067209Google Scholar
Original Contribution
November 28, 2007

High-Trauma Fractures and Low Bone Mineral Density in Older Women and Men

Author Affiliations

Author Affiliations: San Francisco Coordinating Center, San Francisco, California (Mss Mackey and Lui and Drs Cawthon, Bauer, Nevitt, and Cummings); California Pacific Medical Center Research Institute, San Francisco (Mss Mackey and Lui and Drs Cawthon and Cummings); Departments of Epidemiology and Biostatistics (Drs Bauer and Nevitt) and Medicine (Dr Bauer), University of California, San Francisco; Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania (Dr Cauley); Kaiser Permanente Center for Health Research, Northwest/Hawaii, Portland, Oregon (Dr Hillier); Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham (Dr Lewis); and Department of Family and Preventive Medicine, University of California, San Diego (Dr Barrett-Connor).

JAMA. 2007;298(20):2381-2388. doi:10.1001/jama.298.20.2381

Context It is widely believed that fractures resulting from high trauma are not osteoporotic; however, this assumption has not been studied prospectively.

Objective To examine the association between bone mineral density (BMD) and high-trauma fracture and between high-trauma fracture and subsequent fracture in older women and men.

Design, Setting, and Participants Two prospective US cohort studies in community-dwelling adults 65 years or older from geographically diverse sites. The Study of Osteoporotic Fractures followed up 8022 women for 9.1 years (1988-2006). The Osteoporotic Fractures in Men Study followed up 5995 men for 5.1 years (2000-2007).

Main Outcome Measures Hip and spine BMD were assessed by dual-energy x-ray absorptiometry. Incident nonspine fractures were confirmed by radiographic report. Fractures were classified, without knowledge of BMD, as high trauma (due to motor vehicle crashes and falls from greater than standing height) or as low trauma (due to falls from standing height and less severe trauma).

Results Overall, 264 women and 94 men sustained an initial high-trauma fracture and 3211 women and 346 men sustained an initial low-trauma fracture. For women, each 1-SD reduction in total hip BMD was similarly associated with an increased risk of high-trauma fracture (multivariate relative hazard [RH], 1.45; 95% confidence interval [CI], 1.23-1.72) and low-trauma fracture (RH, 1.49; 95% CI, 1.42-1.57). Results were consistent in men (high-trauma fracture RH, 1.54; 95% CI, 1.20-1.96; low-trauma fracture RH, 1.69; 95% CI, 1.49-1.91). Risk of subsequent fracture was 34% (95% CI, 7%-67%) greater among women with an initial high-trauma fracture and 31% (95% CI, 20%-43%) greater among women with an initial low-trauma fracture, compared with women having no high- or low-trauma fracture, respectively. Risk of subsequent fracture was not modeled for men.

Conclusions Similar to low-trauma nonspine fractures, high-trauma nonspine fractures are associated with low BMD and increased risk of subsequent fracture in older adults. High-trauma nonspine fractures should be included as outcomes in osteoporosis trials and observational studies.