Long-term Risk of Incident Vertebral Fractures | Orthopedics | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.239.150.57. Please contact the publisher to request reinstatement.
1.
Cooper C, O'Neill T, Silman A.European Vertebral Osteoporosis Study Group.  The epidemiology of vertebral fractures.  Bone. 1993;14:(suppl 1)  S89-S978110529Google ScholarCrossref
2.
Melton LJ III. Epidemiology of spinal osteoporosis.  Spine. 1997;22(24):(suppl)  2S-11S9431638Google ScholarCrossref
3.
Melton LJ III, Kan SH, Frye MA, Wahner HW, O'Fallon WM, Riggs BL. Epidemiology of vertebral fractures in women.  Am J Epidemiol. 1989;129(5):1000-10112784934Google Scholar
4.
Wasnich RD. Vertebral fracture epidemiology.  Bone. 1996;18(3):(suppl)  179S-183S8777085Google ScholarCrossref
5.
Cooper C, Atkinson E J, O'Fallon WM, Melton L J III. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985-1989.  J Bone Miner Res. 1992;7(2):221-2271570766Google ScholarCrossref
6.
Cauley JA, Thompson DE, Ensrud KC, Scott JC, Black D. Risk of mortality following clinical fractures.  Osteoporos Int. 2000;11(7):556-56111069188Google ScholarCrossref
7.
Kado DM, Duong T, Stone KL.  et al.  Incident vertebral fractures and mortality in older women: a prospective study.  Osteoporos Int. 2003;14(7):589-59412827222Google ScholarCrossref
8.
Kado DM, Browner WS, Palermo L, Nevitt MC, Genant HK, Cummings SR.Study of Osteoporotic Fractures Research Group.  Vertebral fractures and mortality in older women: a prospective study.  Arch Intern Med. 1999;159(11):1215-122010371229Google ScholarCrossref
9.
Jalava T, Sarna S, Pylkkanen L.  et al.  Association between vertebral fracture and increased mortality in osteoporotic patients.  J Bone Miner Res. 2003;18(7):1254-126012854835Google ScholarCrossref
10.
Melton LJ III, Atkinson EJ, Cooper C, O'Fallon WM, Riggs BL. Vertebral fractures predict subsequent fractures.  Osteoporos Int. 1999;10(3):214-22110525713Google ScholarCrossref
11.
Black DM, Arden NK, Palermo L, Pearson J, Cummings SR.Study of Osteoporotic Fractures Research Group.  Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures.  J Bone Miner Res. 1999;14(5):821-82810320531Google ScholarCrossref
12.
Ross PD, Davis JW, Epstein RS, Wasnich RD. Pre-existing fractures and bone mass predict vertebral fracture incidence in women.  Ann Intern Med. 1991;114(11):919-9232024857Google ScholarCrossref
13.
Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA III, Berger M. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis.  J Bone Miner Res. 2000;15(4):721-73910780864Google ScholarCrossref
14.
Oleksik A, Lips P, Dawson A.  et al.  Health-related quality of life in postmenopausal women with low BMD with or without prevalent vertebral fractures.  J Bone Miner Res. 2000;15(7):1384-139210893688Google ScholarCrossref
15.
Nevitt MC, Ettinger B, Black DM.  et al.  The association of radiographically detected vertebral fractures with back pain and function: a prospective study.  Ann Intern Med. 1998;128(10):793-8009599190Google ScholarCrossref
16.
Nevitt MC, Cummings SR, Stone KL.  et al.  Risk factors for a first-incident radiographic vertebral fracture in women > or = 65 years of age: the study of osteoporotic fractures.  J Bone Miner Res. 2005;20(1):131-14015619679Google ScholarCrossref
17.
Samelson EJ, Hannan MT, Zhang Y, Genant HK, Felson DT, Kiel DP. Incidence and risk factors for vertebral fracture in women and men: 25-year follow-up results from the population-based Framingham study.  J Bone Miner Res. 2006;21(8):1207-121416869718Google ScholarCrossref
18.
Kanis JA, Oden A, Johnell O.  et al.  The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women.  Osteoporos Int. 2007;18(8):1033-104617323110Google ScholarCrossref
19.
Kiel D.National Osteoporosis Foundation Working Group on Vertebral Fractures.  Assessing vertebral fractures.  J Bone Miner Res. 1995;10(4):518-5237610921Google Scholar
20.
Black DM, Palermo L, Nevitt MC.  et al.  Comparison of methods for defining prevalent vertebral deformities: the Study of Osteoporotic Fractures.  J Bone Miner Res. 1995;10(6):890-9027572313Google ScholarCrossref
21.
Black DM, Cummings SR, Stone K, Hudes E, Palermo L, Steiger P. A new approach to defining normal vertebral dimensions.  J Bone Miner Res. 1991;6(8):883-8921785377Google ScholarCrossref
22.
Black DM, Palermo L, Nevitt MC, Genant HK, Christensen L, Cummings SR.Study of Osteoporotic Fractures Research Group.  Defining incident vertebral deformity: a prospective comparison of several approaches.  J Bone Miner Res. 1999;14(1):90-1019893070Google ScholarCrossref
23.
Looker AC, Orwoll ES, Johnston CC Jr.  et al.  Prevalence of low femoral bone density in older US adults from NHANES III.  J Bone Miner Res. 1997;12(11):1761-17689383679Google ScholarCrossref
24.
Rockhill B, Spiegelman D, Byrne C, Hunter DJ, Colditz GA. Validation of the Gail et al model of breast cancer risk prediction and implications for chemoprevention.  J Natl Cancer Inst. 2001;93(5):358-36611238697Google ScholarCrossref
25.
Stone KL, Seeley DG, Lui LY.  et al.  BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures.  J Bone Miner Res. 2003;18(11):1947-195414606506Google ScholarCrossref
26.
van der Klift M, de Laet CE, McCloskey EV.  et al.  Risk factors for incident vertebral fractures in men and women: the Rotterdam Study.  J Bone Miner Res. 2004;19(7):1172-118015177001Google ScholarCrossref
27.
Delmas PD, Genant HK, Crans GG.  et al.  Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial.  Bone. 2003;33(4):522-53214555255Google ScholarCrossref
28.
Lindsay R, Pack S, Li Z. Longitudinal progression of fracture prevalence through a population of postmenopausal women with osteoporosis.  Osteoporos Int. 2005;16(3):306-31215455193Google ScholarCrossref
29.
Delmas PD, van de Langerijt L, Watts NB.  et al.  Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study.  J Bone Miner Res. 2005;20(4):557-56315765173Google ScholarCrossref
30.
Genant HK, Delmas PD, Chen P.  et al.  Severity of vertebral fracture reflects deterioration of bone microarchitecture.  Osteoporos Int. 2007;18(1):69-7617028792Google ScholarCrossref
31.
Black DM, Cummings SR, Karpf DB.  et al. Fracture Intervention Trial Research Group.  Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures.  Lancet. 1996;348(9041):1535-15418950879Google ScholarCrossref
32.
Black DM, Delmas PD, Eastell R.  et al.  Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis.  N Engl J Med. 2007;356(18):1809-182217476007Google ScholarCrossref
33.
Ettinger B, Black DM, Mitlak BH.  et al. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators.  Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial.  JAMA. 1999;282(7):637-64510517716Google ScholarCrossref
34.
Harris ST, Watts NB, Genant HK.  et al. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group.  Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial.  JAMA. 1999;282(14):1344-135210527181Google ScholarCrossref
35.
Siris ES, Brenneman SK, Barrett-Connor E.  et al.  The effect of age and bone mineral density on the absolute, excess, and relative risk of fracture in postmenopausal women aged 50-99: results from the National Osteoporosis Risk Assessment (NORA).  Osteoporos Int. 2006;17(4):565-57416392027Google ScholarCrossref
36.
Wainwright SA, Marshall LM, Ensrud KE.  et al.  Hip fracture in women without osteoporosis.  J Clin Endocrinol Metab. 2005;90(5):2787-279315728213Google ScholarCrossref
37.
Roy DK, O'Neill TW, Finn JD.  et al.  Determinants of incident vertebral fracture in men and women: results from the European Prospective Osteoporosis Study (EPOS).  Osteoporos Int. 2003;14(1):19-2612577181Google ScholarCrossref
38.
Kaptoge S, Armbrecht G, Felsenberg D.  et al.  Whom to treat? the contribution of vertebral X-rays to risk-based algorithms for fracture prediction: results from the European Prospective Osteoporosis Study.  Osteoporos Int. 2006;17(9):1369-138116821002Google ScholarCrossref
39.
Lewiecki EM, Laster AJ. Clinical review: clinical applications of vertebral fracture assessment by dual-energy x-ray absorptiometry.  J Clin Endocrinol Metab. 2006;91(11):4215-422216940447Google ScholarCrossref
Original Contribution
December 19, 2007

Long-term Risk of Incident Vertebral Fractures

Author Affiliations
 

Author Affiliations: Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania (Dr Cauley); Department of Medicine, University of Maryland Medical Center, Baltimore (Dr Hochberg); San Francisco Coordinating Center, California Pacific Medical Center, San Francisco (Ms Lui and Dr Cummings); Department of Epidemiology and Biostatistics, University of California, San Francisco (Ms Palermo and Drs Nevitt and Cummings); Department of Medicine, Minneapolis VA Medical Center, Minneapolis, Minnesota (Dr Ensrud); and Kaiser Permanente Center for Health Research Northwest/Hawaii, Portland, Oregon (Dr Hillier).

JAMA. 2007;298(23):2761-2767. doi:10.1001/jama.298.23.2761
Abstract

Context Vertebral fractures are the most common osteoporotic fracture. Women with low bone mineral density (BMD) and prevalent vertebral fractures have a greater risk of incident vertebral fractures over the short-term, but their absolute risk of vertebral fracture over the long-term is uncertain.

Objective To examine the absolute risk of incident vertebral fracture by BMD and prevalent vertebral fracture status over 15 years.

Design, Setting, and Participants A total of 9704 white women were recruited at 4 US clinical centers and enrolled in the Study of Osteoporotic Fractures, a longitudinal cohort study. Of these, 2680 attended a clinic visit an average of 14.9 years after baseline; mean age of 68.8 years at entry and 83.8 years at follow-up.

Mean Outcome Measure Incident vertebral fractures identified from lateral spinal radiographs defined as a decrease of at least 20% and 4 mm at any vertebral level. Prevalent vertebral fractures were identified on the baseline radiographs using vertebral morphometry. Bone mineral density was measured at the total hip and lumbar spine using dual-energy x-ray absorptiometry.

Results Of the 2680 women, 487 (18.2%) had an incident vertebral fracture including 163 of the 394 (41.4%) with a prevalent vertebral fracture at baseline and 324 of the 2286 (14.2%) without a prevalent vertebral fracture at baseline (odds ratio, 4.21; 95% confidence interval, 3.33-5.34). Low BMD was associated with an increased risk of incident vertebral fracture (odds ratio per 1 SD decrease in total hip BMD, 1.78 [95% confidence interval, 1.58-2.00]). The absolute risk of vertebral fracture ranged from 56% among women with total hip BMD T score of −2.5 or less and a prevalent vertebral fracture to 9% in women with normal BMD and no prevalent vertebral fracture.

Conclusions Low BMD and prevalent vertebral fractures are independently related to new vertebral fractures over 15 years of follow-up. Women with a prevalent vertebral fracture have a substantially increased absolute risk of an incident fracture, especially if they have osteoporosis diagnosed by BMD.

×