Copy Number Variations and Cognitive Phenotypes in Unselected Populations | Child Development | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.170.64.36. Please contact the publisher to request reinstatement.
1.
Conrad  DF, Pinto  D, Redon  R,  et al; Wellcome Trust Case Control Consortium.  Origins and functional impact of copy number variation in the human genome.  Nature. 2010;464(7289):704-712.PubMedGoogle ScholarCrossref
2.
MacDonald  JR, Ziman  R, Yuen  RK, Feuk  L, Scherer  SW.  The Database of Genomic Variants: a curated collection of structural variation in the human genome.  Nucleic Acids Res. 2014;42(Database issue):D986-D992.PubMedGoogle ScholarCrossref
3.
Chaignat  E, Yahya-Graison  EA, Henrichsen  CN,  et al.  Copy number variation modifies expression time courses.  Genome Res. 2011;21(1):106-113.PubMedGoogle ScholarCrossref
4.
Henrichsen  CN, Chaignat  E, Reymond  A.  Copy number variants, diseases and gene expression.  Hum Mol Genet. 2009;18(R1):R1-R8.PubMedGoogle ScholarCrossref
5.
Henrichsen  CN, Vinckenbosch  N, Zöllner  S,  et al.  Segmental copy number variation shapes tissue transcriptomes.  Nat Genet. 2009;41(4):424-429.PubMedGoogle ScholarCrossref
6.
Stranger  BE, Forrest  MS, Dunning  M,  et al.  Relative impact of nucleotide and copy number variation on gene expression phenotypes.  Science. 2007;315(5813):848-853.PubMedGoogle ScholarCrossref
7.
Cooper  GM, Coe  BP, Girirajan  S,  et al.  A copy number variation morbidity map of developmental delay.  Nat Genet. 2011;43(9):838-846.PubMedGoogle ScholarCrossref
8.
Lupski  JR.  Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits.  Trends Genet. 1998;14(10):417-422.PubMedGoogle ScholarCrossref
9.
Swaminathan  GJ, Bragin  E, Chatzimichali  EA,  et al.  DECIPHER: web-based, community resource for clinical interpretation of rare variants in developmental disorders.  Hum Mol Genet. 2012;21(R1):R37-R44.PubMedGoogle ScholarCrossref
10.
Leitsalu  L, Haller  T, Esko  T,  et al.  Cohort Profile: Estonian Biobank of the Estonian Genome Center, University of Tartu [published ahead of print February 11, 2014].  Int J Epidemiol. 2014. doi:10.1093/ije/dyt268. PubMedGoogle Scholar
11.
Jacquemont  S, Reymond  A, Zufferey  F,  et al.  Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus.  Nature. 2011;478(7367):97-102.PubMedGoogle ScholarCrossref
12.
Zufferey  F, Sherr  EH, Beckmann  ND,  et al; Simons VIP Consortium; 16p11.2 European Consortium.  A 600 kb deletion syndrome at 16p11.2 leads to energy imbalance and neuropsychiatric disorders.  J Med Genet. 2012;49(10):660-668.PubMedGoogle ScholarCrossref
13.
Nelis  M, Esko  T, Mägi  R,  et al.  Genetic structure of Europeans: a view from the North-East.  PLoS One. 2009;4(5):e5472.PubMedGoogle ScholarCrossref
14.
Pietiläinen  OP, Rehnström  K, Jakkula  E,  et al.  Phenotype mining in CNV carriers from a population cohort.  Hum Mol Genet. 2011;20(13):2686-2695.PubMedGoogle ScholarCrossref
15.
Walters  RG, Coin  LJ, Ruokonen  A,  et al.  Rare genomic structural variants in complex disease: lessons from the replication of associations with obesity.  PLoS One. 2013;8(3):e58048.PubMedGoogle ScholarCrossref
16.
Perry  JR, Day  F, Elks  CE,  et al; Australian Ovarian Cancer Study; GENICA Network; ConFab; LifeLines Cohort Study; InterAct Consortium; Early Growth Genetics (EGG) Consortium.  Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.  Nature. 2014;514(7520):92-97.PubMedGoogle ScholarCrossref
17.
Rietveld  CA, Medland  SE, Derringer  J,  et al; LifeLines Cohort Study.  GWAS of 126,559 individuals identifies genetic variants associated with educational attainment.  Science. 2013;340(6139):1467-1471.PubMedGoogle ScholarCrossref
18.
Wood  AR, Esko  T, Yang  J,  et al; Electronic Medical Records and Genomics (eMEMERGEGE) Consortium; MIGen Consortium; PAGEGE Consortium; LifeLines Cohort Study.  Defining the role of common variation in the genomic and biological architecture of adult human height.  Nat Genet. 2014;46(11):1173-1186.PubMedGoogle ScholarCrossref
19.
Wang  K, Li  M, Hadley  D,  et al.  PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data.  Genome Res. 2007;17(11):1665-1674.PubMedGoogle ScholarCrossref
20.
Maulik  PK, Mascarenhas  MN, Mathers  CD, Dua  T, Saxena  S.  Prevalence of intellectual disability: a meta-analysis of population-based studies.  Res Dev Disabil. 2011;32(2):419-436.PubMedGoogle ScholarCrossref
21.
Jacquemont  S, Coe  BP, Hersch  M,  et al.  A higher mutational burden in females supports a “female protective model” in neurodevelopmental disorders.  Am J Hum Genet. 2014;94(3):415-425.PubMedGoogle ScholarCrossref
22.
Krumm  N, O’Roak  BJ, Karakoc  E,  et al.  Transmission disequilibrium of small CNVs in simplex autism.  Am J Hum Genet. 2013;93(4):595-606.PubMedGoogle ScholarCrossref
23.
Huang  N, Lee  I, Marcotte  EM, Hurles  ME.  Characterising and predicting haploinsufficiency in the human genome.  PLoS Genet. 2010;6(10):e1001154.PubMedGoogle ScholarCrossref
24.
Makino  T, McLysaght  A.  Ohnologs in the human genome are dosage balanced and frequently associated with disease.  Proc Natl Acad Sci U S A. 2010;107(20):9270-9274.PubMedGoogle ScholarCrossref
25.
Reymond  A, Henrichsen  CN, Harewood  L, Merla  G.  Side effects of genome structural changes.  Curr Opin Genet Dev. 2007;17(5):381-386.PubMedGoogle ScholarCrossref
26.
Ernst  J, Kheradpour  P, Mikkelsen  TS,  et al.  Mapping and analysis of chromatin state dynamics in nine human cell types.  Nature. 2011;473(7345):43-49.PubMedGoogle ScholarCrossref
27.
Boyd  A, Golding  J, Macleod  J,  et al.  Cohort Profile: the “children of the 90s”—the index offspring of the Avon Longitudinal Study of Parents and Children.  Int J Epidemiol. 2013;42(1):111-127.PubMedGoogle ScholarCrossref
28.
Peiffer  DA, Le  JM, Steemers  FJ,  et al.  High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping.  Genome Res. 2006;16(9):1136-1148.PubMedGoogle ScholarCrossref
29.
Ward  ME, McMahon  G, St Pourcain  B,  et al; Social Science Genetic Association Consortium.  Genetic variation associated with differential educational attainment in adults has anticipated associations with school performance in children.  PLoS One. 2014;9(7):e100248.PubMedGoogle ScholarCrossref
30.
Levăcić  R, Jenkins  A, Vignoles  A, Steele  F, Allen  R. Estimating the relationship between school resources and pupil attainment at key stage 3. http://eprints.ioe.ac.uk/1319/1/Levacic2005estimatingfullreport.pdf. 2005. Accessed May 7, 2015.
31.
Iacono  WG, Carlson  SR, Taylor  J, Elkins  IJ, McGue  M.  Behavioral disinhibition and the development of substance-use disorders: findings from the Minnesota Twin Family Study.  Dev Psychopathol. 1999;11(4):869-900.PubMedGoogle ScholarCrossref
32.
McGue  M, Keyes  M, Sharma  A,  et al.  The environments of adopted and non-adopted youth: evidence on range restriction from the Sibling Interaction and Behavior Study (SIBS).  Behav Genet. 2007;37(3):449-462.PubMedGoogle ScholarCrossref
33.
Diskin  SJ, Li  M, Hou  C,  et al.  Adjustment of genomic waves in signal intensities from whole-genome SNP genotyping platforms.  Nucleic Acids Res. 2008;36(19):e126.PubMedGoogle ScholarCrossref
34.
Sattler  JM.  Assessment of Children (Revised). Philadelphia,k PA: WB Saunders Co; 1974.
35.
Salvi  E, Kutalik  Z, Glorioso  N,  et al.  Genomewide association study using a high-density single nucleotide polymorphism array and case-control design identifies a novel essential hypertension susceptibility locus in the promoter region of endothelial NO synthase.  Hypertension. 2012;59(2):248-255.PubMedGoogle ScholarCrossref
36.
Dittwald  P, Gambin  T, Szafranski  P,  et al.  NAHR-mediated copy-number variants in a clinical population: mechanistic insights into both genomic disorders and Mendelizing traits.  Genome Res. 2013;23(9):1395-1409.PubMedGoogle ScholarCrossref
37.
Kaminsky  EB, Kaul  V, Paschall  J,  et al.  An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities.  Genet Med. 2011;13(9):777-784.PubMedGoogle ScholarCrossref
38.
Bochukova  EG, Huang  N, Keogh  J,  et al.  Large, rare chromosomal deletions associated with severe early-onset obesity.  Nature. 2010;463(7281):666-670.PubMedGoogle ScholarCrossref
39.
Walters  RG, Jacquemont  S, Valsesia  A,  et al.  A new highly penetrant form of obesity due to deletions on chromosome 16p11.2.  Nature. 2010;463(7281):671-675.PubMedGoogle ScholarCrossref
40.
Shinawi  M, Liu  P, Kang  SH,  et al.  Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size.  J Med Genet. 2010;47(5):332-341.PubMedGoogle ScholarCrossref
41.
Weiss  LA, Shen  Y, Korn  JM,  et al; Autism Consortium.  Association between microdeletion and microduplication at 16p11.2 and autism.  N Engl J Med. 2008;358(7):667-675.PubMedGoogle ScholarCrossref
42.
McCarthy  SE, Makarov  V, Kirov  G,  et al; Wellcome Trust Case Control Consortium.  Microduplications of 16p11.2 are associated with schizophrenia.  Nat Genet. 2009;41(11):1223-1227.PubMedGoogle ScholarCrossref
43.
Golzio  C, Willer  J, Talkowski  ME,  et al.  KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant.  Nature. 2012;485(7398):363-367.PubMedGoogle ScholarCrossref
44.
Maillard  AM, Ruef  A, Pizzagalli  F,  et al; 16p11.2 European Consortium.  The 16p11.2 locus modulates brain structures common to autism, schizophrenia, and obesity.  Mol Psychiatry. 2015;20(1):140-147.PubMedGoogle ScholarCrossref
45.
Brody  N.  Intelligence, Schooling, and Society.  Am Psychol. 1997;52(10):1046-1050.Google ScholarCrossref
46.
Matarazzo  JD, Herman  DO.  Relationship of Education and IQ in the WAIS-R Standardization Sample.  J Consult Clin Psychol. 1984;52(4):631-634.Google ScholarCrossref
47.
Bamshad  MJ, Ng  SB, Bigham  AW,  et al.  Exome sequencing as a tool for Mendelian disease gene discovery.  Nat Rev Genet. 2011;12(11):745-755.PubMedGoogle ScholarCrossref
48.
Deary  IJ.  Intelligence.  Annu Rev Psychol. 2012;63:453-482.PubMedGoogle ScholarCrossref
49.
Stefansson  H, Meyer-Lindenberg  A, Steinberg  S,  et al.  CNVs conferring risk of autism or schizophrenia affect cognition in controls.  Nature. 2014;505(7483):361-366.PubMedGoogle ScholarCrossref
50.
Deary  IJ, Penke  L, Johnson  W.  The neuroscience of human intelligence differences.  Nat Rev Neurosci. 2010;11(3):201-211.PubMedGoogle Scholar
51.
Devlin  B, Daniels  M, Roeder  K.  The heritability of IQ.  Nature. 1997;388(6641):468-471.PubMedGoogle ScholarCrossref
52.
Flint  J, Munafò  M.  Genetics. Herit-ability.  Science. 2013;340(6139):1416-1417.PubMedGoogle ScholarCrossref
53.
Vinkhuyzen  AA, van der Sluis  S, Maes  HH, Posthuma  D.  Reconsidering the heritability of intelligence in adulthood: taking assortative mating and cultural transmission into account.  Behav Genet. 2012;42(2):187-198.PubMedGoogle ScholarCrossref
54.
Davies  G, Armstrong  N, Bis  JC,  et al; Generation Scotland.  Genetic contributions to variation in general cognitive function: a meta-analysis of genome-wide association studies in the CHARGE consortium (N=53949).  Mol Psychiatry. 2015;20(2):183-192.PubMedGoogle ScholarCrossref
55.
Kirkpatrick  RM, McGue  M, Iacono  WG, Miller  MB, Basu  S, Pankratz  N.  Low-frequency copy-number variants and general cognitive ability: no evidence of association.  Intelligence. 2014;42:98-106.PubMedGoogle ScholarCrossref
56.
McRae  AF, Wright  MJ, Hansell  NK, Montgomery  GW, Martin  NG.  No association between general cognitive ability and rare copy number variation.  Behav Genet. 2013;43(3):202-207.PubMedGoogle ScholarCrossref
57.
Need  AC, Attix  DK, McEvoy  JM,  et al.  A genome-wide study of common SNPs and CNVs in cognitive performance in the CANTAB.  Hum Mol Genet. 2009;18(23):4650-4661.PubMedGoogle ScholarCrossref
58.
Bagshaw  AT, Horwood  LJ, Liu  Y, Fergusson  DM, Sullivan  PF, Kennedy  MA.  No effect of genome-wide copy number variation on measures of intelligence in a New Zealand birth cohort.  PLoS One. 2013;8(1):e55208.PubMedGoogle ScholarCrossref
59.
Desachy  G, Croen  LA, Torres  AR,  et al.  Increased female autosomal burden of rare copy number variants in human populations and in autism families.  Mol Psychiatry. 2015;20(2):170-175.PubMedGoogle ScholarCrossref
Original Investigation
May 26, 2015

Copy Number Variations and Cognitive Phenotypes in Unselected Populations

Author Affiliations
  • 1Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
  • 2Estonian Genome Center, University of Tartu, Tartu
  • 3Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
  • 4Swiss Institute of Bioinformatics, Lausanne, Switzerland
  • 5Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis
  • 6Bristol Genetic Epidemiology Laboratories, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
  • 7MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
  • 8Department of Neurology and Neurorehabilitation, Children's Clinic, Tartu University Hospital, Tartu, Estonia
  • 9Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
  • 10Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
  • 11Deparment of Health Sciences, University of Milan, Milan, Italy
  • 12Institute of Biomedical Technologies, Italian National Research Council, Milan, Italy
  • 13Department of Psychology, University of Minnesota, Minneapolis
  • 14Institute of Social and Preventive Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
JAMA. 2015;313(20):2044-2054. doi:10.1001/jama.2015.4845
Abstract

Importance  The association of copy number variations (CNVs), differing numbers of copies of genetic sequence at locations in the genome, with phenotypes such as intellectual disability has been almost exclusively evaluated using clinically ascertained cohorts. The contribution of these genetic variants to cognitive phenotypes in the general population remains unclear.

Objective  To investigate the clinical features conferred by CNVs associated with known syndromes in adult carriers without clinical preselection and to assess the genome-wide consequences of rare CNVs (frequency ≤0.05%; size ≥250 kilobase pairs [kb]) on carriers’ educational attainment and intellectual disability prevalence in the general population.

Design, Setting, and Participants  The population biobank of Estonia contains 52 000 participants enrolled from 2002 through 2010. General practitioners examined participants and filled out a questionnaire of health- and lifestyle-related questions, as well as reported diagnoses. Copy number variant analysis was conducted on a random sample of 7877 individuals and genotype-phenotype associations with education and disease traits were evaluated. Our results were replicated on a high-functioning group of 993 Estonians and 3 geographically distinct populations in the United Kingdom, the United States, and Italy.

Main Outcomes and Measures  Phenotypes of genomic disorders in the general population, prevalence of autosomal CNVs, and association of these variants with educational attainment (from less than primary school through scientific degree) and prevalence of intellectual disability.

Results  Of the 7877 in the Estonian cohort, we identified 56 carriers of CNVs associated with known syndromes. Their phenotypes, including cognitive and psychiatric problems, epilepsy, neuropathies, obesity, and congenital malformations are similar to those described for carriers of identical rearrangements ascertained in clinical cohorts. A genome-wide evaluation of rare autosomal CNVs (frequency, ≤0.05%; ≥250 kb) identified 831 carriers (10.5%) of the screened general population. Eleven of 216 (5.1%) carriers of a deletion of at least 250 kb (odds ratio [OR], 3.16; 95% CI, 1.51-5.98; P = 1.5e-03) and 6 of 102 (5.9%) carriers of a duplication of at least 1 Mb (OR, 3.67; 95% CI, 1.29-8.54; P = .008) had an intellectual disability compared with 114 of 6819 (1.7%) in the Estonian cohort. The mean education attainment was 3.81 (P = 1.06e-04) among 248 (≥250 kb) deletion carriers and 3.69 (P = 5.024e-05) among 115 duplication carriers (≥1 Mb). Of the deletion carriers, 33.5% did not graduate from high school (OR, 1.48; 95% CI, 1.12-1.95; P = .005) and 39.1% of duplication carriers did not graduate high school (OR, 1.89; 95% CI, 1.27-2.8; P = 1.6e-03). Evidence for an association between rare CNVs and lower educational attainment was supported by analyses of cohorts of adults from Italy and the United States and adolescents from the United Kingdom.

Conclusions and Relevance  Known pathogenic CNVs in unselected, but assumed to be healthy, adult populations may be associated with unrecognized clinical sequelae. Additionally, individually rare but collectively common intermediate-size CNVs may be negatively associated with educational attainment. Replication of these findings in additional population groups is warranted given the potential implications of this observation for genomics research, clinical care, and public health.

×