Cost-effectiveness of 10-Year Risk Thresholds for Initiation of Statin Therapy for Primary Prevention of Cardiovascular Disease | Cardiology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Stone  NJ, Robinson  JG, Lichtenstein  AH,  et al; American College of Cardiology/American Heart Association Task Force on Practice Guidelines.  2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.  Circulation. 2014;129(25)(suppl 2):S1-S45.PubMedGoogle ScholarCrossref
2.
Psaty  BM, Weiss  NS.  2013 ACC/AHA guideline on the treatment of blood cholesterol: a fresh interpretation of old evidence.  JAMA. 2014;311(5):461-462.PubMedGoogle ScholarCrossref
3.
Goff  DC  Jr, Lloyd-Jones  DM, Bennett  G,  et al; American College of Cardiology/American Heart Association Task Force on Practice Guidelines.  2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.  J Am Coll Cardiol. 2014;63(25 pt B):2935-2959.PubMedGoogle ScholarCrossref
4.
Pencina  MJ, Navar-Boggan  AM, D’Agostino  RB  Sr,  et al.  Application of new cholesterol guidelines to a population-based sample.  N Engl J Med. 2014;370(15):1422-1431.PubMedGoogle ScholarCrossref
5.
Guallar  E, Laine  C.  Controversy over clinical guidelines: listen to the evidence, not the noise.  Ann Intern Med. 2014;160(5):361-362.PubMedGoogle ScholarCrossref
6.
Ridker  PM, Cook  NR.  Statins: new American guidelines for prevention of cardiovascular disease.  Lancet. 2013;382(9907):1762-1765.PubMedGoogle ScholarCrossref
7.
Abramson  JD, Redberg  RF.  Don't give more patients statins.http://www.nytimes.com/2013/11/14/opinion/dont-give-more-patients-statins.html?_r=0. Accessed June 9, 2015.
8.
Sattar  N, Preiss  D, Murray  HM,  et al.  Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials.  Lancet. 2010;375(9716):735-742.PubMedGoogle ScholarCrossref
9.
Krumholz  HM.  The new cholesterol and blood pressure guidelines: perspective on the path forward.  JAMA. 2014;311(14):1403-1405.PubMedGoogle ScholarCrossref
10.
Robinson  JG.  Accumulating evidence for statins in primary prevention.  JAMA. 2013;310(22):2405-2406.PubMedGoogle ScholarCrossref
11.
Deaño  RC, Pandya  A, Jones  EC, Borden  WB.  A look at statin cost-effectiveness in view of the 2013 ACC/AHA cholesterol management guidelines.  Curr Atheroscler Rep. 2014;16(9):438.PubMedGoogle ScholarCrossref
12.
Centers for Disease Control and Prevention (CDC).  National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey. Hyattsville, MD: US Department of Health and Human Services, Centers for Disease Control and Prevention; 2011.
13.
Baigent  C, Keech  A, Kearney  PM,  et al; Cholesterol Treatment Trialists’ (CTT) Collaborators.  Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90 056 participants in 14 randomised trials of statins.  Lancet. 2005;366(9493):1267-1278.PubMedGoogle ScholarCrossref
14.
Zhang  H, Plutzky  J, Skentzos  S,  et al.  Discontinuation of statins in routine care settings: a cohort study.  Ann Intern Med. 2013;158(7):526-534.PubMedGoogle ScholarCrossref
15.
Alsheikh-Ali  AA, Ambrose  MS, Kuvin  JT, Karas  RH.  The safety of rosuvastatin as used in common clinical practice: a postmarketing analysis.  Circulation. 2005;111(23):3051-3057.PubMedGoogle ScholarCrossref
16.
Thomson Healthcare.  Red Book. Montvale, NJ: Thomson PDR; 2014.
17.
Jackevicius  CA, Chou  MM, Ross  JS, Shah  ND, Krumholz  HM.  Generic atorvastatin and health care costs.  N Engl J Med. 2012;366(3):201-204.PubMedGoogle ScholarCrossref
18.
Smith  SL, Fischoff  R, Klemp  T; American Medical Association.  Medicare RBRVS: The Physicians’ Guide, 2011. Chicago, IL: American Medical Association; 2011.
19.
O’Sullivan  AK, Rubin  J, Nyambose  J, Kuznik  A, Cohen  DJ, Thompson  D.  Cost estimation of cardiovascular disease events in the United States.  Pharmacoeconomics. 2011;29(8):693-704.PubMedGoogle ScholarCrossref
20.
Lee  KK, Cipriano  LE, Owens  DK, Go  AS, Hlatky  MA.  Cost-effectiveness of using high-sensitivity C-reactive protein to identify intermediate- and low-cardiovascular–risk individuals for statin therapy.  Circulation. 2010;122(15):1478-1487.PubMedGoogle ScholarCrossref
21.
Pignone  M, Earnshaw  S, Tice  JA, Pletcher  MJ.  Aspirin, statins, or both drugs for the primary prevention of coronary heart disease events in men: a cost-utility analysis.  Ann Intern Med. 2006;144(5):326-336.PubMedGoogle ScholarCrossref
22.
Russell  LB, Ibuka  Y, Carr  D.  How much time do patients spend on outpatient visits?: the American time use survey.  Patient. 2008;1(3):211-222.PubMedGoogle ScholarCrossref
23.
US Bureau of Labor Statistics.  Highlights of women’s earnings in 2013.http://www.bls.gov/opub/reports/cps/highlights-of-womens-earnings-in-2013.pdf. Accessed June 9, 2015.
24.
Gage  BF, Cardinalli  AB, Owens  DK.  The effect of stroke and stroke prophylaxis with aspirin or warfarin on quality of life.  Arch Intern Med. 1996;156(16):1829-1836.PubMedGoogle ScholarCrossref
25.
Hutchins  R, Viera  AJ, Sheridan  SL, Pignone  MP.  Quantifying the utility of taking pills for cardiovascular prevention.  Circ Cardiovasc Qual Outcomes. 2015;8(2):155-163.PubMedGoogle ScholarCrossref
26.
Sullivan  PW, Ghushchyan  V.  Preference-based EQ-5D index scores for chronic conditions in the United States.  Med Decis Making.2006;26(4):410-420. PubMedGoogle ScholarCrossref
27.
Pandya  A, Weinstein  MC, Salomon  JA, Cutler  D, Gaziano  TA.  Who needs laboratories and who needs statins?: comparative and cost-effectiveness analyses of nonlaboratory-based, laboratory-based, and staged primary cardiovascular disease screening guidelines.  Circ Cardiovasc Qual Outcomes. 2014;7(1):25-32.PubMedGoogle ScholarCrossref
28.
Gaziano  TA, Opie  LH, Weinstein  MC.  Cardiovascular disease prevention with a multidrug regimen in the developing world: a cost-effectiveness analysis.  Lancet. 2006;368(9536):679-686.PubMedGoogle ScholarCrossref
29.
Gaziano  TA, Steyn  K, Cohen  DJ, Weinstein  MC, Opie  LH.  Cost-effectiveness analysis of hypertension guidelines in South Africa: absolute risk vs blood pressure level.  Circulation. 2005;112(23):3569-3576.PubMedGoogle ScholarCrossref
30.
Vanni  T, Karnon  J, Madan  J,  et al.  Calibrating models in economic evaluation: a 7-step approach.  Pharmacoeconomics. 2011;29(1):35-49.PubMedGoogle ScholarCrossref
31.
Anderson  KM, Odell  PM, Wilson  PW, Kannel  WB.  Cardiovascular disease risk profiles.  Am Heart J. 1991;121(1 pt 2):293-298.PubMedGoogle ScholarCrossref
32.
Wolf  PA, D’Agostino  RB, Belanger  AJ, Kannel  WB.  Probability of stroke: a risk profile from the Framingham Study.  Stroke. 1991;22(3):312-318.PubMedGoogle ScholarCrossref
33.
Pandya  A, Gaziano  TA, Weinstein  MC, Cutler  D.  More Americans living longer with cardiovascular disease will increase costs while lowering quality of life.  Health Aff (Millwood). 2013;32(10):1706-1714.PubMedGoogle ScholarCrossref
34.
Heron  M.  Deaths: Leading Causes for 2006. National Vital Statistics Reports.Vol 58. Hyattsville, MD: National Center for Health Statistics; 2010.
35.
Smolina  K, Wright  FL, Rayner  M, Goldacre  MJ.  Long-term survival and recurrence after acute myocardial infarction in England, 2004 to 2010.  Circ Cardiovasc Qual Outcomes. 2012;5(4):532-540.PubMedGoogle ScholarCrossref
36.
Ford  ES, Roger  VL, Dunlay  SM, Go  AS, Rosamond  WD.  Challenges of ascertaining national trends in the incidence of coronary heart disease in the United States.  J Am Heart Assoc. 2014;3(6):e001097.PubMedGoogle ScholarCrossref
37.
White  AD, Folsom  AR, Chambless  LE,  et al.  Community surveillance of coronary heart disease in the Atherosclerosis Risk in Communities (ARIC) Study: methods and initial 2 years’ experience.  J Clin Epidemiol. 1996;49(2):223-233.PubMedGoogle ScholarCrossref
38.
Feinleib  M, Kannel  WB, Garrison  RJ, McNamara  PM, Castelli  WP.  The Framingham Offspring Study: Design and preliminary data.  Prev Med. 1975;4(4):518-525.PubMedGoogle ScholarCrossref
39.
National Heart Lung and Blood Institute (NHLBI).  Incidence and prevalence: 2006 chart book on cardiovascular and lung diseases.http://www.nhlbi.nih.gov/sites/www.nhlbi.nih.gov/files/06_ip_chtbk.pdf. Accessed June 9, 2015.
40.
Centers for Disease Control and Prevention (CDC).  National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Data. Hyattsville, MD: US Department of Health and Human Services, Centers for Disease Control and Prevention; 2014.
41.
van Kempen  BJ, Ferket  BS, Hofman  A, Spronk  S, Steyerberg  E, Hunink  MG.  Do different methods of modeling statin treatment effectiveness influence the optimal decision?  Med Decis Making.2012;32(3):507-516. PubMedGoogle ScholarCrossref
42.
Agency for Healthcare Research and Quality (AHRQ).  Medical expenditure panel survey.http://meps.ahrq.gov/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-036. Accessed January 23, 2015.
43.
Greving  JP, Visseren  FL, de Wit  GA, Algra  A.  Statin treatment for primary prevention of vascular disease: whom to treat? cost-effectiveness analysis.  BMJ.2011;342:d1672. PubMedGoogle ScholarCrossref
44.
Avorn  J, Monette  J, Lacour  A,  et al.  Persistence of use of lipid-lowering medications: a cross-national study.  JAMA. 1998;279(18):1458-1462.PubMedGoogle ScholarCrossref
45.
Optum.  DRG Expert: A Comprehensive Guidebook to the DRG Classification System. Salt Lake City, UT: OPTUMInsight; 2014.
46.
Hunink  MM, Weinstein  MC, Wittenberg  E,  et al.  Decision Making in Health and Medicine: Integrating Evidence and Values. 2nd ed. Cambridge, UK: Cambridge University Press; 2014.
47.
Weinstein  MC, Siegel  JE, Gold  MR, Kamlet  MS, Russell  LB.  Recommendations of the Panel on Cost-effectiveness in Health and Medicine.  JAMA. 1996;276(15):1253-1258.PubMedGoogle ScholarCrossref
48.
Neumann  PJ, Cohen  JT, Weinstein  MC.  Updating cost-effectiveness—the curious resilience of the $50 000-per-QALY threshold.  N Engl J Med. 2014;371(9):796-797.PubMedGoogle ScholarCrossref
49.
Rosenbaum  L.  Beyond belief—how people feel about taking medications for heart disease.  N Engl J Med. 2015;372(2):183-187.PubMedGoogle ScholarCrossref
50.
Prosser  LA, Stinnett  AA, Goldman  PA,  et al.  Cost-effectiveness of cholesterol-lowering therapies according to selected patient characteristics.  Ann Intern Med. 2000;132(10):769-779.PubMedGoogle ScholarCrossref
51.
Pletcher  MJ, Lazar  L, Bibbins-Domingo  K,  et al.  Comparing impact and cost-effectiveness of primary prevention strategies for lipid-lowering.  Ann Intern Med. 2009;150(4):243-254.PubMedGoogle ScholarCrossref
52.
Lazar  LD, Pletcher  MJ, Coxson  PG, Bibbins-Domingo  K, Goldman  L.  Cost-effectiveness of statin therapy for primary prevention in a low-cost statin era.  Circulation. 2011;124(2):146-153.PubMedGoogle ScholarCrossref
53.
Ridker  PM.  The JUPITER trial: results, controversies, and implications for prevention.  Circ Cardiovasc Qual Outcomes. 2009;2(3):279-285.PubMedGoogle ScholarCrossref
54.
Muntner  P, Colantonio  LD, Cushman  M,  et al.  Validation of the atherosclerotic cardiovascular disease Pooled Cohort risk equations.  JAMA. 2014;311(14):1406-1415.PubMedGoogle ScholarCrossref
55.
Eddy  DM, Hollingworth  W, Caro  JJ, Tsevat  J, McDonald  KM, Wong  JB.  Model transparency and validation: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-7.  Med Decis Making.2012;32(5):733-743. PubMedGoogle ScholarCrossref
56.
Unal  B, Capewell  S, Critchley  JA.  Coronary heart disease policy models: a systematic review.  BMC Public Health. 2006;6:213.PubMedGoogle ScholarCrossref
57.
Coles  AH, Fisher  KA, Darling  C,  et al.  Recent trends in postdischarge mortality among patients with an initial acute myocardial infarction.  Am J Cardiol. 2012;110(8):1073-1077.PubMedGoogle ScholarCrossref
Original Investigation
July 14, 2015

Cost-effectiveness of 10-Year Risk Thresholds for Initiation of Statin Therapy for Primary Prevention of Cardiovascular Disease

Author Affiliations
  • 1Department of Health Policy and Management, Harvard School of Public Health, Boston, Massachusetts
  • 2Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
JAMA. 2015;314(2):142-150. doi:10.1001/jama.2015.6822
Abstract

Importance  The American College of Cardiology and the American Heart Association (ACC/AHA) cholesterol treatment guidelines have wide-scale implications for treating adults without history of atherosclerotic cardiovascular disease (ASCVD) with statins.

Objective  To estimate the cost-effectiveness of various 10-year ASCVD risk thresholds that could be used in the ACC/AHA cholesterol treatment guidelines.

Design, Setting, and Participants  Microsimulation model, including lifetime time horizon, US societal perspective, 3% discount rate for costs, and health outcomes. In the model, hypothetical individuals from a representative US population aged 40 to 75 years received statin treatment, experienced ASCVD events, and died from ASCVD-related or non-ASCVD–related causes based on ASCVD natural history and statin treatment parameters. Data sources for model parameters included National Health and Nutrition Examination Surveys, large clinical trials and meta-analyses for statin benefits and treatment, and other published sources.

Main Outcomes and Measures  Estimated ASCVD events prevented and incremental costs per quality-adjusted life-year (QALY) gained.

Results  In the base-case scenario, the current ASCVD threshold of 7.5% or higher, which was estimated to be associated with 48% of adults treated with statins, had an incremental cost-effectiveness ratio (ICER) of $37 000/QALY compared with a 10% or higher threshold. More lenient ASCVD thresholds of 4.0% or higher (61% of adults treated) and 3.0% or higher (67% of adults treated) had ICERs of $81 000/QALY and $140 000/QALY, respectively. Shifting from a 7.5% or higher ASCVD risk threshold to a 3.0% or higher ASCVD risk threshold was estimated to be associated with an additional 161 560 cardiovascular disease events averted. Cost-effectiveness results were sensitive to changes in the disutility associated with taking a pill daily, statin price, and the risk of statin-induced diabetes. In probabilistic sensitivity analysis, there was a higher than 93% chance that the optimal ASCVD threshold was 5.0% or lower using a cost-effectiveness threshold of $100 000/QALY.

Conclusions and Relevance  In this microsimulation model of US adults aged 45 to 75 years, the current 10-year ASCVD risk threshold (≥7.5% risk threshold) used in the ACC/AHA cholesterol treatment guidelines has an acceptable cost-effectiveness profile (ICER, $37 000/QALY), but more lenient ASCVD thresholds would be optimal using cost-effectiveness thresholds of $100 000/QALY (≥4.0% risk threshold) or $150 000/QALY (≥3.0% risk threshold). The optimal ASCVD threshold was sensitive to patient preferences for taking a pill daily, changes to statin price, and the risk of statin-induced diabetes.

×