Effect of a 24-Month Physical Activity Intervention vs Health Education on Cognitive Outcomes in Sedentary Older Adults: The LIFE Randomized Trial | Dementia and Cognitive Impairment | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Burdette  JH, Laurienti  PJ, Espeland  MA,  et al.  Using network science to evaluate exercise-associated brain changes in older adults.  Front Aging Neurosci. 2010;2:23.PubMedGoogle Scholar
Colcombe  SJ, Erickson  KI, Scalf  PE,  et al.  Aerobic exercise training increases brain volume in aging humans.  J Gerontol A Biol Sci Med Sci. 2006;61(11):1166-1170.PubMedGoogle ScholarCrossref
Erickson  KI, Leckie  RL, Weinstein  AM.  Physical activity, fitness, and gray matter volume.  Neurobiol Aging. 2014;35(suppl 2):S20-S28.PubMedGoogle ScholarCrossref
Coelho  FG, Gobbi  S, Andreatto  CA,  et al.  Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF).  Arch Gerontol Geriatr. 2013;56(1):10-15.PubMedGoogle ScholarCrossref
Erickson  KI, Gildengers  AG, Butters  MA.  Physical activity and brain plasticity in late adulthood.  Dialogues Clin Neurosci. 2013;15(1):99-108.PubMedGoogle Scholar
Adlard  PA, Perreau  VM, Pop  V, Cotman  CW.  Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease.  J Neurosci. 2005;25(17):4217-4221.PubMedGoogle ScholarCrossref
Snowden  M, Steinman  L, Mochan  K,  et al.  Effect of exercise on cognitive performance in community-dwelling older adults.  J Am Geriatr Soc. 2011;59(4):704-716.PubMedGoogle ScholarCrossref
Denkinger  MD, Nikolaus  T, Denkinger  C, Lukas  A.  Physical activity for the prevention of cognitive decline.  Z Gerontol Geriatr. 2012;45(1):11-16.PubMedGoogle ScholarCrossref
Smith  PJ, Blumenthal  JA, Hoffman  BM,  et al.  Aerobic exercise and neurocognitive performance.  Psychosom Med. 2010;72(3):239-252.PubMedGoogle ScholarCrossref
Barnes  DE, Santos-Modesitt  W, Poelke  G,  et al.  The Mental Activity and eXercise (MAX) trial.  JAMA Intern Med. 2013;173(9):797-804.PubMedGoogle ScholarCrossref
Legault  C, Jennings  JM, Katula  JA,  et al.  Designing clinical trials for assessing the effects of cognitive training and physical activity interventions on cognitive outcomes.  BMC Geriatr. 2011;11:27.PubMedGoogle ScholarCrossref
Lautenschlager  NT, Cox  KL, Flicker  L,  et al.  Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial.  JAMA. 2008;300(9):1027-1037.PubMedGoogle ScholarCrossref
Williamson  JD, Espeland  M, Kritchevsky  SB,  et al.  Changes in cognitive function in a randomized trial of physical activity.  J Gerontol A Biol Sci Med Sci. 2009;64(6):688-694.PubMedGoogle ScholarCrossref
Pahor  M, Guralnik  JM, Ambrosius  WT,  et al.  Effect of structured physical activity on prevention of major mobility disability in older adults.  JAMA. 2014;311(23):2387-2396.PubMedGoogle ScholarCrossref
Fielding  RA, Rejeski  WJ, Blair  S,  et al.  The Lifestyle Interventions and Independence for Elders study.  J Gerontol A Biol Sci Med Sci. 2011;66(11):1226-1237.PubMedGoogle ScholarCrossref
Guralnik  JM, Ferrucci  L, Simonsick  EM,  et al.  Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability.  N Engl J Med. 1995;332(9):556-561.PubMedGoogle ScholarCrossref
Teng  EL, Chui  HC.  The Modified Mini-Mental State (3MS) examination.  J Clin Psychiatry. 1987;48(8):314-318.PubMedGoogle Scholar
Rejeski  WJ, Fielding  RA, Blair  SN,  et al.  The Lifestyle Interventions and Independence for Elders (LIFE) pilot study.  Contemp Clin Trials. 2005;26(2):141-154.PubMedGoogle ScholarCrossref
Stewart  AL, Verboncoeur  CJ, McLellan  BY,  et al.  Physical activity outcomes of CHAMPS II.  J Gerontol A Biol Sci Med Sci. 2001;56(8):M465-M470.PubMedGoogle ScholarCrossref
Sink  KM, Espeland  MA, Rushing  J,  et al.  The LIFE cognition study.  Clin Interv Aging. 2014;9:1425-1436.PubMedGoogle ScholarCrossref
Wechsler  D.  WAIS-III Manual. New York, NY: Psychological Corp; 1997.
Brandt  J, Benedict  RHB.  Hopkins Verbal Learning Test-Revised: Professional Manual. Lutz, FL: Psychological Assessment Resources Inc; 2001.
Kaplan  E, Goodglass  H, Weintraub  S.  The Boston Naming Test.2nd ed. Philadelphia, PA; Lea & Febiger; 1983.
Reitan  R.  Trail Making Test: Manual for Administration and Scoring. Tucson, AZ: Neuropsychological Laboratory; 1992.
Kirchner  WK.  Age differences in short-term retention of rapidly changing information.  J Exp Psychol. 1958;55(4):352-358.PubMedGoogle ScholarCrossref
Eriksen  B, Eriksen  CW.  Effects of noise letters upon the identificaiton of a target letter in a nonsearch task.  Percept Psychophys. 1974;16:143-149.Google ScholarCrossref
Rogers  R, Monsell  S.  Costs of a predictable switch between simple cognitive tasks.  J Exp Psychol Gen. 1995;124:207-231.Google ScholarCrossref
Weissman  MM, Sholomskas  D, Pottenger  M,  et al.  Assessing depressive symptoms in five psychiatric populations.  Am J Epidemiol. 1977;106(3):203-214.PubMedGoogle Scholar
Pfeffer  RI, Kurosaki  TT, Harrah  CH  Jr,  et al.  Measurement of functional activities in older adults in the community.  J Gerontol. 1982;37(3):323-329.PubMedGoogle ScholarCrossref
Albert  MS, DeKosky  ST, Dickson  D,  et al.  The diagnosis of mild cognitive impairment due to Alzheimer’s disease.  Alzheimers Dement. 2011;7(3):270-279.PubMedGoogle ScholarCrossref
McKhann  GM, Knopman  DS, Chertkow  H,  et al.  The diagnosis of dementia due to Alzheimer’s disease.  Alzheimers Dement. 2011;7(3):263-269.PubMedGoogle ScholarCrossref
Yuan  Y.  Multiple imputation using SAS software.  J Stat Softw. 2011;45:1-25.Google Scholar
Espeland  MA, Rapp  SR, Bray  GA,  et al.  Long-term impact of behavioral weight loss intervention on cognitive function.  J Gerontol A Biol Sci Med Sci. 2014;69(9):1101-1108.PubMedGoogle ScholarCrossref
Ngandu  T, Lehtisalo  J, Solomon  A,  et al.  A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER).  Lancet. 2015;385(9984):2255-2263.PubMedGoogle ScholarCrossref
Robertson  DA, Savva  GM, Coen  RF, Kenny  RA.  Cognitive function in the prefrailty and frailty syndrome.  J Am Geriatr Soc. 2014;62(11):2118-2124.PubMedGoogle ScholarCrossref
Mielke  MM, Roberts  RO, Savica  R,  et al.  Assessing the temporal relationship between cognition and gait.  J Gerontol A Biol Sci Med Sci. 2013;68(8):929-937.PubMedGoogle ScholarCrossref
Stern  Y.  Cognitive reserve in ageing and Alzheimer’s disease.  Lancet Neurol. 2012;11(11):1006-1012.PubMedGoogle ScholarCrossref
Verghese  J, Lipton  RB, Katz  MJ,  et al.  Leisure activities and the risk of dementia in the elderly.  N Engl J Med. 2003;348(25):2508-2516.PubMedGoogle ScholarCrossref
Etnier  JL, Nowell  PM, Landers  DM, Sibley  BA.  A meta-regression to examine the relationship between aerobic fitness and cognitive performance.  Brain Res Rev. 2006;52(1):119-130.PubMedGoogle ScholarCrossref
Colcombe  S, Kramer  AF.  Fitness effects on the cognitive function of older adults.  Psychol Sci. 2003;14(2):125-130.PubMedGoogle ScholarCrossref
Original Investigation
August 25, 2015

Effect of a 24-Month Physical Activity Intervention vs Health Education on Cognitive Outcomes in Sedentary Older Adults: The LIFE Randomized Trial

Author Affiliations
  • 1Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
  • 2Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
  • 3Stanford Prevention Research Center, Stanford University School of Medicine, Palo Alto, California
  • 4Pennington Biomedical Research Center, Baton Rouge, Louisiana
  • 5College of Medicine, University of Florida, Gainesville
  • 6Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York
  • 7Division of Gerontology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
  • 8Department of Psychiatry and Center for Aging Research, Indiana University, Indianapolis
  • 9Department of Psychology, Wake Forest University, Winston-Salem, North Carolina
  • 10Department of Health and Exercise Sciences, Wake Forest University, Winston-Salem, North Carolina
  • 11Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
  • 12Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
  • 13Senior Editor, JAMA
  • 14Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
  • 15Departments of Neurology and Medicine, Albert Einstein College of Medicine, Bronx, New York
  • 16Department of Psychiatry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
JAMA. 2015;314(8):781-790. doi:10.1001/jama.2015.9617

Importance  Epidemiological evidence suggests that physical activity benefits cognition, but results from randomized trials are limited and mixed.

Objective  To determine whether a 24-month physical activity program results in better cognitive function, lower risk of mild cognitive impairment (MCI) or dementia, or both, compared with a health education program.

Design, Setting, and Participants  A randomized clinical trial, the Lifestyle Interventions and Independence for Elders (LIFE) study, enrolled 1635 community-living participants at 8 US centers from February 2010 until December 2011. Participants were sedentary adults aged 70 to 89 years who were at risk for mobility disability but able to walk 400 m.

Interventions  A structured, moderate-intensity physical activity program (n = 818) that included walking, resistance training, and flexibility exercises or a health education program (n = 817) of educational workshops and upper-extremity stretching.

Main Outcomes and Measures  Prespecified secondary outcomes of the LIFE study included cognitive function measured by the Digit Symbol Coding (DSC) task subtest of the Wechsler Adult Intelligence Scale (score range: 0-133; higher scores indicate better function) and the revised Hopkins Verbal Learning Test (HVLT-R; 12-item word list recall task) assessed in 1476 participants (90.3%). Tertiary outcomes included global and executive cognitive function and incident MCI or dementia at 24 months.

Results  At 24 months, DSC task and HVLT-R scores (adjusted for clinic site, sex, and baseline values) were not different between groups. The mean DSC task scores were 46.26 points for the physical activity group vs 46.28 for the health education group (mean difference, −0.01 points [95% CI, −0.80 to 0.77 points], P = .97). The mean HVLT-R delayed recall scores were 7.22 for the physical activity group vs 7.25 for the health education group (mean difference, −0.03 words [95% CI, −0.29 to 0.24 words], P = .84). No differences for any other cognitive or composite measures were observed. Participants in the physical activity group who were 80 years or older (n = 307) and those with poorer baseline physical performance (n = 328) had better changes in executive function composite scores compared with the health education group (P = .01 for interaction for both comparisons). Incident MCI or dementia occurred in 98 participants (13.2%) in the physical activity group and 91 participants (12.1%) in the health education group (odds ratio, 1.08 [95% CI, 0.80 to 1.46]).

Conclusions and Relevance  Among sedentary older adults, a 24-month moderate-intensity physical activity program compared with a health education program did not result in improvements in global or domain-specific cognitive function.

Trial Registration  clinicaltrials.gov Identifier: NCT01072500