Molecular Diagnostic Yield of Chromosomal Microarray Analysis and Whole-Exome Sequencing in Children With Autism Spectrum Disorder | Autism Spectrum Disorders | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.170.64.36. Please contact the publisher to request reinstatement.
1.
Prevalence of autism spectrum disorder among children aged 8 years: Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2010. Centers for Disease Control and Prevention. http://www.cdc.gov/mmwr/pdf/ss/ss6302.pdf. Accessed August 6, 2015.
2.
American Psychiatric Association.  Diagnostic and Statistical Manual of Mental Disorders.5th ed. Washington, DC: American Psychiatric Association; 2013.
3.
Lai  MC, Lombardo  MV, Baron-Cohen  S.  Autism.  Lancet. 2014;383(9920):896-910.PubMedGoogle ScholarCrossref
4.
Ozgen  HM, Hop  JW, Hox  JJ, Beemer  FA, van Engeland  H.  Minor physical anomalies in autism: a meta-analysis.  Mol Psychiatry. 2010;15(3):300-307.PubMedGoogle ScholarCrossref
5.
Manouilenko  I, Eriksson  JM, Humble  MB, Bejerot  S.  Minor physical anomalies in adults with autism spectrum disorder and healthy controls.  Autism Res Treat. 2014;2014:743482.PubMedGoogle Scholar
6.
Devlin  B, Scherer  SW.  Genetic architecture in autism spectrum disorder.  Curr Opin Genet Dev. 2012;22(3):229-237.PubMedGoogle ScholarCrossref
7.
Miller  DT, Adam  MP, Aradhya  S,  et al.  Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies.  Am J Hum Genet. 2010;86(5):749-764.PubMedGoogle ScholarCrossref
8.
Shen  Y, Dies  KA, Holm  IA,  et al; Autism Consortium Clinical Genetics/DNA Diagnostics Collaboration.  Clinical genetic testing for patients with autism spectrum disorders.  Pediatrics. 2010;125(4):e727-e735.PubMedGoogle ScholarCrossref
9.
McGrew  SG, Peters  BR, Crittendon  JA, Veenstra-Vanderweele  J.  Diagnostic yield of chromosomal microarray analysis in an autism primary care practice: which guidelines to implement?  J Autism Dev Disord. 2012;42(8):1582-1591.PubMedGoogle ScholarCrossref
10.
De Rubeis  S, He  X, Goldberg  AP,  et al; DDD Study; Homozygosity Mapping Collaborative for Autism; UK10K Consortium.  Synaptic, transcriptional and chromatin genes disrupted in autism.  Nature. 2014;515(7526):209-215.PubMedGoogle ScholarCrossref
11.
Iossifov  I, O’Roak  BJ, Sanders  SJ,  et al.  The contribution of de novo coding mutations to autism spectrum disorder.  Nature. 2014;515(7526):216-221.PubMedGoogle ScholarCrossref
12.
Liu  XQ, Paterson  AD, Szatmari  P; Autism Genome Project Consortium.  Genome-wide linkage analyses of quantitative and categorical autism subphenotypes.  Biol Psychiatry. 2008;64(7):561-570.PubMedGoogle ScholarCrossref
13.
Miles  JH, Takahashi  TN, Bagby  S,  et al.  Essential versus complex autism: definition of fundamental prognostic subtypes.  Am J Med Genet A. 2005;135(2):171-180.PubMedGoogle ScholarCrossref
14.
Robinson  EB, Samocha  KE, Kosmicki  JA,  et al.  Autism spectrum disorder severity reflects the average contribution of de novo and familial influences.  Proc Natl Acad Sci U S A. 2014;111(42):15161-15165.PubMedGoogle ScholarCrossref
15.
Uddin  M, Tammimies  K, Pellecchia  G,  et al.  Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder.  Nat Genet. 2014;46(7):742-747.PubMedGoogle ScholarCrossref
16.
Hall  JG, Allanson  JE, Gripp  KW, Slavotinek  AM.  Handbook of Physical Measurements. 2nd ed. Oxford, UK: Oxford University Press; 2007.
17.
Carter  MT, Scherer  SW.  Autism spectrum disorder in the genetics clinic: a review.  Clin Genet. 2013;83(5):399-407.PubMedGoogle ScholarCrossref
18.
Gazzellone  MJ, Zhou  X, Lionel  AC,  et al.  Copy number variation in Han Chinese individuals with autism spectrum disorder.  J Neurodev Disord. 2014;6(1):34.PubMedGoogle ScholarCrossref
19.
Lionel  AC, Crosbie  J, Barbosa  N,  et al.  Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD.  Sci Transl Med. 2011;3(95):95ra75.PubMedGoogle ScholarCrossref
20.
Marshall  CR, Noor  A, Vincent  JB,  et al.  Structural variation of chromosomes in autism spectrum disorder.  Am J Hum Genet. 2008;82(2):477-488.PubMedGoogle ScholarCrossref
21.
Pinto  D, Delaby  E, Merico  D,  et al.  Convergence of genes and cellular pathways dysregulated in autism spectrum disorders.  Am J Hum Genet. 2014;94(5):677-694.PubMedGoogle ScholarCrossref
22.
Kearney  HM, Thorland  EC, Brown  KK, Quintero-Rivera  F, South  ST; Working Group of the American College of Medical Genetics Laboratory Quality Assurance Committee.  American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants.  Genet Med. 2011;13(7):680-685.PubMedGoogle ScholarCrossref
23.
Marshall  CR, Scherer  SW.  Detection and characterization of copy number variation in autism spectrum disorder.  Methods Mol Biol. 2012;838:115-135.PubMedGoogle Scholar
24.
NHLBI GO Exome Sequencing Project (ESP) exome variant server. esp6500si version http://evs.gs.washington.edu/EVS/. Accessed January 22, 2013.
25.
Abecasis  GR, Altshuler  D, Auton  A,  et al; 1000 Genomes Project Consortium.  A map of human genome variation from population-scale sequencing [published correction in Nature. 2011;473(7348):544].  Nature. 2010;467(7319):1061-1073.PubMedGoogle ScholarCrossref
26.
Jiang  YH, Yuen  RK, Jin  X,  et al.  Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing.  Am J Hum Genet. 2013;93(2):249-263.PubMedGoogle ScholarCrossref
27.
Richards  S, Aziz  N, Bale  S,  et al Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.  Genet Med. 2015;17(5):405-424. PubMedGoogle ScholarCrossref
28.
Pyott  SM, Tran  TT, Leistritz  DF,  et al.  WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta.  Am J Hum Genet. 2013;92(4):590-597.PubMedGoogle ScholarCrossref
29.
Kalkman  HO.  A review of the evidence for the canonical Wnt pathway in autism spectrum disorders.  Mol Autism. 2012;3(1):10.PubMedGoogle ScholarCrossref
30.
Wong  VC, Fung  CK, Wong  PT.  Use of dysmorphology for subgroup classification on autism spectrum disorder in Chinese children.  J Autism Dev Disord. 2014;44(1):9-18.PubMedGoogle ScholarCrossref
31.
Manning  M, Hudgins  L; Professional Practice and Guidelines Committee.  Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities.  Genet Med. 2010;12(11):742-745.PubMedGoogle ScholarCrossref
32.
Buxbaum  JD, Daly  MJ, Devlin  B, Lehner  T, Roeder  K, State  MW; Autism Sequencing Consortium.  The autism sequencing consortium: large-scale, high-throughput sequencing in autism spectrum disorders.  Neuron. 2012;76(6):1052-1056.PubMedGoogle ScholarCrossref
33.
Lionel  AC, Tammimies  K, Vaags  AK,  et al.  Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes.  Hum Mol Genet. 2014;23(10):2752-2768.PubMedGoogle ScholarCrossref
34.
Lee  H, Deignan  JL, Dorrani  N,  et al.  Clinical exome sequencing for genetic identification of rare Mendelian disorders.  JAMA. 2014;312(18):1880-1887.PubMedGoogle ScholarCrossref
35.
Soden  SE, Saunders  CJ, Willig  LK,  et al.  Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders.  Sci Transl Med. 2014;6(265):265ra168.PubMedGoogle ScholarCrossref
36.
Yang  Y, Muzny  DM, Xia  F,  et al.  Molecular findings among patients referred for clinical whole-exome sequencing.  JAMA. 2014;312(18):1870-1879.PubMedGoogle ScholarCrossref
37.
Trottier  M, Roberts  W, Drmic  I,  et al.  Parents’ perspectives on participating in genetic research in autism.  J Autism Dev Disord. 2013;43(3):556-568.PubMedGoogle ScholarCrossref
38.
Narcisa  V, Discenza  M, Vaccari  E, Rosen-Sheidley  B, Hardan  AY, Couchon  E.  Parental interest in a genetic risk assessment test for autism spectrum disorders.  Clin Pediatr (Phila). 2013;52(2):139-146.PubMedGoogle ScholarCrossref
39.
Baker  E, Jeste  SS.  Diagnosis and management of autism spectrum disorder in the era of genomics: rare disorders can pave the way for targeted treatments.  Pediatr Clin North Am. 2015;62(3):607-618.PubMedGoogle ScholarCrossref
40.
Rosti  RO, Sadek  AA, Vaux  KK, Gleeson  JG.  The genetic landscape of autism spectrum disorders.  Dev Med Child Neurol. 2014;56(1):12-18.PubMedGoogle ScholarCrossref
41.
Scherer  SW, Dawson  G.  Risk factors for autism: translating genomic discoveries into diagnostics.  Hum Genet. 2011;130(1):123-148.PubMedGoogle ScholarCrossref
42.
Anagnostou  E, Zwaigenbaum  L, Szatmari  P,  et al.  Autism spectrum disorder: advances in evidence-based practice.  CMAJ. 2014;186(7):509-519.PubMedGoogle ScholarCrossref
43.
Piven  J, Vieland  VJ, Parlier  M,  et al.  A molecular genetic study of autism and related phenotypes in extended pedigrees.  J Neurodev Disord. 2013;5(1):30.PubMedGoogle ScholarCrossref
44.
Pinto  D, Pagnamenta  AT, Klei  L,  et al.  Functional impact of global rare copy number variation in autism spectrum disorders.  Nature. 2010;466(7304):368-372.PubMedGoogle ScholarCrossref
45.
Yuen  RK, Thiruvahindrapuram  B, Merico  D,  et al.  Whole-genome sequencing of quartet families with autism spectrum disorder.  Nat Med. 2015;21(2):185-191.PubMedGoogle ScholarCrossref
46.
di Rocco  F, Baujat  G, Arnaud  E,  et al.  Clinical spectrum and outcomes in families with coronal synostosis and TCF12 mutations.  Eur J Hum Genet. 2014;22(12):1413-1416.PubMedGoogle ScholarCrossref
47.
Paumard-Hernández  B, Berges-Soria  J, Barroso  E,  et al.  Expanding the mutation spectrum in 182 Spanish probands with craniosynostosis: identification and characterization of novel TCF12 variants.  Eur J Hum Genet. 2015;23(7):907-914. PubMedGoogle ScholarCrossref
48.
Sharma  VP, Fenwick  AL, Brockop  MS,  et al; 500 Whole-Genome Sequences (WGS500) Consortium.  Mutations in TCF12, encoding a basic helix-loop-helix partner of TWIST1, are a frequent cause of coronal craniosynostosis.  Nat Genet. 2013;45(3):304-307.PubMedGoogle ScholarCrossref
49.
Jacquemont  S, Coe  BP, Hersch  M,  et al.  A higher mutational burden in females supports a “female protective model” in neurodevelopmental disorders.  Am J Hum Genet. 2014;94(3):415-425.PubMedGoogle ScholarCrossref
50.
Gilissen  C, Hehir-Kwa  JY, Thung  DT,  et al.  Genome sequencing identifies major causes of severe intellectual disability.  Nature. 2014;511(7509):344-347.PubMedGoogle ScholarCrossref
Original Investigation
September 1, 2015

Molecular Diagnostic Yield of Chromosomal Microarray Analysis and Whole-Exome Sequencing in Children With Autism Spectrum Disorder

Author Affiliations
  • 1The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
  • 2Center of Neurodevelopmental Disorders (KIND), Pediatric Neuropsychiatry Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
  • 3Genome Diagnostics, Department of Pediatrics Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
  • 4Autism Research Unit, The Hospital for Sick Children, Toronto, Ontario, Canada
  • 5Department of Pediatrics and Genome Biology Program, The Hospital for Sick Children and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
  • 6Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
  • 7Department of Pediatrics, University of Alberta, Edmonton, Canada
  • 8Bloorview Research Institute, Toronto, Ontario, Canada
  • 9Provincial Medical Genetics Program, Eastern Health, St John’s, Newfoundland and Labrador, Canada
  • 10Child Health Program, Eastern Health, St John’s, Newfoundland and Labrador, Canada
  • 11Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
  • 12Centre for Addiction and Mental Health, The Hospital for Sick Children, University of Toronto, Toronto, Canada
  • 13Discipline of Pediatrics, Memorial University of Newfoundland, St John’s, Newfoundland and Labrador, Canada
  • 14Disciplines of Genetics and Medicine, Memorial University of Newfoundland, St John’s, Newfoundland and Labrador, Canada
  • 15Cytogenetics Laboratory, Department of Pediatrics Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
  • 16Department of Molecular Genetics and the McLaughlin Centre, University of Toronto, Toronto, Canada
JAMA. 2015;314(9):895-903. doi:10.1001/jama.2015.10078
Abstract

Importance  The use of genome-wide tests to provide molecular diagnosis for individuals with autism spectrum disorder (ASD) requires more study.

Objective  To perform chromosomal microarray analysis (CMA) and whole-exome sequencing (WES) in a heterogeneous group of children with ASD to determine the molecular diagnostic yield of these tests in a sample typical of a developmental pediatric clinic.

Design, Setting, and Participants  The sample consisted of 258 consecutively ascertained unrelated children with ASD who underwent detailed assessments to define morphology scores based on the presence of major congenital abnormalities and minor physical anomalies. The children were recruited between 2008 and 2013 in Newfoundland and Labrador, Canada. The probands were stratified into 3 groups of increasing morphological severity: essential, equivocal, and complex (scores of 0-3, 4-5, and ≥6).

Exposures  All probands underwent CMA, with WES performed for 95 proband-parent trios.

Main Outcomes and Measures  The overall molecular diagnostic yield for CMA and WES in a population-based ASD sample stratified in 3 phenotypic groups.

Results  Of 258 probands, 24 (9.3%, 95% CI, 6.1%-13.5%) received a molecular diagnosis from CMA and 8 of 95 (8.4%, 95% CI, 3.7%-15.9%) from WES. The yields were statistically different between the morphological groups. For CMA, the proportion of children with a positive test result was 7 of 168 (4.2%, 95% CI, 1.7%-8.4%) in the essential group, 4 of 37 (10.8%, 95% CI, 3.0%-25.4%) in the equivocal group, and 13 of 53 (24.5%, 95% CI, 13.8%-38.3%) in the complex group (P < .001). For WES, the proportions were 2 of 64 (3.1%, 95% CI, 0.0%-10.8%), 2 of 7 (28.6%, 95% CI, 3.7%-71.0%), and 4 of 24 (16.7%, 95% CI, 4.7%-37.4%), respectively (3-group comparison, P = .02). Among the children who underwent both CMA and WES testing, the estimated proportion with an identifiable genetic etiology was 15.8% (95% CI, 9.1%-24.7%; 15/95 children). This included 2 children who received molecular diagnoses from both tests. The combined molecular diagnostic yield was 6.3% (95% CI, 1.7%-15.2%) in the essential group (4/64 children), 28.6% (95% CI, 3.7%-71.0%) in the equivocal group (2/7 children), and 37.5% (95% CI, 18.8%-59.4%) in the complex group (9/24 children; 3-group comparison, P = .001). The combined yield was significantly higher in the complex group when compared with the essential group (pairwise comparison, P = .002).

Conclusions and Relevance  Among a heterogeneous sample of children with ASD, the molecular diagnostic yields of CMA and WES were comparable, and the combined molecular diagnostic yield was higher in children with more complex morphological phenotypes in comparison with the children in the essential category. If replicated in additional populations, these findings may inform appropriate selection of molecular diagnostic testing for children affected by ASD.

×