[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.234.223.162. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
1.
Chugh  SS, Havmoeller  R, Narayanan  K,  et al.  Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study.  Circulation. 2014;129(8):837-847.PubMedGoogle ScholarCrossref
2.
Deedwania  P, Acharya  T.  Anticoagulation in atrial fibrillation: is the paradigm really shifting?  J Am Coll Cardiol. 2017;69(7):786-788.PubMedGoogle ScholarCrossref
3.
Ruff  CT, Giugliano  RP, Braunwald  E,  et al.  Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials.  Lancet. 2014;383(9921):955-962.PubMedGoogle ScholarCrossref
4.
Olesen  JB, Sørensen  R, Hansen  ML,  et al.  Non-vitamin K antagonist oral anticoagulation agents in anticoagulant naïve atrial fibrillation patients: Danish nationwide descriptive data 2011-2013.  Europace. 2015;17(2):187-193.PubMedGoogle ScholarCrossref
5.
Ruff  CT, Giugliano  RP, Antman  EM.  Management of bleeding with non-vitamin k antagonist oral anticoagulants in the era of specific reversal agents.  Circulation. 2016;134(3):248-261.PubMedGoogle ScholarCrossref
6.
Wang  Y, Singh  S, Bajorek  B.  Old age, high-risk medication, polypharmacy: a “trilogy” of risks in older patients with atrial fibrillation.  Pharm Pract (Granada). 2016;14(2):706.PubMedGoogle ScholarCrossref
7.
Piccini  JP, Hellkamp  AS, Washam  JB,  et al.  Polypharmacy and the efficacy and safety of rivaroxaban versus warfarin in the prevention of stroke in patients with nonvalvular atrial fibrillation.  Circulation. 2016;133(4):352-360.PubMedGoogle ScholarCrossref
8.
Jaspers Focks  J, Brouwer  MA, Wojdyla  DM,  et al.  Polypharmacy and effects of apixaban versus warfarin in patients with atrial fibrillation: post hoc analysis of the ARISTOTLE trial.  BMJ. 2016;353:i2868.PubMedGoogle ScholarCrossref
9.
Wiggins  BS, Northup  A, Johnson  D, Senfield  J.  Reduced anticoagulant effect of dabigatran in a patient receiving concomitant phenytoin.  Pharmacotherapy. 2016;36(2):e5-e7.PubMedGoogle ScholarCrossref
10.
Fralick  M, Juurlink  DN, Marras  T.  Bleeding associated with coadministration of rivaroxaban and clarithromycin.  CMAJ. 188(9):669-672.PubMedGoogle ScholarCrossref
11.
Delavenne  X, Ollier  E, Basset  T,  et al.  A semi-mechanistic absorption model to evaluate drug-drug interaction with dabigatran: application with clarithromycin.  Br J Clin Pharmacol. 2013;76(1):107-113.PubMedGoogle ScholarCrossref
12.
Parasrampuria  DA, Mendell  J, Shi  M, Matsushima  N, Zahir  H, Truitt  K.  Edoxaban drug-drug interactions with ketoconazole, erythromycin, and cyclosporine.  Br J Clin Pharmacol. 2016;82(6):1591-1600.PubMedGoogle ScholarCrossref
13.
Green  B, Mendes  RA, Van der Valk  R, Brennan  PA.  Novel anticoagulants—an update on the latest developments and management for clinicians treating patients on these drugs.  J Oral Pathol Med. 2016;45(8):551-556.PubMedGoogle ScholarCrossref
14.
Heidbuchel  H, Verhamme  P, Alings  M,  et al.  EHRA practical guide on the use of new oral anticoagulants in patients with non-valvular atrial fibrillation: executive summary.  Eur Heart J. 2013;34(27):2094-2106.PubMedGoogle ScholarCrossref
15.
Chan  Y-H, Yeh  Y-H, See  L-C,  et al.  Acute kidney injury in Asians with atrial fibrillation treated with dabigatran or warfarin.  J Am Coll Cardiol. 2016;68(21):2272-2283.PubMedGoogle ScholarCrossref
16.
Romley  JA, Gong  C, Jena  AB, Goldman  DP, Williams  B, Peters  A.  Association between use of warfarin with common sulfonylureas and serious hypoglycemic events: retrospective cohort analysis.  BMJ. 2015;351:h6223.PubMedGoogle ScholarCrossref
17.
Heidbuchel  H, Verhamme  P, Alings  M,  et al; Advisors.  Updated European Heart Rhythm Association practical guide on the use of non-vitamin-K antagonist anticoagulants in patients with non-valvular atrial fibrillation: Executive summary [published online June 9, 2016].  Eur Heart J. doi:10.1093/eurheartj/ehw058.PubMedGoogle Scholar
18.
Stangier  J, Rathgen  K, Stähle  H, Reseski  K, Körnicke  T, Roth  W.  Coadministration of dabigatran etexilate and atorvastatin: assessment of potential impact on pharmacokinetics and pharmacodynamics.  Am J Cardiovasc Drugs. 2009;9(1):59-68.PubMedGoogle ScholarCrossref
19.
Mueck  W, Kubitza  D, Becka  M.  Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects.  Br J Clin Pharmacol. 2013;76(3):455-466.PubMedGoogle ScholarCrossref
20.
Stangier  J, Stähle  H, Rathgen  K, Roth  W, Reseski  K, Körnicke  T.  Pharmacokinetics and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor, with coadministration of digoxin.  J Clin Pharmacol. 2012;52(2):243-250.PubMedGoogle ScholarCrossref
21.
Liesenfeld  KH, Lehr  T, Dansirikul  C,  et al.  Population pharmacokinetic analysis of the oral thrombin inhibitor dabigatran etexilate in patients with non-valvular atrial fibrillation from the RE-LY trial.  J Thromb Haemost. 2011;9(11):2168-2175.PubMedGoogle ScholarCrossref
22.
Wannhoff  A, Weiss  KH, Schemmer  P, Stremmel  W, Gotthardt  DN.  Increased levels of rivaroxaban in patients after liver transplantation treated with cyclosporine A.  Transplantation. 2014;98(2):e12-e13.PubMedGoogle ScholarCrossref
23.
Kishimoto  W, Ishiguro  N, Ludwig-Schwellinger  E, Ebner  T, Schaefer  O.  In vitro predictability of drug-drug interaction likelihood of P-glycoprotein-mediated efflux of dabigatran etexilate based on [I]2/IC50 threshold.  Drug Metab Dispos. 2014;42(2):257-263.PubMedGoogle ScholarCrossref
24.
Chan  Y-H, Kuo  C-T, Yeh  Y-H,  et al.  Thromboembolic, bleeding, and mortality risks of rivaroxaban and dabigatran in Asians with nonvalvular atrial fibrillation.  J Am Coll Cardiol. 2016;68(13):1389-1401.PubMedGoogle ScholarCrossref
25.
Tamayo  SG, Simeone  JC, Nordstrom  BL,  et al.  Risk factors for major bleeding in rivaroxaban users with atrial fibrillation.  J Am Coll Cardiol. 2016;68(10):1144-1146.PubMedGoogle ScholarCrossref
26.
Charlson  ME, Pompei  P, Ales  KL, MacKenzie  CR.  A new method of classifying prognostic comorbidity in longitudinal studies: development and validation.  J Chronic Dis. 1987;40(5):373-383.PubMedGoogle ScholarCrossref
27.
Charlson  M, Szatrowski  TP, Peterson  J, Gold  J.  Validation of a combined comorbidity index.  J Clin Epidemiol. 1994;47(11):1245-1251.PubMedGoogle ScholarCrossref
28.
Grobbee  DE, Hoes  AW.  Confounding and indication for treatment in evaluation of drug treatment for hypertension.  BMJ. 1997;315(7116):1151-1154.PubMedGoogle ScholarCrossref
29.
Rosenbaum  PR, Rubin  DB.  The central role of the propensity score in observational studies for causal effects.  Biometrika. 1983;70(1):41-55.Google ScholarCrossref
30.
Lunceford  JK, Davidian  M.  Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study.  Stat Med. 2004;23(19):2937-2960.PubMedGoogle ScholarCrossref
31.
Lip  GYH, Nielsen  PB.  Should patients with atrial fibrillation and 1 stroke risk factor (CHA2DS2-VASc Score 1 in men, 2 in women) be anticoagulated? yes: even 1 stroke risk factor confers a real risk of stroke.  Circulation. 2016;133(15):1498-1503.PubMedGoogle ScholarCrossref
32.
Pisters  R, Lane  DA, Nieuwlaat  R, de Vos  CB, Crijns  HJGM, Lip  GYH.  A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey.  Chest. 2010;138(5):1093-1100.PubMedGoogle ScholarCrossref
33.
Gerhard-Herman  MD, Gornik  HL, Barrett  C,  et al.  2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.  J Am Coll Cardiol. 2017;69(11):e71-e126.PubMedGoogle ScholarCrossref
34.
Granger  CB, Alexander  JH, McMurray  JJ,  et al; ARISTOTLE Committees and Investigators.  Apixaban versus warfarin in patients with atrial fibrillation.  N Engl J Med. 2011;365(11):981-992.PubMedGoogle ScholarCrossref
35.
Connolly  SJ, Ezekowitz  MD, Yusuf  S,  et al; RE-LY Steering Committee and Investigators.  Dabigatran versus warfarin in patients with atrial fibrillation.  N Engl J Med. 2009;361(12):1139-1151.PubMedGoogle ScholarCrossref
36.
Flaker  G, Lopes  RD, Hylek  E,  et al; ARISTOTLE Committees and Investigators.  Amiodarone, anticoagulation, and clinical events in patients with atrial fibrillation: insights from the ARISTOTLE trial.  J Am Coll Cardiol. 2014;64(15):1541-1550.PubMedGoogle ScholarCrossref
37.
McKinney  JS, Kostis  WJ.  Statin therapy and the risk of intracerebral hemorrhage: a meta-analysis of 31 randomized controlled trials.  Stroke. 2012;43(8):2149-2156.PubMedGoogle ScholarCrossref
38.
Pandit  AK, Kumar  P, Kumar  A, Chakravarty  K, Misra  S, Prasad  K.  High-dose statin therapy and risk of intracerebral hemorrhage: a meta-analysis.  Acta Neurol Scand. 2016;134(1):22-28.PubMedGoogle ScholarCrossref
39.
Jia  W, Zhou  L.  Effect of 20 mg/day atorvastatin: recurrent stroke survey in Chinese ischemic stroke patients with prior intracranial hemorrhage.  J Clin Neurol. 2013;9(3):139-143.PubMedGoogle ScholarCrossref
40.
Atar  S, Cannon  CP, Murphy  SA, Rosanio  S, Uretsky  BF, Birnbaum  Y.  Statins are associated with lower risk of gastrointestinal bleeding in patients with unstable coronary syndromes: analysis of the Orbofiban in Patients with Unstable coronary Syndromes-Thrombolysis In Myocardial Infarction 16 (OPUS-TIMI 16) trial.  Am Heart J. 2006;151(5):976.e1-976.e6.PubMedGoogle ScholarCrossref
41.
Li  BZ, Threapleton  DE, Wang  JY,  et al.  Comparative effectiveness and tolerance of treatments for Helicobacter pylori: systematic review and network meta-analysis.  BMJ. 2015;351:h4052.PubMedGoogle ScholarCrossref
42.
Chan  YH, Yen  KC, See  LC,  et al.  Cardiovascular, bleeding, and mortality risks of dabigatran in Asians with nonvalvular atrial fibrillation.  Stroke. 2016;47(2):441-449.PubMedGoogle ScholarCrossref
Original Investigation
October 3, 2017

Association Between Use of Non–Vitamin K Oral Anticoagulants With and Without Concurrent Medications and Risk of Major Bleeding in Nonvalvular Atrial Fibrillation

Author Affiliations
  • 1Cardiovascular Department, Chang Gung Memorial Hospital, Taoyuan, Taiwan
  • 2Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
  • 3School of Medicine, Chang Gung University, Taoyuan, Taiwan
  • 4Division of Pediatric Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
  • 5Department of Public Health, College of Medicine and Biostatistics Core Laboratory, Molecular Medicine Research Centre, Chang Gung University, Taoyuan, Taiwan
  • 6Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
  • 7Division of Rheumatology, Orthopaedics, and Dermatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
JAMA. 2017;318(13):1250-1259. doi:10.1001/jama.2017.13883
Key Points

Question  What is the risk of major bleeding among patients with nonvalvular atrial fibrillation treated with non–vitamin K oral anticoagulants (NOACs) in combination with medications that share metabolic pathways?

Findings  Among 91 330 NOAC users in Taiwan, the risk of major bleeding was significantly increased with concurrent use of amiodarone, fluconazole, rifampin, or phenytoin compared with NOAC use alone.

Meaning  Physicians prescribing NOAC medications should consider the potential risks associated with concomitant use of other drugs.

Abstract

Importance  Non–vitamin K oral anticoagulants (NOACs) are commonly prescribed with other medications that share metabolic pathways that may increase major bleeding risk.

Objective  To assess the association between use of NOACs with and without concurrent medications and risk of major bleeding in patients with nonvalvular atrial fibrillation.

Design, Setting, and Participants  Retrospective cohort study using data from the Taiwan National Health Insurance database and including 91 330 patients with nonvalvular atrial fibrillation who received at least 1 NOAC prescription of dabigatran, rivaroxaban, or apixaban from January 1, 2012, through December 31, 2016, with final follow-up on December 31, 2016.

Exposures  NOAC with or without concurrent use of atorvastatin; digoxin; verapamil; diltiazem; amiodarone; fluconazole; ketoconazole, itraconazole, voriconazole, or posaconazole; cyclosporine; erythromycin or clarithromycin; dronedarone; rifampin; or phenytoin.

Main Outcomes and Measures  Major bleeding, defined as hospitalization or emergency department visit with a primary diagnosis of intracranial hemorrhage or gastrointestinal, urogenital, or other bleeding. Adjusted incidence rate differences between person-quarters (exposure time for each person during each quarter of the calendar year) of NOAC with or without concurrent medications were estimated using Poisson regression and inverse probability of treatment weighting using the propensity score.

Results  Among 91 330 patients with nonvalvular atrial fibrillation (mean age, 74.7 years [SD, 10.8]; men, 55.8%; NOAC exposure: dabigatran, 45 347 patients; rivaroxaban, 54 006 patients; and apixaban, 12 886 patients), 4770 major bleeding events occurred during 447 037 person-quarters with NOAC prescriptions. The most common medications co-prescribed with NOACs over all person-quarters were atorvastatin (27.6%), diltiazem (22.7%), digoxin (22.5%), and amiodarone (21.1%). Concurrent use of amiodarone, fluconazole, rifampin, and phenytoin with NOACs had a significant increase in adjusted incidence rates per 1000 person-years of major bleeding than NOACs alone: 38.09 for NOAC use alone vs 52.04 for amiodarone (difference, 13.94 [99% CI, 9.76-18.13]); 102.77 for NOAC use alone vs 241.92 for fluconazole (difference, 138.46 [99% CI, 80.96-195.97]); 65.66 for NOAC use alone vs 103.14 for rifampin (difference, 36.90 [99% CI, 1.59-72.22); and 56.07 for NOAC use alone vs 108.52 for phenytoin (difference, 52.31 [99% CI, 32.18-72.44]; P < .01 for all comparisons). Compared with NOAC use alone, the adjusted incidence rate for major bleeding was significantly lower for concurrent use of atorvastatin, digoxin, and erythromycin or clarithromycin and was not significantly different for concurrent use of verapamil; diltiazem; cyclosporine; ketoconazole, itraconazole, voriconazole, or posaconazole; and dronedarone.

Conclusions and Relevance  Among patients taking NOACs for nonvalvular atrial fibrillation, concurrent use of amiodarone, fluconazole, rifampin, and phenytoin compared with the use of NOACs alone, was associated with increased risk of major bleeding. Physicians prescribing NOAC medications should consider the potential risks associated with concomitant use of other drugs.

×