[Skip to Content]
Sign In
Individual Sign In
Create an Account
Institutional Sign In
OpenAthens Shibboleth
Purchase Options:
[Skip to Content Landing]
Figure 1.
Analytic Framework: Behavioral and Pharmacotherapy Weight Loss Interventions to Prevent Obesity-Related Morbidity and Mortality in Adults
Analytic Framework: Behavioral and Pharmacotherapy Weight Loss Interventions to Prevent Obesity-Related Morbidity and Mortality in Adults

Evidence reviews for the US Preventive Services Task Force (USPSTF) use an analytic framework to visually display the key questions that the review will address to allow the USPSTF to evaluate the effectiveness and safety of a preventive service. The questions are depicted by linkages that relate interventions and outcomes. A dashed line indicates a relationship between an intermediate outcome and a health outcome that is presumed to describe the natural progression of the disease. Refer to the USPSTF Procedure Manual for further details.16

Figure 2.
Literature Search Flow Diagram: Behavioral and Pharmacotherapy Weight Loss Interventions to Prevent Obesity-Related Morbidity and Mortality in Adults
Literature Search Flow Diagram: Behavioral and Pharmacotherapy Weight Loss Interventions to Prevent Obesity-Related Morbidity and Mortality in Adults

Reasons for exclusion: Aim: Study aim was not relevant. Setting: Study was not conducted in a country relevant to United States practice or not conducted in, recruited from, or feasible for primary care or a health system. No relevant outcomes: Study did not have relevant outcomes or had incomplete outcomes. Reporting of outcomes: Outcomes not presented in a way that could be abstracted for the review. Population inclusion criteria: Study was not conducted in an included population. Population not generalizable or relevant: Included population was not generalizable to a primary care population. Chronic disease management: Aim of the intervention was the management of an existing chronic disease. Intervention: Intervention was out of scope. Excluded study design: Study did not use an included design. <12 months of follow-up: Follow-up for health or weight loss outcomes was less than 12 months. Not an included comparator: Comparator did not meet review criteria. Language: Publication not in English. Quality: Study was poor quality. Protocol only: Publication represented a study protocol without an identified publication of full study results. Unable to locate: Full text not available. USPSTF indicates US Preventive Services Task Force.

Figure 3.
Pooled Analysis of Weight Change at 12-18 Months in Behavior-Based Weight Loss Interventions Compared With Controls (Key Question 2)
Pooled Analysis of Weight Change at 12-18 Months in Behavior-Based Weight Loss Interventions Compared With Controls (Key Question 2)

NR indicates not reported.

Figure 4.
Pooled Analysis of Risk of Developing Diabetes in Behavior-Based Weight Loss Interventions Compared With Controls (Key Question 2)
Pooled Analysis of Risk of Developing Diabetes in Behavior-Based Weight Loss Interventions Compared With Controls (Key Question 2)

aActual follow-up range, 12 to 55 months.

bActual follow-up range, 0 to 192 months.

Table 1.  
Health-Related Quality of Life Results in Behavior-Based Weight Loss and Behavior-Based Weight-Loss Maintenance Randomized Clinical Trials (Key Question 1) (17 Trials [n = 7120])
Health-Related Quality of Life Results in Behavior-Based Weight Loss and Behavior-Based Weight-Loss Maintenance Randomized Clinical Trials (Key Question 1) (17 Trials [n = 7120])
Table 2.  
Weight Loss Results in All Medication-Based Weight Loss and Medication-Based Weight-Loss Maintenance Randomized Clinical Trials, by Drug (Key Question 2) (18 Trials; n = 22 972)
Weight Loss Results in All Medication-Based Weight Loss and Medication-Based Weight-Loss Maintenance Randomized Clinical Trials, by Drug (Key Question 2) (18 Trials; n = 22 972)
Table 3.  
Summary of Evidence, by Key Question and Intervention Type
Summary of Evidence, by Key Question and Intervention Type
1.
National Center for Health Statistics. Health, United States, Report 2016: With Chartbook on Long-term Trends in Health. Centers for Disease Control and Prevention website. https://www.cdc.gov/nchs/data/hus/hus16.pdf. 2017. Accessed May 23, 2017.
2.
Bogers  RP, Bemelmans  WJ, Hoogenveen  RT,  et al; BMI-CHD Collaboration Investigators.  Association of overweight with increased risk of coronary heart disease partly independent of blood pressure and cholesterol levels: a meta-analysis of 21 cohort studies including more than 300 000 persons.  Arch Intern Med. 2007;167(16):1720-1728. doi:10.1001/archinte.167.16.1720PubMedGoogle ScholarCrossref
3.
Colditz  GA, Willett  WC, Rotnitzky  A, Manson  JE.  Weight gain as a risk factor for clinical diabetes mellitus in women.  Ann Intern Med. 1995;122(7):481-486. doi:10.7326/0003-4819-122-7-199504010-00001PubMedGoogle ScholarCrossref
4.
Guh  DP, Zhang  W, Bansback  N, Amarsi  Z, Birmingham  CL, Anis  AH.  The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis.  BMC Public Health. 2009;9:88. doi:10.1186/1471-2458-9-88PubMedGoogle ScholarCrossref
5.
Bhaskaran  K, Douglas  I, Forbes  H, dos-Santos-Silva  I, Leon  DA, Smeeth  L.  Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults.  Lancet. 2014;384(9945):755-765. doi:10.1016/S0140-6736(14)60892-8PubMedGoogle ScholarCrossref
6.
Kyrgiou  M, Kalliala  I, Markozannes  G,  et al.  Adiposity and cancer at major anatomical sites: umbrella review of the literature.  BMJ. 2017;356:j477. doi:10.1136/bmj.j477PubMedGoogle ScholarCrossref
7.
Afshin  A, Forouzanfar  MH, Reitsma  MB,  et al; GBD 2015 Obesity Collaborators.  Health effects of overweight and obesity in 195 countries over 25 years.  N Engl J Med. 2017;377(1):13-27. doi:10.1056/NEJMoa1614362PubMedGoogle ScholarCrossref
8.
Smith  AW, Borowski  LA, Liu  B,  et al.  U.S. primary care physicians’ diet-, physical activity-, and weight-related care of adult patients.  Am J Prev Med. 2011;41(1):33-42. doi:10.1016/j.amepre.2011.03.017PubMedGoogle ScholarCrossref
9.
Steeves  JA, Liu  B, Willis  G, Lee  R, Smith  AW.  Physicians’ personal beliefs about weight-related care and their associations with care delivery: the U.S. National Survey of Energy Balance Related Care Among Primary Care Physicians.  Obes Res Clin Pract. 2015;9(3):243-255. doi:10.1016/j.orcp.2014.08.002PubMedGoogle ScholarCrossref
10.
Kraschnewski  JL, Sciamanna  CN, Stuckey  HL,  et al.  A silent response to the obesity epidemic: decline in US physician weight counseling.  Med Care. 2013;51(2):186-192. doi:10.1097/MLR.0b013e3182726c33PubMedGoogle ScholarCrossref
11.
Ma  J, Xiao  L, Yank  V.  Variations between obese Latinos and whites in weight-related counseling during preventive clinical visits in the United States.  Obesity (Silver Spring). 2013;21(8):1734-1741. doi:10.1002/oby.20285PubMedGoogle ScholarCrossref
12.
Ma  J, Xiao  L, Stafford  RS.  Underdiagnosis of obesity in adults in US outpatient settings.  Arch Intern Med. 2009;169(3):313-314. doi:10.1001/archinternmed.2008.582PubMedGoogle ScholarCrossref
13.
Simkin-Silverman  LR, Gleason  KA, King  WC,  et al.  Predictors of weight control advice in primary care practices: patient health and psychosocial characteristics.  Prev Med. 2005;40(1):71-82. doi:10.1016/j.ypmed.2004.05.012PubMedGoogle ScholarCrossref
14.
Stafford  RS, Farhat  JH, Misra  B, Schoenfeld  DA.  National patterns of physician activities related to obesity management.  Arch Fam Med. 2000;9(7):631-638. doi:10.1001/archfami.9.7.631PubMedGoogle ScholarCrossref
15.
Moyer  VA; U.S. Preventive Services Task Force.  Screening for and management of obesity in adults: U.S. Preventive Services Task Force recommendation statement.  Ann Intern Med. 2012;157(5):373-378.PubMedGoogle Scholar
16.
U.S. Preventive Services Task Force.  U.S. Preventive Services Task Force Procedure Manual. Rockville, MD: Agency for Healthcare Research and Quality; 2015.
17.
LeBlanc  E, O’Connor  E, Whitlock  EP, Patnode  C, Kapka  T.  U.S. Preventive Services Task Force Evidence Syntheses, Formerly Systematic Evidence Reviews. Rockville, MD: Agency for Healthcare Research and Quality; 2011. Evidence synthesis 89.
18.
 Guidance for Industry: Developing Products for Weight Management: Draft Guidance. US Food and Drug Administration website. https://www.fda.gov/downloads/Drugs/Guidances/ucm071612.pdf. Published February 2007. Accessed June 22, 2018.
19.
DerSimonian  R, Laird  N.  Meta-analysis in clinical trials.  Control Clin Trials. 1986;7(3):177-188. doi:10.1016/0197-2456(86)90046-2PubMedGoogle ScholarCrossref
20.
Higgins  JP, Thompson  SG.  Quantifying heterogeneity in a meta-analysis.  Stat Med. 2002;21(11):1539-1558. doi:10.1002/sim.1186PubMedGoogle ScholarCrossref
21.
Egger  M, Davey Smith  G, Schneider  M, Minder  C.  Bias in meta-analysis detected by a simple, graphical test.  BMJ. 1997;315(7109):629-634. doi:10.1136/bmj.315.7109.629PubMedGoogle ScholarCrossref
22.
Peters  JL, Sutton  AJ, Jones  DR, Abrams  KR, Rushton  L.  Comparison of two methods to detect publication bias in meta-analysis.  JAMA. 2006;295(6):676-680. doi:10.1001/jama.295.6.676PubMedGoogle ScholarCrossref
23.
Acharya  NV, Wilton  LV, Shakir  SA.  Safety profile of orlistat: results of a prescription-event monitoring study.  Int J Obes (Lond). 2006;30(11):1645-1652. doi:10.1038/sj.ijo.0803323PubMedGoogle ScholarCrossref
24.
Ackermann  RT, Finch  EA, Brizendine  E, Zhou  H, Marrero  DG.  Translating the diabetes prevention program into the community: the DEPLOY pilot study.  Am J Prev Med. 2008;35(4):357-363. doi:10.1016/j.amepre.2008.06.035PubMedGoogle ScholarCrossref
25.
Ackermann  RT, Liss  DT, Finch  EA,  et al.  A randomized comparative effectiveness trial for preventing type 2 diabetes.  Am J Public Health. 2015;105(11):2328-2334. doi:10.2105/AJPH.2015.302641PubMedGoogle ScholarCrossref
26.
Allison  DB, Gadde  KM, Garvey  WT,  et al.  Controlled-release phentermine/topiramate in severely obese adults: a randomized controlled trial (EQUIP).  Obesity (Silver Spring). 2012;20(2):330-342. doi:10.1038/oby.2011.330PubMedGoogle ScholarCrossref
27.
Anderson  AS, Craigie  AM, Caswell  S,  et al.  The impact of a bodyweight and physical activity intervention (BeWEL) initiated through a national colorectal cancer screening programme: randomised controlled trial.  BMJ. 2014;348:g1823. doi:10.1136/bmj.g1823PubMedGoogle ScholarCrossref
28.
Apovian  CM, Aronne  L, Rubino  D,  et al; COR-II Study Group.  A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II).  Obesity (Silver Spring). 2013;21(5):935-943. doi:10.1002/oby.20309PubMedGoogle ScholarCrossref
29.
Appel  LJ, Clark  JM, Yeh  HC,  et al.  Comparative effectiveness of weight-loss interventions in clinical practice.  N Engl J Med. 2011;365(21):1959-1968. doi:10.1056/NEJMoa1108660PubMedGoogle ScholarCrossref
30.
Aronne  LJ, Wadden  TA, Peterson  C, Winslow  D, Odeh  S, Gadde  KM.  Evaluation of phentermine and topiramate versus phentermine/topiramate extended-release in obese adults.  Obesity (Silver Spring). 2013;21(11):2163-2171. doi:10.1002/oby.20584PubMedGoogle ScholarCrossref
31.
Astrup  A, Carraro  R, Finer  N,  et al; NN8022-1807 Investigators.  Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide.  Int J Obes (Lond). 2012;36(6):843-854. doi:10.1038/ijo.2011.158PubMedGoogle ScholarCrossref
32.
Aveyard  P, Lewis  A, Tearne  S,  et al.  Screening and brief intervention for obesity in primary care: a parallel, two-arm, randomised trial.  Lancet. 2016;388(10059):2492-2500. doi:10.1016/S0140-6736(16)31893-1PubMedGoogle ScholarCrossref
33.
Bakris  G, Calhoun  D, Egan  B, Hellmann  C, Dolker  M, Kingma  I; Orlistat and Resistant Hypertension Investigators.  Orlistat improves blood pressure control in obese subjects with treated but inadequately controlled hypertension.  J Hypertens. 2002;20(11):2257-2267. doi:10.1097/00004872-200211000-00026PubMedGoogle ScholarCrossref
34.
Befort  CA, Klemp  JR, Sullivan  DK,  et al.  Weight loss maintenance strategies among rural breast cancer survivors: the rural women connecting for better health trial.  Obesity (Silver Spring). 2016;24(10):2070-2077. doi:10.1002/oby.21625PubMedGoogle ScholarCrossref
35.
Bennett  GG, Warner  ET, Glasgow  RE,  et al; Be Fit, Be Well Study Investigators.  Obesity treatment for socioeconomically disadvantaged patients in primary care practice.  Arch Intern Med. 2012;172(7):565-574. doi:10.1001/archinternmed.2012.1PubMedGoogle ScholarCrossref
36.
Bhopal  RS, Douglas  A, Wallia  S,  et al.  Effect of a lifestyle intervention on weight change in South Asian individuals in the UK at high risk of type 2 diabetes: a family-cluster randomised controlled trial.  Lancet Diabetes Endocrinol. 2014;2(3):218-227. doi:10.1016/S2213-8587(13)70204-3PubMedGoogle ScholarCrossref
37.
Broom  I, Hughes  E, Dodson  P, Reckless  J.  The role of orlistat in the treatment of obese patients with mild to moderate hypercholesterolaemia: consequences for coronary risk.  Br J Cardiol. 2002;9(8):460-468.Google Scholar
38.
Broom  I, Wilding  J, Stott  P, Myers  N; UK Multimorbidity Study Group.  Randomised trial of the effect of orlistat on body weight and cardiovascular disease risk profile in obese patients: UK Multimorbidity Study.  Int J Clin Pract. 2002;56(7):494-499.PubMedGoogle Scholar
39.
Burke  V, Beilin  LJ, Cutt  HE, Mansour  J, Wilson  A, Mori  TA.  Effects of a lifestyle programme on ambulatory blood pressure and drug dosage in treated hypertensive patients: a randomized controlled trial.  J Hypertens. 2005;23(6):1241-1249. doi:10.1097/01.hjh.0000170388.61579.4fPubMedGoogle ScholarCrossref
40.
Cadmus-Bertram  L, Nelson  SH, Hartman  S, Patterson  RE, Parker  BA, Pierce  JP.  Randomized trial of a phone- and web-based weight loss program for women at elevated breast cancer risk: the HELP study.  J Behav Med. 2016;39(4):551-559. doi:10.1007/s10865-016-9735-9PubMedGoogle ScholarCrossref
41.
Chirinos  DA, Goldberg  RB, Llabre  MM,  et al.  Lifestyle modification and weight reduction among low-income patients with the metabolic syndrome: the CHARMS randomized controlled trial.  J Behav Med. 2016;39(3):483-492. doi:10.1007/s10865-016-9721-2PubMedGoogle ScholarCrossref
42.
Christian  JG, Byers  TE, Christian  KK,  et al.  A computer support program that helps clinicians provide patients with metabolic syndrome tailored counseling to promote weight loss.  J Am Diet Assoc. 2011;111(1):75-83. doi:10.1016/j.jada.2010.10.006PubMedGoogle ScholarCrossref
43.
Cohen  MD, D’Amico  FJ, Merenstein  JH.  Weight reduction in obese hypertensive patients.  Fam Med. 1991;23(1):25-28.PubMedGoogle Scholar
44.
Cussler  EC, Teixeira  PJ, Going  SB,  et al.  Maintenance of weight loss in overweight middle-aged women through the Internet.  Obesity (Silver Spring). 2008;16(5):1052-1060. doi:10.1038/oby.2008.19PubMedGoogle ScholarCrossref
45.
Davidson  MH, Hauptman  J, DiGirolamo  M,  et al.  Weight control and risk factor reduction in obese subjects treated for 2 years with orlistat: a randomized controlled trial.  JAMA. 1999;281(3):235-242. doi:10.1001/jama.281.3.235PubMedGoogle ScholarCrossref
46.
de Vos  BC, Runhaar  J, Bierma-Zeinstra  SM.  Effectiveness of a tailor-made weight loss intervention in primary care.  Eur J Nutr. 2014;53(1):95-104. doi:10.1007/s00394-013-0505-yPubMedGoogle ScholarCrossref
47.
Demark-Wahnefried  W, Jones  LW, Snyder  DC,  et al.  Daughters and Mothers Against Breast Cancer (DAMES): main outcomes of a randomized controlled trial of weight loss in overweight mothers with breast cancer and their overweight daughters.  Cancer. 2014;120(16):2522-2534. doi:10.1002/cncr.28761PubMedGoogle ScholarCrossref
48.
Derosa  G, Mugellini  A, Ciccarelli  L, Fogari  R.  Randomized, double-blind, placebo-controlled comparison of the action of orlistat, fluvastatin, or both on anthropometric measurements, blood pressure, and lipid profile in obese patients with hypercholesterolemia prescribed a standardized diet.  Clin Ther. 2003;25(4):1107-1122. doi:10.1016/S0149-2918(03)80070-XPubMedGoogle ScholarCrossref
49.
Eaton  CB, Hartman  SJ, Perzanowski  E,  et al.  A randomized clinical trial of a tailored lifestyle intervention for obese, sedentary, primary care patients.  Ann Fam Med. 2016;14(4):311-319. doi:10.1370/afm.1952PubMedGoogle ScholarCrossref
50.
Farr  OM, Upadhyay  J, Gavrieli  A,  et al.  Lorcaserin administration decreases activation of brain centers in response to food cues and these emotion- and salience-related changes correlate with weight loss effects: a 4-week-long randomized, placebo-controlled, double-blind clinical trial.  Diabetes. 2016;65(10):2943-2953. doi:10.2337/db16-0635PubMedGoogle ScholarCrossref
51.
Fidler  MC, Sanchez  M, Raether  B,  et al; BLOSSOM Clinical Trial Group.  A one-year randomized trial of lorcaserin for weight loss in obese and overweight adults: the BLOSSOM trial.  J Clin Endocrinol Metab. 2011;96(10):3067-3077. doi:10.1210/jc.2011-1256PubMedGoogle ScholarCrossref
52.
Finer  N, James  WP, Kopelman  PG, Lean  ME, Williams  G.  One-year treatment of obesity: a randomized, double-blind, placebo-controlled, multicentre study of orlistat, a gastrointestinal lipase inhibitor.  Int J Obes Relat Metab Disord. 2000;24(3):306-313. doi:10.1038/sj.ijo.0801128PubMedGoogle ScholarCrossref
53.
Fitzgibbon  ML, Stolley  MR, Schiffer  L, Sharp  LK, Singh  V, Dyer  A.  Obesity Reduction Black Intervention Trial (ORBIT): 18-month results.  Obesity (Silver Spring). 2010;18(12):2317-2325. doi:10.1038/oby.2010.47PubMedGoogle ScholarCrossref
54.
Gadde  KM, Allison  DB, Ryan  DH,  et al.  Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial  [published correction appears in Lancet. 2011;377(9776):1494].  Lancet. 2011;377(9774):1341-1352. doi:10.1016/S0140-6736(11)60205-5PubMedGoogle ScholarCrossref
55.
Godino  JG, Merchant  G, Norman  GJ,  et al.  Using social and mobile tools for weight loss in overweight and obese young adults (Project SMART): a 2 year, parallel-group, randomised, controlled trial.  Lancet Diabetes Endocrinol. 2016;4(9):747-755. doi:10.1016/S2213-8587(16)30105-XPubMedGoogle ScholarCrossref
56.
Greaves  C, Gillison  F, Stathi  A,  et al.  Waste the waist: a pilot randomised controlled trial of a primary care based intervention to support lifestyle change in people with high cardiovascular risk.  Int J Behav Nutr Phys Act. 2015;12:1. doi:10.1186/s12966-014-0159-zPubMedGoogle ScholarCrossref
57.
Greenway  FL, Fujioka  K, Plodkowski  RA,  et al; COR-I Study Group.  Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial  [published corrections appear in Lancet. 2010;376(9750):1392 and 2010;376(9741):594].  Lancet. 2010;376(9741):595-605. doi:10.1016/S0140-6736(10)60888-4PubMedGoogle ScholarCrossref
58.
Haapala  I, Barengo  NC, Biggs  S, Surakka  L, Manninen  P.  Weight loss by mobile phone: a 1-year effectiveness study.  Public Health Nutr. 2009;12(12):2382-2391. doi:10.1017/S1368980009005230PubMedGoogle ScholarCrossref
59.
Hauptman  J, Lucas  C, Boldrin  MN, Collins  H, Segal  KR.  Orlistat in the long-term treatment of obesity in primary care settings.  Arch Fam Med. 2000;9(2):160-167. doi:10.1001/archfami.9.2.160PubMedGoogle ScholarCrossref
60.
Hill  JO, Hauptman  J, Anderson  JW,  et al.  Orlistat, a lipase inhibitor, for weight maintenance after conventional dieting: a 1-y study.  Am J Clin Nutr. 1999;69(6):1108-1116. doi:10.1093/ajcn/69.6.1108PubMedGoogle ScholarCrossref
61.
Hong  JL, Meier  CR, Sandler  RS, Jick  SS, Stürmer  T.  Risk of colorectal cancer after initiation of orlistat: matched cohort study.  BMJ. 2013;347:f5039. doi:10.1136/bmj.f5039PubMedGoogle ScholarCrossref
62.
Hunt  K, Wyke  S, Gray  CM,  et al.  A gender-sensitised weight loss and healthy living programme for overweight and obese men delivered by Scottish Premier League football clubs (FFIT): a pragmatic randomised controlled trial.  Lancet. 2014;383(9924):1211-1221. doi:10.1016/S0140-6736(13)62420-4PubMedGoogle ScholarCrossref
63.
Huseinovic  E, Bertz  F, Leu Agelii  M, Hellebö Johansson  E, Winkvist  A, Brekke  HK.  Effectiveness of a weight loss intervention in postpartum women: results from a randomized controlled trial in primary health care.  Am J Clin Nutr. 2016;104(2):362-370. doi:10.3945/ajcn.116.135673PubMedGoogle ScholarCrossref
64.
Jakicic  JM, Otto  AD, Lang  W,  et al.  The effect of physical activity on 18-month weight change in overweight adults.  Obesity (Silver Spring). 2011;19(1):100-109. doi:10.1038/oby.2010.122PubMedGoogle ScholarCrossref
65.
Jansson  SP, Engfeldt  P, Magnuson  A, Pt  GL, Liljegren  G.  Interventions for lifestyle changes to promote weight reduction, a randomized controlled trial in primary health care.  BMC Res Notes. 2013;6:213. doi:10.1186/1756-0500-6-213PubMedGoogle ScholarCrossref
66.
Jebb  SA, Ahern  AL, Olson  AD,  et al.  Primary care referral to a commercial provider for weight loss treatment versus standard care: a randomised controlled trial.  Lancet. 2011;378(9801):1485-1492. doi:10.1016/S0140-6736(11)61344-5PubMedGoogle ScholarCrossref
67.
Jeffery  RW, Wing  RR, Thorson  C,  et al.  Strengthening behavioral interventions for weight loss: a randomized trial of food provision and monetary incentives.  J Consult Clin Psychol. 1993;61(6):1038-1045. doi:10.1037/0022-006X.61.6.1038PubMedGoogle ScholarCrossref
68.
Jolly  K, Lewis  A, Beach  J,  et al.  Comparison of range of commercial or primary care led weight reduction programmes with minimal intervention control for weight loss in obesity: Lighten Up randomised controlled trial.  BMJ. 2011;343:d6500. doi:10.1136/bmj.d6500PubMedGoogle ScholarCrossref
69.
Jones  DW, Miller  ME, Wofford  MR,  et al.  The effect of weight loss intervention on antihypertensive medication requirements in the Hypertension Optimal Treatment (HOT) study.  Am J Hypertens. 1999;12(12, pt 1-2):1175-1180. doi:10.1016/S0895-7061(99)00123-5PubMedGoogle ScholarCrossref
70.
Kanke  S, Kawai  T, Takasawa  N, Mashiyama  Y, Ishii  A, Kassai  R.  Interventions for body weight reduction in obese patients during short consultations: an open-label randomized controlled trial in the Japanese primary care setting.  Asia Pac Fam Med. 2015;14(1):5. doi:10.1186/s12930-015-0022-7PubMedGoogle ScholarCrossref
71.
Katula  JA, Vitolins  MZ, Rosenberger  EL,  et al.  One-year results of a community-based translation of the Diabetes Prevention Program: Healthy-Living Partnerships to Prevent Diabetes (HELP PD) Project  [published correction appears in Diabetes Care. 2012;35(2):455].  Diabetes Care. 2011;34(7):1451-1457. doi:10.2337/dc10-2115PubMedGoogle ScholarCrossref
72.
Kim  SH, Abbasi  F, Lamendola  C,  et al.  Benefits of liraglutide treatment in overweight and obese older individuals with prediabetes.  Diabetes Care. 2013;36(10):3276-3282. doi:10.2337/dc13-0354PubMedGoogle ScholarCrossref
73.
Knowler  WC, Barrett-Connor  E, Fowler  SE,  et al; Diabetes Prevention Program Research Group.  Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.  N Engl J Med. 2002;346(6):393-403. doi:10.1056/NEJMoa012512PubMedGoogle ScholarCrossref
74.
Krempf  M, Louvet  JP, Allanic  H, Miloradovich  T, Joubert  JM, Attali  JR.  Weight reduction and long-term maintenance after 18 months treatment with orlistat for obesity.  Int J Obes Relat Metab Disord. 2003;27(5):591-597. doi:10.1038/sj.ijo.0802281PubMedGoogle ScholarCrossref
75.
Kuller  LH, Pettee Gabriel  KK, Kinzel  LS,  et al.  The Women on the Move Through Activity and Nutrition (WOMAN) study: final 48-month results.  Obesity (Silver Spring). 2012;20(3):636-643. doi:10.1038/oby.2011.80PubMedGoogle ScholarCrossref
76.
Kulzer  B, Hermanns  N, Gorges  D, Schwarz  P, Haak  T.  Prevention of diabetes self-management program (PREDIAS): effects on weight, metabolic risk factors, and behavioral outcomes.  Diabetes Care. 2009;32(7):1143-1146. doi:10.2337/dc08-2141PubMedGoogle ScholarCrossref
77.
Lindgärde  F.  The effect of orlistat on body weight and coronary heart disease risk profile in obese patients: the Swedish Multimorbidity Study.  J Intern Med. 2000;248(3):245-254. doi:10.1046/j.1365-2796.2000.00720.xPubMedGoogle ScholarCrossref
78.
Little  P, Stuart  B, Hobbs  FR,  et al.  An internet-based intervention with brief nurse support to manage obesity in primary care (POWeR+): a pragmatic, parallel-group, randomised controlled trial.  Lancet Diabetes Endocrinol. 2016;4(10):821-828. doi:10.1016/S2213-8587(16)30099-7PubMedGoogle ScholarCrossref
79.
Luley  C, Blaik  A, Götz  A,  et al.  Weight loss by telemonitoring of nutrition and physical activity in patients with metabolic syndrome for 1 year.  J Am Coll Nutr. 2014;33(5):363-374. doi:10.1080/07315724.2013.875437PubMedGoogle ScholarCrossref
80.
Ma  J, Yank  V, Xiao  L,  et al.  Translating the Diabetes Prevention Program lifestyle intervention for weight loss into primary care: a randomized trial.  JAMA Intern Med. 2013;173(2):113-121. doi:10.1001/2013.jamainternmed.987PubMedGoogle ScholarCrossref
81.
Marrero  DG, Palmer  KN, Phillips  EO, Miller-Kovach  K, Foster  GD, Saha  CK.  Comparison of commercial and self-initiated weight loss programs in people with prediabetes: a randomized control trial.  Am J Public Health. 2016;106(5):949-956. doi:10.2105/AJPH.2015.303035PubMedGoogle ScholarCrossref
82.
Martin  CK, Redman  LM, Zhang  J,  et al.  Lorcaserin, a 5-HT(2C) receptor agonist, reduces body weight by decreasing energy intake without influencing energy expenditure.  J Clin Endocrinol Metab. 2011;96(3):837-845. doi:10.1210/jc.2010-1848PubMedGoogle ScholarCrossref
83.
Martin  PD, Dutton  GR, Rhode  PC, Horswell  RL, Ryan  DH, Brantley  PJ.  Weight loss maintenance following a primary care intervention for low-income minority women.  Obesity (Silver Spring). 2008;16(11):2462-2467. doi:10.1038/oby.2008.399PubMedGoogle ScholarCrossref
84.
Mitsui  T, Shimaoka  K, Tsuzuku  S, Kajioka  T, Sakakibara  H.  Gentle exercise of 40 minutes with dietary counseling is effective in treating metabolic syndrome.  Tohoku J Exp Med. 2008;215(4):355-361. doi:10.1620/tjem.215.355PubMedGoogle ScholarCrossref
85.
Moore  H, Summerbell  CD, Greenwood  DC,  et al.  Improving management of obesity in primary care: cluster randomised trial.  BMJ. 2003;327(7423):1085. doi:10.1136/bmj.327.7423.1085PubMedGoogle ScholarCrossref
86.
Morgan  PJ, Lubans  DR, Collins  CE, Warren  JM, Callister  R.  12-month outcomes and process evaluation of the SHED-IT RCT: an internet-based weight loss program targeting men.  Obesity (Silver Spring). 2011;19(1):142-151. doi:10.1038/oby.2010.119PubMedGoogle ScholarCrossref
87.
Muls  E, Kolanowski  J, Scheen  A, Van Gaal  L; ObelHyx Study Group.  The effects of orlistat on weight and on serum lipids in obese patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled, multicentre study.  Int J Obes Relat Metab Disord. 2001;25(11):1713-1721. doi:10.1038/sj.ijo.0801814PubMedGoogle ScholarCrossref
88.
Nakade  M, Aiba  N, Suda  N,  et al; SCOP Group.  Behavioral change during weight loss program and one-year follow-up: Saku Control Obesity Program (SCOP) in Japan.  Asia Pac J Clin Nutr. 2012;21(1):22-34.PubMedGoogle Scholar
89.
Nanchahal  K, Power  T, Holdsworth  E,  et al.  A pragmatic randomised controlled trial in primary care of the Camden Weight Loss (CAMWEL) programme.  BMJ Open. 2012;2(3):e000793. doi:10.1136/bmjopen-2011-000793PubMedGoogle ScholarCrossref
90.
Narayan  KM, Hoskin  M, Kozak  D,  et al.  Randomized clinical trial of lifestyle interventions in Pima Indians: a pilot study.  Diabet Med. 1998;15(1):66-72. doi:10.1002/(SICI)1096-9136(199801)15:1<66::AID-DIA515>3.0.CO;2-APubMedGoogle ScholarCrossref
91.
Nicklas  JM, Zera  CA, England  LJ,  et al.  A web-based lifestyle intervention for women with recent gestational diabetes mellitus: a randomized controlled trial.  Obstet Gynecol. 2014;124(3):563-570. doi:10.1097/AOG.0000000000000420PubMedGoogle ScholarCrossref
92.
Ockene  IS, Tellez  TL, Rosal  MC,  et al.  Outcomes of a Latino community-based intervention for the prevention of diabetes: the Lawrence Latino Diabetes Prevention Project.  Am J Public Health. 2012;102(2):336-342. doi:10.2105/AJPH.2011.300357PubMedGoogle ScholarCrossref
93.
Pacanowski  CR, Levitsky  DA.  Frequent self-weighing and visual feedback for weight loss in overweight adults.  J Obes. 2015;2015:763680. doi:10.1155/2015/763680PubMedGoogle ScholarCrossref
94.
Parikh  P, Simon  EP, Fei  K, Looker  H, Goytia  C, Horowitz  CR.  Results of a pilot diabetes prevention intervention in East Harlem, New York City: Project HEED.  Am J Public Health. 2010;100(suppl 1):S232-S239. doi:10.2105/AJPH.2009.170910PubMedGoogle ScholarCrossref
95.
Patrick  K, Calfas  KJ, Norman  GJ,  et al.  Outcomes of a 12-month web-based intervention for overweight and obese men.  Ann Behav Med. 2011;42(3):391-401. doi:10.1007/s12160-011-9296-7PubMedGoogle ScholarCrossref
96.
Pekkarinen  T, Kaukua  J, Mustajoki  P.  Long-term weight maintenance after a 17-week weight loss intervention with or without a one-year maintenance program: a randomized controlled trial.  J Obes. 2015;2015:651460. doi:10.1155/2015/651460PubMedGoogle ScholarCrossref
97.
Penn  L, White  M, Oldroyd  J, Walker  M, Alberti  KG, Mathers  JC.  Prevention of type 2 diabetes in adults with impaired glucose tolerance: the European Diabetes Prevention RCT in Newcastle upon Tyne, UK.  BMC Public Health. 2009;9:342. doi:10.1186/1471-2458-9-342PubMedGoogle ScholarCrossref
98.
Perri  MG, McAllister  DA, Gange  JJ, Jordan  RC, McAdoo  G, Nezu  AM.  Effects of four maintenance programs on the long-term management of obesity.  J Consult Clin Psychol. 1988;56(4):529-534. doi:10.1037/0022-006X.56.4.529PubMedGoogle ScholarCrossref
99.
Pi-Sunyer  X, Astrup  A, Fujioka  K,  et al; SCALE Obesity and Prediabetes NN8022-1839 Study Group.  A randomized, controlled trial of 3.0 mg of liraglutide in weight management.  N Engl J Med. 2015;373(1):11-22. doi:10.1056/NEJMoa1411892PubMedGoogle ScholarCrossref
100.
Puhkala  J, Kukkonen-Harjula  K, Mansikkamäki  K,  et al.  Lifestyle counseling to reduce body weight and cardiometabolic risk factors among truck and bus drivers—a randomized controlled trial.  Scand J Work Environ Health. 2015;41(1):54-64. doi:10.5271/sjweh.3463PubMedGoogle ScholarCrossref
101.
Richelsen  B, Tonstad  S, Rössner  S,  et al.  Effect of orlistat on weight regain and cardiovascular risk factors following a very-low-energy diet in abdominally obese patients: a 3-year randomized, placebo-controlled study.  Diabetes Care. 2007;30(1):27-32. doi:10.2337/dc06-0210PubMedGoogle ScholarCrossref
102.
Rock  CL, Flatt  SW, Byers  TE,  et al.  Results of the Exercise and Nutrition to Enhance Recovery and Good Health for You (ENERGY) trial: a behavioral weight loss intervention in overweight or obese breast cancer survivors.  J Clin Oncol. 2015;33(28):3169-3176. doi:10.1200/JCO.2015.61.1095PubMedGoogle ScholarCrossref
103.
Rock  CL, Pakiz  B, Flatt  SW, Quintana  EL.  Randomized trial of a multifaceted commercial weight loss program.  Obesity (Silver Spring). 2007;15(4):939-949. doi:10.1038/oby.2007.614PubMedGoogle ScholarCrossref
104.
Rosas  LG, Thiyagarajan  S, Goldstein  BA,  et al.  The effectiveness of two community-based weight loss strategies among obese, low-income US Latinos.  J Acad Nutr Diet. 2015;115(4):537-50. doi:10.1016/j.jand.2014.10.020PubMedGoogle ScholarCrossref
105.
Ross  R, Lam  M, Blair  SN,  et al.  Trial of prevention and reduction of obesity through active living in clinical settings: a randomized controlled trial.  Arch Intern Med. 2012;172(5):414-424. doi:10.1001/archinternmed.2011.1972PubMedGoogle ScholarCrossref
106.
Rössner  S, Sjöström  L, Noack  R, Meinders  AE, Noseda  G; European Orlistat Obesity Study Group.  Weight loss, weight maintenance, and improved cardiovascular risk factors after 2 years treatment with orlistat for obesity.  Obes Res. 2000;8(1):49-61. doi:10.1038/oby.2000.8PubMedGoogle ScholarCrossref
107.
Shapiro  JR, Koro  T, Doran  N,  et al.  Text4Diet: a randomized controlled study using text messaging for weight loss behaviors.  Prev Med. 2012;55(5):412-417. doi:10.1016/j.ypmed.2012.08.011PubMedGoogle ScholarCrossref
108.
Sherwood  NE, Crain  AL, Martinson  BC,  et al.  Enhancing long-term weight loss maintenance: 2 year results from the Keep It Off randomized controlled trial.  Prev Med. 2013;56(3-4):171-177. doi:10.1016/j.ypmed.2012.12.014PubMedGoogle ScholarCrossref
109.
Silva  MN, Vieira  PN, Coutinho  SR,  et al.  Using self-determination theory to promote physical activity and weight control: a randomized controlled trial in women.  J Behav Med. 2010;33(2):110-122. doi:10.1007/s10865-009-9239-yPubMedGoogle ScholarCrossref
110.
Simpson  SA, McNamara  R, Shaw  C,  et al.  A feasibility randomised controlled trial of a motivational interviewing–based intervention for weight loss maintenance in adults.  Health Technol Assess. 2015;19(50):1-378. doi:10.3310/hta19500PubMedGoogle ScholarCrossref
111.
Sjöström  L, Rissanen  A, Andersen  T,  et al; European Multicentre Orlistat Study Group.  Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients.  Lancet. 1998;352(9123):167-172. doi:10.1016/S0140-6736(97)11509-4PubMedGoogle ScholarCrossref
112.
Smith  SR, Stenlof  KS, Greenway  FL,  et al.  Orlistat 60 mg reduces visceral adipose tissue: a 24-week randomized, placebo-controlled, multicenter trial.  Obesity (Silver Spring). 2011;19(9):1796-1803. doi:10.1038/oby.2011.143PubMedGoogle ScholarCrossref
113.
Smith  SR, Weissman  NJ, Anderson  CM,  et al; Behavioral Modification and Lorcaserin for Overweight and Obesity Management (BLOOM) Study Group.  Multicenter, placebo-controlled trial of lorcaserin for weight management.  N Engl J Med. 2010;363(3):245-256. doi:10.1056/NEJMoa0909809PubMedGoogle ScholarCrossref
114.
Smith  TJ, Crombie  A, Sanders  LF,  et al.  Efficacy of orlistat 60 mg on weight loss and body fat mass in US Army soldiers.  J Acad Nutr Diet. 2012;112(4):533-540. doi:10.1016/j.jada.2011.10.006PubMedGoogle ScholarCrossref
115.
Stevens  VJ, Corrigan  SA, Obarzanek  E,  et al; TOHP Collaborative Research Group.  Weight loss intervention in phase 1 of the Trials of Hypertension Prevention.  Arch Intern Med. 1993;153(7):849-858. doi:10.1001/archinte.1993.00410070039006PubMedGoogle ScholarCrossref
116.
Stevens  VJ, Obarzanek  E, Cook  NR,  et al; Trials for the Hypertension Prevention Research Group.  Long-term weight loss and changes in blood pressure: results of the Trials of Hypertension Prevention, Phase II.  Ann Intern Med. 2001;134(1):1-11. doi:10.7326/0003-4819-134-1-200101020-00007PubMedGoogle ScholarCrossref
117.
Svetkey  LP, Batch  BC, Lin  PH,  et al.  Cell phone intervention for you (CITY): a randomized, controlled trial of behavioral weight loss intervention for young adults using mobile technology  [published correction appears in Obesity (Silver Spring). 2016;24(2):536].  Obesity (Silver Spring). 2015;23(11):2133-2141. doi:10.1002/oby.21226PubMedGoogle ScholarCrossref
118.
Svetkey  LP, Stevens  VJ, Brantley  PJ,  et al; Weight Loss Maintenance Collaborative Research Group.  Comparison of strategies for sustaining weight loss: the weight loss maintenance randomized controlled trial.  JAMA. 2008;299(10):1139-1148. doi:10.1001/jama.299.10.1139PubMedGoogle ScholarCrossref
119.
Swinburn  BA, Carey  D, Hills  AP,  et al.  Effect of orlistat on cardiovascular disease risk in obese adults.  Diabetes Obes Metab. 2005;7(3):254-262. doi:10.1111/j.1463-1326.2004.00467.xPubMedGoogle ScholarCrossref
120.
Torgerson  JS, Hauptman  J, Boldrin  MN, Sjöström  L.  XENical in the prevention of Diabetes in Obese Subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients.  Diabetes Care. 2004;27(1):155-161. doi:10.2337/diacare.27.1.155PubMedGoogle ScholarCrossref
121.
Tsai  AG, Wadden  TA, Rogers  MA, Day  SC, Moore  RH, Islam  BJ.  A primary care intervention for weight loss: results of a randomized controlled pilot study.  Obesity (Silver Spring). 2010;18(8):1614-1618. doi:10.1038/oby.2009.457PubMedGoogle ScholarCrossref
122.
Tuomilehto  J, Lindström  J, Eriksson  JG,  et al; Finnish Diabetes Prevention Study Group.  Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance.  N Engl J Med. 2001;344(18):1343-1350. doi:10.1056/NEJM200105033441801PubMedGoogle ScholarCrossref
123.
Van Gaal  LF, Broom  JI, Enzi  G, Toplak  H; Orlistat Dose-Ranging Study Group.  Efficacy and tolerability of orlistat in the treatment of obesity: a 6-month dose-ranging study.  Eur J Clin Pharmacol. 1998;54(2):125-132. doi:10.1007/s002280050433PubMedGoogle ScholarCrossref
124.
van Wier  MF, Dekkers  JC, Hendriksen  IJ,  et al.  Effectiveness of phone and e-mail lifestyle counseling for long term weight control among overweight employees.  J Occup Environ Med. 2011;53(6):680-686. doi:10.1097/JOM.0b013e31821f2bbbPubMedGoogle ScholarCrossref
125.
Voils  CI, Olsen  MK, Gierisch  JM,  et al.  Maintenance of weight loss after initiation of nutrition training: a randomized trial.  Ann Intern Med. 2017;166(7):463-471. doi:10.7326/M16-2160PubMedGoogle ScholarCrossref
126.
von Gruenigen  V, Frasure  H, Kavanagh  MB,  et al.  Survivors of uterine cancer empowered by exercise and healthy diet (SUCCEED): a randomized controlled trial.  Gynecol Oncol. 2012;125(3):699-704. doi:10.1016/j.ygyno.2012.03.042PubMedGoogle ScholarCrossref
127.
Wadden  TA, Volger  S, Sarwer  DB,  et al.  A two-year randomized trial of obesity treatment in primary care practice.  N Engl J Med. 2011;365(21):1969-1979. doi:10.1056/NEJMoa1109220PubMedGoogle ScholarCrossref
128.
Wadden  TA, Foreyt  JP, Foster  GD,  et al.  Weight loss with naltrexone SR/bupropion SR combination therapy as an adjunct to behavior modification: the COR-BMOD trial.  Obesity (Silver Spring). 2011;19(1):110-120. doi:10.1038/oby.2010.147PubMedGoogle ScholarCrossref
129.
Wadden  TA, Hollander  P, Klein  S,  et al; NN8022-1923 Investigators.  Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE Maintenance randomized study  [published corrections appear in Int J Obes (Lond). 2015;39(1):187, 2013;37(11):1514, and 2015;39(1):187].  Int J Obes (Lond). 2013;37(11):1443-1451. doi:10.1038/ijo.2013.120PubMedGoogle ScholarCrossref
130.
Wing  RR, Tate  DF, Gorin  AA, Raynor  HA, Fava  JL.  A self-regulation program for maintenance of weight loss.  N Engl J Med. 2006;355(15):1563-1571. doi:10.1056/NEJMoa061883PubMedGoogle ScholarCrossref
131.
Wing  RR, Venditti  E, Jakicic  JM, Polley  BA, Lang  W.  Lifestyle intervention in overweight individuals with a family history of diabetes.  Diabetes Care. 1998;21(3):350-359. doi:10.2337/diacare.21.3.350PubMedGoogle ScholarCrossref
132.
Wylie-Rosett  J, Swencionis  C, Ginsberg  M,  et al.  Computerized weight loss intervention optimizes staff time: the clinical and cost results of a controlled clinical trial conducted in a managed care setting.  J Am Diet Assoc. 2001;101(10):1155-1162. doi:10.1016/S0002-8223(01)00284-XPubMedGoogle ScholarCrossref
133.
Yeh  MC, Heo  M, Suchday  S,  et al.  Translation of the Diabetes Prevention Program for diabetes risk reduction in Chinese immigrants in New York City.  Diabet Med. 2016;33(4):547-551. doi:10.1111/dme.12848PubMedGoogle ScholarCrossref
134.
Young  MD, Callister  R, Collins  CE, Plotnikoff  RC, Aguiar  EJ, Morgan  PJ.  Efficacy of a gender-tailored intervention to prevent weight regain in men over 3 years: a weight loss maintenance RCT.  Obesity (Silver Spring). 2017;25(1):56-65. doi:10.1002/oby.21696PubMedGoogle ScholarCrossref
135.
Beeken  RJ, Leurent  B, Vickerstaff  V,  et al.  A brief intervention for weight control based on habit-formation theory delivered through primary care: results from a randomised controlled trial.  Int J Obes (Lond). 2017;41(2):246-254. doi:10.1038/ijo.2016.206PubMedGoogle ScholarCrossref
136.
Fischer  HH, Fischer  IP, Pereira  RI,  et al.  Text message support for weight loss in patients with prediabetes: a randomized clinical trial.  Diabetes Care. 2016;39(8):1364-1370. doi:10.2337/dc15-2137PubMedGoogle ScholarCrossref
137.
Jenkins  DJA, Boucher  BA, Ashbury  FD,  et al.  Effect of current dietary recommendations on weight loss and cardiovascular risk factors.  J Am Coll Cardiol. 2017;69(9):1103-1112. doi:10.1016/j.jacc.2016.10.089PubMedGoogle ScholarCrossref
138.
O’Brien  MJ, Perez  A, Scanlan  AB,  et al.  PREVENT-DM comparative effectiveness trial of lifestyle intervention and metformin.  Am J Prev Med. 2017;52(6):788-797. doi:10.1016/j.amepre.2017.01.008PubMedGoogle ScholarCrossref
139.
Thomas  JG, Raynor  HA, Bond  DS,  et al.  Weight loss in Weight Watchers Online with and without an activity tracking device compared to control: a randomized trial.  Obesity (Silver Spring). 2017;25(6):1014-1021. doi:10.1002/oby.21846PubMedGoogle ScholarCrossref
140.
Ahern  AL, Wheeler  GM, Aveyard  P,  et al.  Extended and standard duration weight-loss programme referrals for adults in primary care (WRAP): a randomised controlled trial.  Lancet. 2017;389(10085):2214-2225. doi:10.1016/S0140-6736(17)30647-5PubMedGoogle ScholarCrossref
141.
Logue  E, Sutton  K, Jarjoura  D, Smucker  W, Baughman  K, Capers  C.  Transtheoretical model–chronic disease care for obesity in primary care: a randomized trial.  Obes Res. 2005;13(5):917-927. doi:10.1038/oby.2005.106PubMedGoogle ScholarCrossref
142.
Mensink  M, Corpeleijn  E, Feskens  EJ,  et al.  Study on lifestyle-intervention and impaired glucose tolerance Maastricht (SLIM): design and screening results.  Diabetes Res Clin Pract. 2003;61(1):49-58. doi:10.1016/S0168-8227(03)00067-6PubMedGoogle ScholarCrossref
143.
Whelton  PK, Appel  LJ, Espeland  MA,  et al; TONE Collaborative Research Group.  Sodium reduction and weight loss in the treatment of hypertension in older persons: a randomized controlled trial of nonpharmacologic interventions in the elderly (TONE).  JAMA. 1998;279(11):839-846. doi:10.1001/jama.279.11.839PubMedGoogle ScholarCrossref
144.
Nilsen  V, Bakke  PS, Gallefoss  F.  Effects of lifestyle intervention in persons at risk for type 2 diabetes mellitus—results from a randomised, controlled trial.  BMC Public Health. 2011;11:893. doi:10.1186/1471-2458-11-893PubMedGoogle ScholarCrossref
145.
Kumanyika  SK, Fassbender  JE, Sarwer  DB,  et al.  One-year results of the Think Health! study of weight management in primary care practices.  Obesity (Silver Spring). 2012;20(6):1249-1257. doi:10.1038/oby.2011.329PubMedGoogle ScholarCrossref
146.
Rodriguez-Cristobal  JJ, Alonso-Villaverde  C, Panisello  JM,  et al.  Effectiveness of a motivational intervention on overweight/obese patients in the primary healthcare: a cluster randomized trial.  BMC Fam Pract. 2017;18(1):74. doi:10.1186/s12875-017-0644-yPubMedGoogle ScholarCrossref
147.
Phelan  S, Hagobian  T, Brannen  A,  et al.  Effect of an internet-based program on weight loss for low-income postpartum women: a randomized clinical trial.  JAMA. 2017;317(23):2381-2391. doi:10.1001/jama.2017.7119PubMedGoogle ScholarCrossref
148.
Trials of Hypertension Prevention Collaborative Research Group.  The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels: results of the Trials of Hypertension Prevention, Phase I.  JAMA. 1992;267(9):1213-1220. doi:10.1001/jama.1992.03480090061028PubMedGoogle ScholarCrossref
149.
Uusitupa  M, Peltonen  M, Lindström  J,  et al; Finnish Diabetes Prevention Study Group.  Ten-year mortality and cardiovascular morbidity in the Finnish Diabetes Prevention Study—secondary analysis of the randomized trial.  PLoS One. 2009;4(5):e5656. doi:10.1371/journal.pone.0005656PubMedGoogle ScholarCrossref
150.
Shea  MK, Nicklas  BJ, Houston  DK,  et al.  The effect of intentional weight loss on all-cause mortality in older adults: results of a randomized controlled weight-loss trial.  Am J Clin Nutr. 2011;94(3):839-846. doi:10.3945/ajcn.110.006379PubMedGoogle ScholarCrossref
151.
Ratner  R, Goldberg  R, Haffner  S,  et al; Diabetes Prevention Program Research Group.  Impact of intensive lifestyle and metformin therapy on cardiovascular disease risk factors in the Diabetes Prevention Program.  Diabetes Care. 2005;28(4):888-894. doi:10.2337/diacare.28.4.888PubMedGoogle ScholarCrossref
152.
Rubin  RR, Peyrot  M, Wang  NY,  et al.  Patient-reported outcomes in the practice-based opportunities for weight reduction (POWER) trial.  Qual Life Res. 2013;22(9):2389-2398. doi:10.1007/s11136-013-0363-3PubMedGoogle ScholarCrossref
153.
Florez  H, Pan  Q, Ackermann  RT,  et al; Diabetes Prevention Program Research Group.  Impact of lifestyle intervention and metformin on health-related quality of life: the Diabetes Prevention Program randomized trial.  J Gen Intern Med. 2012;27(12):1594-1601. doi:10.1007/s11606-012-2122-5PubMedGoogle ScholarCrossref
154.
Ackermann  RT, Edelstein  SL, Narayan  KM,  et al; Diabetes Prevention Program Research Group.  Changes in health state utilities with changes in body mass in the Diabetes Prevention Program.  Obesity (Silver Spring). 2009;17(12):2176-2181. doi:10.1038/oby.2009.114PubMedGoogle ScholarCrossref
155.
Demark-Wahnefried  W, Colditz  GA, Rock  CL,  et al; ENERGY Trial Group.  Quality of life outcomes from the Exercise and Nutrition Enhance Recovery and Good Health for You (ENERGY) randomized weight loss trial among breast cancer survivors.  Breast Cancer Res Treat. 2015;154(2):329-337. doi:10.1007/s10549-015-3627-5PubMedGoogle ScholarCrossref
156.
McCarroll  ML, Armbruster  S, Frasure  HE,  et al.  Self-efficacy, quality of life, and weight loss in overweight/obese endometrial cancer survivors (SUCCEED): a randomized controlled trial.  Gynecol Oncol. 2014;132(2):397-402. doi:10.1016/j.ygyno.2013.12.023PubMedGoogle ScholarCrossref
157.
Sarwer  DB, Moore  RH, Diewald  LK,  et al; POWER-UP Research Group.  The impact of a primary care-based weight loss intervention on the quality of life.  Int J Obes (Lond). 2013;37(suppl 1):S25-S30. doi:10.1038/ijo.2013.93PubMedGoogle ScholarCrossref
158.
Swencionis  C, Wylie-Rosett  J, Lent  MR,  et al.  Weight change, psychological well-being, and vitality in adults participating in a cognitive-behavioral weight loss program.  Health Psychol. 2013;32(4):439-446. doi:10.1037/a0029186PubMedGoogle ScholarCrossref
159.
Lindström  J, Peltonen  M, Eriksson  JG,  et al; Finnish Diabetes Prevention Study (DPS).  Improved lifestyle and decreased diabetes risk over 13 years: long-term follow-up of the randomised Finnish Diabetes Prevention Study (DPS).  Diabetologia. 2013;56(2):284-293. doi:10.1007/s00125-012-2752-5PubMedGoogle ScholarCrossref
160.
le Roux  CW, Astrup  A, Fujioka  K,  et al; SCALE Obesity Prediabetes NN8022-1839 Study Group.  3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial.  Lancet. 2017;389(10077):1399-1409. doi:10.1016/S0140-6736(17)30069-7PubMedGoogle ScholarCrossref
161.
Williamson  DF, Pamuk  E, Thun  M, Flanders  D, Byers  T, Heath  C.  Prospective study of intentional weight loss and mortality in never-smoking overweight US white women aged 40-64 years.  Am J Epidemiol. 1995;141(12):1128-1141. doi:10.1093/oxfordjournals.aje.a117386PubMedGoogle ScholarCrossref
162.
Wannamethee  SG, Shaper  AG, Walker  M.  Overweight and obesity and weight change in middle aged men: impact on cardiovascular disease and diabetes.  J Epidemiol Community Health. 2005;59(2):134-139. doi:10.1136/jech.2003.015651PubMedGoogle ScholarCrossref
163.
Gregg  EW, Gerzoff  RB, Thompson  TJ, Williamson  DF.  Intentional weight loss and death in overweight and obese U.S. adults 35 years of age and older.  Ann Intern Med. 2003;138(5):383-389. doi:10.7326/0003-4819-138-5-200303040-00007PubMedGoogle ScholarCrossref
164.
Parker  ED, Folsom  AR.  Intentional weight loss and incidence of obesity-related cancers: the Iowa Women’s Health Study.  Int J Obes Relat Metab Disord. 2003;27(12):1447-1452. doi:10.1038/sj.ijo.0802437PubMedGoogle ScholarCrossref
165.
Danaei  G, Robins  JM, Young  JG, Hu  FB, Manson  JE, Hernán  MA.  Weight loss and coronary heart disease: sensitivity analysis for unmeasured confounding by undiagnosed disease.  Epidemiology. 2016;27(2):302-310.PubMedGoogle Scholar
166.
Wijnhoven  HA, van Zon  SK, Twisk  J, Visser  M.  Attribution of causes of weight loss and weight gain to 3-year mortality in older adults: results from the Longitudinal Aging Study Amsterdam.  J Gerontol A Biol Sci Med Sci. 2014;69(10):1236-1243. doi:10.1093/gerona/glu005PubMedGoogle ScholarCrossref
167.
French  SA, Folsom  AR, Jeffery  RW, Williamson  DF.  Prospective study of intentionality of weight loss and mortality in older women: the Iowa Women’s Health Study.  Am J Epidemiol. 1999;149(6):504-514. doi:10.1093/oxfordjournals.aje.a009844PubMedGoogle ScholarCrossref
168.
Williamson  DF, Pamuk  E, Thun  M, Flanders  D, Byers  T, Heath  C.  Prospective study of intentional weight loss and mortality in overweight white men aged 40-64 years.  Am J Epidemiol. 1999;149(6):491-503. doi:10.1093/oxfordjournals.aje.a009843PubMedGoogle ScholarCrossref
169.
Sørensen  TI, Rissanen  A, Korkeila  M, Kaprio  J.  Intention to lose weight, weight changes, and 18-y mortality in overweight individuals without co-morbidities.  PLoS Med. 2005;2(6):e171. doi:10.1371/journal.pmed.0020171PubMedGoogle ScholarCrossref
170.
Yaari  S, Goldbourt  U.  Voluntary and involuntary weight loss: associations with long term mortality in 9,228 middle-aged and elderly men.  Am J Epidemiol. 1998;148(6):546-555. doi:10.1093/oxfordjournals.aje.a009680PubMedGoogle ScholarCrossref
171.
Courcoulas  AP, Goodpaster  BH, Eagleton  JK,  et al.  Surgical vs medical treatments for type 2 diabetes mellitus: a randomized clinical trial.  JAMA Surg. 2014;149(7):707-715. doi:10.1001/jamasurg.2014.467PubMedGoogle ScholarCrossref
172.
Chang  SH, Stoll  CR, Song  J, Varela  JE, Eagon  CJ, Colditz  GA.  The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003-2012.  JAMA Surg. 2014;149(3):275-287. doi:10.1001/jamasurg.2013.3654PubMedGoogle ScholarCrossref
173.
Sarkhosh  K, Switzer  NJ, El-Hadi  M, Birch  DW, Shi  X, Karmali  S.  The impact of bariatric surgery on obstructive sleep apnea: a systematic review.  Obes Surg. 2013;23(3):414-423. doi:10.1007/s11695-012-0862-2PubMedGoogle ScholarCrossref
174.
Sarwer  DB, Wadden  TA, Moore  RH, Eisenberg  MH, Raper  SE, Williams  NN.  Changes in quality of life and body image after gastric bypass surgery.  Surg Obes Relat Dis. 2010;6(6):608-614. doi:10.1016/j.soard.2010.07.015PubMedGoogle ScholarCrossref
175.
Dawes  AJ, Maggard-Gibbons  M, Maher  AR,  et al.  Mental health conditions among patients seeking and undergoing bariatric surgery: a meta-analysis.  JAMA. 2016;315(2):150-163. doi:10.1001/jama.2015.18118PubMedGoogle ScholarCrossref
176.
King  WC, Chen  JY, Belle  SH,  et al.  Change in pain and physical function following bariatric surgery for severe obesity.  JAMA. 2016;315(13):1362-1371. doi:10.1001/jama.2016.3010PubMedGoogle ScholarCrossref
177.
Kamvissi-Lorenz  V, Raffaelli  M, Bornstein  S, Mingrone  G.  Role of the gut on glucose homeostasis: lesson learned from metabolic surgery.  Curr Atheroscler Rep. 2017;19(2):9. doi:10.1007/s11883-017-0642-5PubMedGoogle ScholarCrossref
178.
Wing  RR, Phelan  S.  Long-term weight loss maintenance.  Am J Clin Nutr. 2005;82(1)(suppl):222S-225S. doi:10.1093/ajcn/82.1.222SPubMedGoogle ScholarCrossref
179.
Weiss  EC, Galuska  DA, Kettel Khan  L, Gillespie  C, Serdula  MK.  Weight regain in U.S. adults who experienced substantial weight loss, 1999-2002.  Am J Prev Med. 2007;33(1):34-40. doi:10.1016/j.amepre.2007.02.040PubMedGoogle ScholarCrossref
180.
Puhl  RM, Quinn  DM, Weisz  BM, Suh  YJ.  The role of stigma in weight loss maintenance among U.S. adults.  Ann Behav Med. 2017;51(5):754-763. doi:10.1007/s12160-017-9898-9PubMedGoogle ScholarCrossref
181.
Kruseman  M, Schmutz  N, Carrard  I.  Long-term weight maintenance strategies are experienced as a burden by persons who have lost weight compared to persons with a lifetime normal, stable weight.  Obes Facts. 2017;10(4):373-385. doi:10.1159/000478096PubMedGoogle ScholarCrossref
182.
Vieira  PN, Silva  MN, Mata  J,  et al.  Correlates of health-related quality of life, psychological well-being, and eating self-regulation after successful weight loss maintenance.  J Behav Med. 2013;36(6):601-610. doi:10.1007/s10865-012-9454-9PubMedGoogle ScholarCrossref
183.
Feller  S, Müller  A, Mayr  A, Engeli  S, Hilbert  A, de Zwaan  M.  What distinguishes weight loss maintainers of the German Weight Control Registry from the general population?  Obesity (Silver Spring). 2015;23(5):1112-1118. doi:10.1002/oby.21054PubMedGoogle ScholarCrossref
184.
Dulloo  AG, Montani  JP.  Pathways from dieting to weight regain, to obesity and to the metabolic syndrome: an overview.  Obes Rev. 2015;16(suppl 1):1-6. doi:10.1111/obr.12250PubMedGoogle ScholarCrossref
185.
Mackie  GM, Samocha-Bonet  D, Tam  CS.  Does weight cycling promote obesity and metabolic risk factors?  Obes Res Clin Pract. 2017;11(2):131-139. doi:10.1016/j.orcp.2016.10.284PubMedGoogle ScholarCrossref
186.
DerSarkissian  M, Bhak  RH, Huang  J,  et al.  Maintenance of weight loss or stability in subjects with obesity: a retrospective longitudinal analysis of a real-world population.  Curr Med Res Opin. 2017;33(6):1105-1110. doi:10.1080/03007995.2017.1307173PubMedGoogle ScholarCrossref
187.
Abell  JE, Egan  BM, Wilson  PW, Lipsitz  S, Woolson  RF, Lackland  DT.  Age and race impact the association between BMI and CVD mortality in women.  Public Health Rep. 2007;122(4):507-512. doi:10.1177/003335490712200412PubMedGoogle ScholarCrossref
188.
Abell  JE, Egan  BM, Wilson  PW, Lipsitz  S, Woolson  RF, Lackland  DT.  Differences in cardiovascular disease mortality associated with body mass between black and white persons.  Am J Public Health. 2008;98(1):63-66. doi:10.2105/AJPH.2006.093781PubMedGoogle ScholarCrossref
189.
Chen  Y, Henson  S, Jackson  AB, Richards  JS.  Obesity intervention in persons with spinal cord injury.  Spinal Cord. 2006;44(2):82-91. doi:10.1038/sj.sc.3101818PubMedGoogle ScholarCrossref
190.
Low  S, Chin  MC, Ma  S, Heng  D, Deurenberg-Yap  M.  Rationale for redefining obesity in Asians.  Ann Acad Med Singapore. 2009;38(1):66-69.PubMedGoogle Scholar
191.
Maskarinec  G, Grandinetti  A, Matsuura  G,  et al.  Diabetes prevalence and body mass index differ by ethnicity: the Multiethnic Cohort.  Ethn Dis. 2009;19(1):49-55.PubMedGoogle Scholar
192.
Ni Mhurchu  C, Rodgers  A, Pan  WH, Gu  DF, Woodward  M; Asia Pacific Cohort Studies Collaboration.  Body mass index and cardiovascular disease in the Asia-Pacific Region: an overview of 33 cohorts involving 310 000 participants.  Int J Epidemiol. 2004;33(4):751-758. doi:10.1093/ije/dyh163PubMedGoogle ScholarCrossref
193.
Huxley  R, Barzi  F, Lee  CM,  et al; Obesity in Asia Collaboration.  Waist circumference thresholds provide an accurate and widely applicable method for the discrimination of diabetes.  Diabetes Care. 2007;30(12):3116-3118. doi:10.2337/dc07-1455PubMedGoogle ScholarCrossref
194.
Razak  F, Anand  S, Vuksan  V,  et al; SHARE Investigators.  Ethnic differences in the relationships between obesity and glucose-metabolic abnormalities: a cross-sectional population-based study.  Int J Obes (Lond). 2005;29(6):656-667. doi:10.1038/sj.ijo.0802937PubMedGoogle ScholarCrossref
195.
Razak  F, Anand  SS, Shannon  H,  et al.  Defining obesity cut points in a multiethnic population.  Circulation. 2007;115(16):2111-2118. doi:10.1161/CIRCULATIONAHA.106.635011PubMedGoogle ScholarCrossref
196.
Sánchez-Castillo  CP, Velázquez-Monroy  O, Berber  A, Lara-Esqueda  A, Tapia-Conyer  R, James  WP; Encuesta Nacional de Salud (ENSA) 2000 Working Group.  Anthropometric cutoff points for predicting chronic diseases in the Mexican National Health Survey 2000.  Obes Res. 2003;11(3):442-451. doi:10.1038/oby.2003.60PubMedGoogle ScholarCrossref
197.
Stevens  J, Juhaeri, Cai  J, Jones  DW.  The effect of decision rules on the choice of a body mass index cutoff for obesity: examples from African American and white women.  Am J Clin Nutr. 2002;75(6):986-992. doi:10.1093/ajcn/75.6.986PubMedGoogle ScholarCrossref
198.
Stommel  M, Schoenborn  CA.  Variations in BMI and prevalence of health risks in diverse racial and ethnic populations.  Obesity (Silver Spring). 2010;18(9):1821-1826. doi:10.1038/oby.2009.472PubMedGoogle ScholarCrossref
199.
WHO Expert Consultation.  Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies.  Lancet. 2004;363(9403):157-163. doi:10.1016/S0140-6736(03)15268-3PubMedGoogle ScholarCrossref
200.
Wen  CP, David Cheng  TY, Tsai  SP,  et al.  Are Asians at greater mortality risks for being overweight than Caucasians? redefining obesity for Asians.  Public Health Nutr. 2009;12(4):497-506. doi:10.1017/S1368980008002802PubMedGoogle ScholarCrossref
201.
Jackson  CL, Wang  NY, Yeh  HC, Szklo  M, Dray-Spira  R, Brancati  FL.  Body-mass index and mortality risk in U.S. blacks compared to whites.  Obesity (Silver Spring). 2014;22(3):842-851. doi:10.1002/oby.20471PubMedGoogle ScholarCrossref
202.
Adams  KF, Schatzkin  A, Harris  TB,  et al.  Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old.  N Engl J Med. 2006;355(8):763-778. doi:10.1056/NEJMoa055643PubMedGoogle ScholarCrossref
203.
Whitlock  G, Lewington  S, Sherliker  P,  et al; Prospective Studies Collaboration.  Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies.  Lancet. 2009;373(9669):1083-1096. doi:10.1016/S0140-6736(09)60318-4PubMedGoogle ScholarCrossref
204.
Danaei  G, Ding  EL, Mozaffarian  D,  et al.  The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors.  PLoS Med. 2009;6(4):e1000058. doi:10.1371/journal.pmed.1000058PubMedGoogle ScholarCrossref
205.
Peeters  A, Barendregt  JJ, Willekens  F, Mackenbach  JP, Al Mamun  A, Bonneux  L; Netherlands Epidemiology and Demography Compression of Morbidity Research Group.  Obesity in adulthood and its consequences for life expectancy: a life-table analysis.  Ann Intern Med. 2003;138(1):24-32. doi:10.7326/0003-4819-138-1-200301070-00008PubMedGoogle ScholarCrossref
206.
Berrington de Gonzalez  A, Hartge  P, Cerhan  JR,  et al.  Body-mass index and mortality among 1.46 million white adults.  N Engl J Med. 2010;363(23):2211-2219. doi:10.1056/NEJMoa1000367PubMedGoogle ScholarCrossref
207.
Di Angelantonio  E, Bhupathiraju  ShN, Wormser  D,  et al; Global BMI Mortality Collaboration.  Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents.  Lancet. 2016;388(10046):776-786. doi:10.1016/S0140-6736(16)30175-1PubMedGoogle ScholarCrossref
208.
Flegal  KM, Williamson  DF, Pamuk  ER, Rosenberg  HM.  Estimating deaths attributable to obesity in the United States.  Am J Public Health. 2004;94(9):1486-1489. doi:10.2105/AJPH.94.9.1486PubMedGoogle ScholarCrossref
209.
Calle  EE, Thun  MJ, Petrelli  JM, Rodriguez  C, Heath  CW  Jr.  Body-mass index and mortality in a prospective cohort of U.S. adults.  N Engl J Med. 1999;341(15):1097-1105. doi:10.1056/NEJM199910073411501PubMedGoogle ScholarCrossref
210.
Lenz  M, Richter  T, Mühlhauser  I.  The morbidity and mortality associated with overweight and obesity in adulthood: a systematic review.  Dtsch Arztebl Int. 2009;106(40):641-648.PubMedGoogle Scholar
211.
Flegal  KM, Kit  BK, Orpana  H, Graubard  BI.  Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis.  JAMA. 2013;309(1):71-82. doi:10.1001/jama.2012.113905PubMedGoogle ScholarCrossref
212.
Yu  E, Ley  SH, Manson  JE,  et al.  Weight history and all-cause and cause-specific mortality in three prospective cohort studies.  Ann Intern Med. 2017;166(9):613-620. doi:10.7326/M16-1390PubMedGoogle ScholarCrossref
213.
Flegal  KM, Ioannidis  JPA.  A meta-analysis but not a systematic review: an evaluation of the Global BMI Mortality Collaboration.  J Clin Epidemiol. 2017;88:21-29. doi:10.1016/j.jclinepi.2017.04.007PubMedGoogle ScholarCrossref
214.
Padwal  RS, Pajewski  NM, Allison  DB, Sharma  AM.  Using the Edmonton obesity staging system to predict mortality in a population-representative cohort of people with overweight and obesity.  CMAJ. 2011;183(14):E1059-E1066. doi:10.1503/cmaj.110387PubMedGoogle ScholarCrossref
215.
Sharma  AM, Campbell-Scherer  DL.  Redefining obesity: beyond the numbers.  Obesity (Silver Spring). 2017;25(4):660-661. doi:10.1002/oby.21801PubMedGoogle ScholarCrossref
US Preventive Services Task Force
Evidence Report
September 18, 2018

Behavioral and Pharmacotherapy Weight Loss Interventions to Prevent Obesity-Related Morbidity and Mortality in Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force

Author Affiliations
  • 1Kaiser Permanente Research Affiliates Evidence-based Practice Center, Center for Health Research, Kaiser Permanente, Portland, Oregon
JAMA. 2018;320(11):1172-1191. doi:10.1001/jama.2018.7777
Abstract

Importance  Overweight and obesity have been associated with adverse health effects.

Objective  To systematically review evidence on benefits and harms of behavioral and pharmacotherapy weight loss and weight loss maintenance interventions in adults to inform the US Preventive Services Task Force.

Data Sources  MEDLINE, PubMed Publisher-Supplied Records, PsycINFO, and the Cochrane Central Register of Controlled Trials for studies published through June 6, 2017; ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform for ongoing trials through August 2017; and ongoing surveillance in targeted publications through March 23, 2018. Studies from previous reviews were reevaluated for inclusion.

Study Selection  Randomized clinical trials (RCTs) focusing on weight loss or weight loss maintenance in adults.

Data Extraction and Synthesis  Data were abstracted by one reviewer and confirmed by another. Random-effects meta-analyses were conducted for weight loss outcomes in behavior-based interventions.

Main Outcomes and Measures  Health outcomes, weight loss or weight loss maintenance, reduction in obesity-related conditions, and adverse events.

Results  A total of 122 RCTs (N = 62 533) and 2 observational studies (N = 209 993) were identified. Compared with controls, participants in behavior-based interventions had greater mean weight loss at 12 to 18 months (−2.39 kg [95% CI, −2.86 to −1.93]; 67 studies [n = 22065]) and less weight regain (−1.59 kg [95% CI, −2.38 to −0.79]; 8 studies [n = 1408]). Studies of medication-based weight loss and maintenance interventions also reported greater weight loss or less weight regain in intervention compared with placebo groups at 12 to 18 months (range, −0.6 to −5.8 kg; no meta-analysis). Participants with prediabetes in weight loss interventions had a lower risk of developing diabetes compared with controls (relative risk, 0.67 [95% CI, 0.51 to 0.89]). There was no evidence of other benefits, but most health outcomes such as mortality, cardiovascular disease, and cancer were infrequently reported. Small improvements in quality of life in some medication trials were noted but were of unclear clinical significance. There was no evidence of harm such as cardiovascular disease from behavior-based interventions; higher rates of adverse events were associated with higher dropout rates in medication groups than in placebo groups.

Conclusions and Relevance  Behavior-based weight loss interventions with or without weight loss medications were associated with more weight loss and a lower risk of developing diabetes than control conditions. Weight loss medications, but not behavior-based interventions, were associated with higher rates of harms. Long-term weight and health outcomes data, as well as data on important subgroups, were limited.

Introduction

Between 2011 and 2014, 73.0% of US men and 66.2% of US women were overweight or had obesity,1 which are associated with multiple negative health effects.2-7 Although measuring weight at periodic health examinations is now part of standard clinical practice in most medical settings, rates of consistently and systematically documenting obesity and tracking weight over time are low,8,9 as are rates of primary care–delivered, weight-related counseling.8,10-14

In 2012, the US Preventive Services Task Force (USPSTF) recommended that clinicians screen all adults for obesity and offer or refer patients with body mass index (BMI) of 30 or higher (calculated as weight in kilograms divided by height in meters squared) to intensive, multicomponent behavioral interventions (B recommendation).15 This review was undertaken to provide current evidence to the USPTF for an updated recommendation on this topic.

Methods
Scope of Review

This review addressed 3 key questions (KQs) (Figure 1). Full methodological details (including study selection, excluded studies, and description of data analyses) are publicly available in the full evidence report at https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/obesity-in-adults-interventions1.

Data Sources and Searches

In addition to considering all studies from the previous review on this topic,17 a comprehensive search of MEDLINE, PubMed Publisher-Supplied Records, PsycINFO, and the Cochrane Central Register of Controlled Trials was performed. The search was between January 1, 2010, and June 6, 2017, building on the most recent full search for this topic. We worked with a research librarian to develop the search strategy, which was peer-reviewed by a second research librarian (eMethods in the Supplement). All searches were limited to articles published in English.

In addition to these database searches, ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform (http://www.who.int/ictrp) were searched for ongoing trials through August 2017. The reference lists of previously published reviews, meta-analyses, and primary studies were also examined to identify any potential studies for inclusion. The US Food and Drug Administration (FDA) review documents for each included medication were examined to identify any additional studies not published in the primary literature. The searches were supplemented with suggestions from experts and articles identified through news and table-of-contents alerts such as those produced by the USPSTF Scientific Resource Center LitWatch activity.16 Since June 2017, ongoing surveillance through article alerts and targeted searches of journals with a high impact factor and journals relevant to the topic was conducted to identify major studies published in the interim that may affect the conclusions or understanding of the evidence and therefore the related USPSTF recommendation. The last surveillance was conducted on March 23, 2018, and identified no additional studies.

Study Selection

Two reviewers independently reviewed all identified titles and abstracts and relevant full-text articles against a priori inclusion and exclusion criteria for design, population, intervention, and outcomes (eMethods in the Supplement). Disagreements in the abstract and full-text review were resolved by discussion. Eligible studies included fair- and good-quality randomized clinical trials (RCTs) of primary care–relevant weight loss or weight loss maintenance interventions (behavioral counseling [either alone or part of a multicomponent intervention], training of clinicians, and pharmacologic interventions approved by the FDA as first-line long-term weight loss or weight loss maintenance medications [orlistat, lorcaserin, naltrexone-bupropion, phentermine-topiramate, and liraglutide]). Weight outcomes at least 12 months after intervention start were required. For harms, RCTs, systematic reviews, and large cohort, case-control, or event-monitoring studies were allowed; there was no minimum follow-up.

Studies were required to focus on weight loss in adults 18 years or older who were candidates for weight loss or weight loss maintenance interventions and selected based on an above-normal BMI (eg, ≥25) or other weight-related measure (eg, waist circumference). In cases in which lower BMI thresholds were used for eligibility (eg, ≥23) or in which participants were selected based on other cardiovascular risk factors without weight-related eligibility criteria and the focus of the intervention was clearly weight loss, the distribution of the mean BMI at baseline was examined to evaluate potential inclusion. Studies were included in which 100% of the sample had a BMI above 23, 95% of the sample had a BMI above 24, or 90% of the sample had a BMI above 25. Individuals may have had additional risk cardiovascular risk factors (eg, hypertension); however, studies of adults with a chronic disease for which weight loss or weight loss maintenance is part of disease management (eg, known cardiovascular disease, diabetes mellitus) were excluded. In addition, studies in adults with known chronic diseases not generalizable to the primary care population (eg, eating disorders, chronic kidney disease) were excluded. Studies in adults with secondary causes of obesity, in pregnant women, and in institutionalized adults were excluded.

For studies of behavior-based interventions, it was required that controls have no intervention (eg, wait list, usual care, assessment only), minimal intervention (eg, usual care limited to quarterly counseling sessions or generic brochures), or be attention controls (eg, similar format and intensity but different content). For studies of pharmacologic interventions, only placebo-controlled studies in which participants all received the same behavior-based interventions were included. Studies had to report a health outcome (mortality, morbidity, depression, health-related quality of life, and disability), intermediate outcomes (weight measurements, measures of total and central adiposity, incidence or prevalence of obesity-related conditions, and proportion of individuals taking medication for obesity-related conditions), or adverse events (treatment-related harms and discontinuation of medication because of adverse effects at any point during intervention).

Data Extraction and Quality Assessment

Two investigators independently assessed the methodological quality of each study using predefined study design–specific criteria developed by the USPSTF (eMethods in the Supplement).16 Disagreements in quality were resolved by discussion. Each study was given a final quality rating of good, fair, or poor. Studies were excluded as poor quality if there were several important major risks of biases, including high attrition (generally >40%) or differential attrition between groups (generally >20%), lack of baseline comparability between groups without adjustment, methods for ascertainment of weight outcomes that were unclear or that differed between groups, or issues in trial conduct, analysis, or reporting of results that could invalidate results. Because this review was an update, critical appraisal of the original studies was not repeated, but the quality rating was confirmed during data abstraction. One reviewer extracted key elements and a second reviewer checked the data for accuracy. For each study, general characteristics of the study, clinical and demographic characteristics of the sample and setting, analytic methods, and results were extracted. This included both absolute weight change and percentage of participants who achieved 5% loss of their baseline weight, which is considered by the FDA to be clinically meaningful and a primary weight loss outcome.18

Data Synthesis and Analysis

Summary tables of study, population, and intervention characteristics, as well as outcomes for each KQ, were created according to the focus of the intervention (ie, behavior-based weight loss interventions, behavior-based weight loss maintenance interventions, medication-based weight loss interventions, and medication-based weight loss maintenance interventions). The data on health outcomes (KQ1) and adverse events (KQ3) did not allow for quantitative pooling because of the limited number of contributing studies and the variability in outcomes measured.

Details of the data analysis methods are included in the full report. For weight outcomes in behavior-based interventions, random-effects meta-analyses were conducted using the method of DerSimonian and Laird to calculate the pooled differences in mean changes (for continuous data) and a pooled risk ratio (for binary data) for weight outcomes (KQ2).19 Statistical heterogeneity among the pooled studies was examined using standard χ2 tests, and the proportion of total variability in point estimates was estimated using the I2 statistic.20 Funnel plots were generated to evaluate small-study effects (a possible indication of publication bias) and the Egger21 or Peters22 tests were used to assess the statistical significance of imbalance in study size as well as findings that suggested a pattern. Data from medication trials could not be pooled because of the small number of studies for each medication or variability in reporting between trials.

A series of meta-regression analyses were conducted to investigate whether variability among the results was associated with any prespecified study, population, or intervention characteristics. Specifically, we examined study quality (good vs fair), percentage of participants retained at 12 to 18 months, link to primary care (conducted in or recruited from primary care), whether the trial was set in the United States, risk status of the sample (increased cardiovascular risk [eg, hypertension], subclinical cardiovascular risk [eg, impaired fasting glucose], or cancer risk vs low risk or unselected), participant selection approach (self-selected vs directly recruited), and several intervention characteristics (number of sessions and contacts in the first year; intervention duration; main mode of intervention delivery; presence of any group, individual, or technology-based components; and use of self-monitoring).

Quantitative analyses were conducted using Stata version 13.1 (Stata Corp LP). All significance testing was 2-sided, and results were considered statistically significant if the P value was .05 or less.

Results

A total of 15 483 titles and abstracts and 572 articles were reviewed to determine if they met inclusion criteria, and 124 trials reported in 238 publications, including 122 RCTs (N = 62 533) and 2 observational studies (N = 209 993), were included (Figure 2; eTables 1 and 2 in the Supplement).23-147 Forty-one studies were carried over from the prior review and were synthesized with 83 newly identified studies. Eighty-nine trials examined the effectiveness of behavior-based weight loss and weight loss maintenance interventions,24,25,27,29,32,34-36,39-44,46,47,49,53,55,56,58,62-71,73,75,76,78-81,83-86,88-98,100,102-105,107-110,115-118,121,122,124-127,130-147 and 35 examined the effectiveness or harms of medication for weight loss and weight loss maintenance.23,26,28,30,31,33,37,38,45,48,50-52,54,57,59-61,72,74,77,82,87,99,101,106,111-114,119,120,123,128,129

Within the 89 behavior-based weight loss and weight loss maintenance trials, 120 unique weight loss interventions were evaluated. Although interventions were highly variable, specific weight loss messages and behavior change techniques were consistent across the trials (eTable 3 in the Supplement). To better summarize the interventions, each intervention group was categorized according to the main mode of intervention delivery into the following groups: (1) group (41 groups in 28 trials) , (2) individual (37 groups in 33 trials), (3) mixed (18 groups in 16 trials), (4) technology-based (22 groups in 20 trials), and (5) print-based (2 groups in 1 trial). The comparison groups in these trials included (1) minimal intervention (44 trials), (2) usual care (25 trials), (3) no intervention (9 trials), (4) wait list (7 trials), and (5) attention control (4 trials). Medication-based weight loss and weight loss maintenance studies examined FDA-approved dosages of medications: liraglutide (1.8 mg or 3.0 mg daily), lorcaserin (20 mg [10 mg twice daily]), naltrexone and bupropion (32/360 mg [16/180 mg 3 times daily]), orlistat (prescription-strength dosage of 360 mg daily [120 mg 3 times daily] and over-the-counter dosage of 180 mg [60 mg 3 times daily]), and phentermine-topiramate (15/92 mg and 7.5/46 mg). Medication and placebo groups both received identical behavioral interventions.

Benefits for Health Outcomes

Key Question 1. Do primary care–relevant behavioral and/or pharmacotherapy weight loss and weight loss maintenance interventions lead to improved health outcomes among adults who are overweight or have obesity and are a candidate for weight loss interventions?

Health outcomes were infrequently reported in the behavior-based weight loss and maintenance trials (20 trials [n = 9910]). In 4 weight loss trials (n = 4442) reporting mortality, there were no significant differences between groups over 2 to 16 years.73,116,122,143,148-150 Two weight loss trials (n = 2666) reported on cardiovascular events, with neither trial finding significant differences between groups over 3 and 10 years.73,122,149,151 Health-related quality of life (QOL) was evaluated in 17 weight loss and maintenance trials (n = 7120), with 14 showing no differences between groups on any measure; in the 3 trials that noted statistically significant findings, the differences were only for some QOL components and were of unclear clinical significance (Table 1).29,46,47,56,62,65,73,76,89,92,96,102,110,126,127,132,140

Trials of medications for weight loss examined few health outcomes beyond QOL (10 trials [n = 13 145]).28,31,51,54,57,99,106,113,119,128 Although there was evidence of greater improvement on an obesity-specific QOL scale in participants randomized to receive medications for weight loss compared with placebo within most of the trials, the differences were small and of unclear clinical significance, especially given high dropout rates in medication trials (eTable 4 in the Supplement). None of the medication-based maintenance trials reported the effects of the interventions on health outcomes.

Benefits for Weight Control

Key Question 2. Do primary care–relevant behavioral and/or pharmacotherapy weight loss and weight loss maintenance interventions lead to weight loss, weight loss maintenance, or a reduction in the incidence or prevalence of obesity-related conditions among adults who are overweight or have obesity and are a candidate for weight loss interventions?

Participants who received behavior-based weight loss interventions generally lost more weight and had greater reductions in waist circumference than those in control conditions at up to 24 months of follow-up. Intervention participants had a pooled −2.4 kg (−5.3 lb) (95% CI, −2.8 to −1.9 kg; 67 trials [n = 22 065]; I2 = 90.0%) greater weight loss at 12 to 18 months (Figure 3). Mean absolute changes in weight ranged from −0.5 kg (−1.1 lb) to −9.3 kg (−20.5 lb) among intervention participants and from 1.4 kg (3.0 lb) to −5.6 (−12.3 lb) among control participants. In addition, intervention participants were more likely to achieve 5% weight loss from baseline compared with control participants (pooled risk ratio, 1.94 [95% CI, 1.70 to 2.22]; 38 trials [n = 12 231]; I2 = 67.2%), which translated into a number needed to treat of 8 (eFigure 1 in the Supplement). Heterogeneity in the interventions, confounded with differences in the populations, settings, and trial quality, made it difficult to identify which variables (ie, number of sessions, in-person vs remote sessions, group- vs individual-based) may be driving larger effects. Although weight outcomes were less well reported beyond 12 months (eFigure 2 in the Supplement), weight loss remained significantly greater in intervention compared with control conditions in interventions lasting up to 36 months. Participants who received behavior-based weight loss maintenance interventions generally maintained more of their weight loss compared with those in control conditions (pooled mean difference, −1.6 kg [−3.5 lb] [95% CI, −2.4 to −0.8 kg]; 8 trials [n = 1408]; I2 = 26.8%) in the intervention vs control groups (eFigure 3 in the Supplement).

In the 2 largest and longest good-quality trials (n = 1818), participants randomized to behavior-based weight loss interventions had a decreased probability of developing type 2 diabetes compared with control conditions, with an absolute risk reduction of approximately 14.5% in both trials over 3 to 9 years.73,122,159 Although 11 smaller and generally shorter-duration weight loss trials did not find significant differences between groups, when pooled with the larger trials, there was a significant reduction in risk of developing diabetes over 1 to 9 years (pooled risk ratio, 0.67 [95% CI, 0.51 to 0.89]; 9 trials [n = 3140]; I2 = 49.2%) (Figure 4). Across all 13 of these trials, almost all were limited to adults with impaired fasting glucose. Three large trials (n = 3916) noted benefits of behavior-based weight loss on hypertension and hyperlipidemia diagnosis, medication use, or both116,148,151; however, effects were not found in 5 smaller trials.43,66,102,105,144 Effects on the metabolic syndrome56,73,79,100,105 and cardiovascular disease risk score were mixed.24,56

Participants randomized to receive weight loss medications had more weight loss, were more likely to lose 5% of their weight, and experienced a greater decrease in waist circumference than those receiving placebo (Table 2; eFigure 4 in the Supplement). Participants who received medications to assist with weight loss maintenance generally maintained more of their weight loss and waist circumference decrease compared with those in control conditions. However, the results were limited by high dropout rates and relatively short follow-up duration in some trials. The most common intermediate outcome reported (4 studies [n = 9763]) was incident diabetes, and there was a decreased risk of developing diabetes over 1 to 4 years in participants given medications; however, these trials were similarly limited by high dropout rates. Other intermediate outcomes were sparsely reported and showed mixed results.

Harms of Interventions

Key Question 3. What are the adverse effects of primary care–relevant behavioral and/or pharmacotherapy weight loss and weight loss maintenance interventions in adults who are overweight or have obesity and are a candidate for weight loss interventions?

Rates of adverse events were infrequently reported in the behavior-based weight loss and weight loss maintenance trials (30 trials [n = 12 824]).25,27,29,35,36,47,49,55,62,64,66,71,73,78,80,92,96,103-105,110,121,125,127,137,138,140,142,145,147 In general, there were no serious harms related to the interventions and most trials noted no differences between groups in the rates of adverse events, including cardiovascular events. In the 3 trials large enough to examine differences in musculoskeletal issues between groups, results were mixed.25,73,105

Almost all medication trials reported adverse events. Weight loss medications were associated with more adverse events than placebo, which was associated with higher dropout rates for adverse events in the medication groups than in the placebo groups. However, serious adverse events were not generally more common in participants randomized to medications. There are multiple potential harms required by the FDA to be listed on weight loss medication labels, but these harms have not been well evaluated in the trials included in this review.

Discussion

The summary of evidence is shown in Table 3. Behavior-based weight loss interventions were associated with more weight loss, and behavior-based weight loss maintenance interventions were associated with less weight regain, than control conditions over 12 to 18 months. The degree of weight loss in the current review is slightly smaller but consistent in magnitude with the 2011 review on this topic. Although addressed in fewer trials, weight loss or weight loss maintenance interventions lasting up to 36 months reported significantly greater weight loss or weight loss maintenance in the intervention participants compared with control participants. Weight loss estimates were consistent and precise over time; however, pooled analyses showed considerable statistical heterogeneity, reflecting heterogeneity in intervention groups and differences in populations, settings, and designs. Using various modes of intervention delivery (group, individual, mixed, technology-based, and print-based), trials were generally designed to help participants achieve or maintain a 5% or greater weight loss through a combination of dietary changes and increased physical activity.

As in the previous review, behavior-based weight loss interventions were associated with a decreased risk of progressing from prediabetes to type 2 diabetes at up to 36 months of follow-up. Other intermediate- and longer-term health outcomes were infrequently reported, and in those studies reporting such outcomes, most were underpowered. Adverse events of behavior-based interventions were sparsely reported, but no serious harms were related to interventions.

FDA-approved weight loss medications (liraglutide, lorcaserin, naltrexone and bupropion, orlistat, and phentermine-topiramate) were associated with more weight loss and weight loss maintenance and a decreased incidence of progression to type 2 diabetes compared with placebo at up to 48 months of follow-up. Although weight loss medication studies reported improvements on obesity-specific QOL measures, comparative scores were often missing, and differences were small and of unclear significance. Although rates of serious adverse events were low and generally similar between groups, participants randomized to medications experienced more adverse events, resulting in higher withdrawal rates, compared with those in the placebo groups. The medication evidence was limited by the small number of trials for each medication, methodological variability, missing data regarding dispersion, poor follow-up, and limited applicability (given that participants had to meet narrowly defined inclusion criteria).

Intentional weight loss among individuals who have obesity may lead to a small decrease in mortality risk, although the observational literature is conflicting, especially for men and for individuals without obesity-related comorbidities.161-163 The literature is limited on the effects of intentional weight loss on other outcomes (eg, cardiovascular disease and cancer).164,165 In the context of sparse direct trial evidence on health outcomes, observational evidence does not suggest that intentional weight loss among those who are overweight, especially those with BMIs less than 28, is associated with decreased mortality.166-170 Individuals who undergo bariatric surgery experience significant improvements in diabetes,171,172 sleep apnea,172,173 QOL,174 depression,175 and pain and physical function,176 although data on long-term health outcomes such as mortality, cardiovascular disease, and cancer are still lacking. The amount of weight loss that occurs with weight loss surgery, however, is much greater than what can usually be achieved with behavior-based weight loss interventions and there are metabolic changes that occur after surgery, independent of weight loss, that could contribute to improvements in health outcomes after surgery.177

Limitations

This review had several limitations. First, tertiary prevention studies were excluded if they specifically focused on persons with conditions for which weight loss is considered as part of disease management (eg, diabetes, polycystic ovarian syndrome), and studies of surgery or nonsurgical devices were excluded because these studies were considered outside the scope of primary care–relevant interventions.

Second, the review did not include continuous intermediate outcomes (eg, continuous measures of blood pressure, cholesterol levels, glucose levels); rather, it focused on specific diseases or risk factors (eg, diabetes, hypertension).

Third, data were pooled across a body of literature that was heterogeneous with respect to demographic characteristics, interventions, and settings. The considerable statistical heterogeneity (I2 > 85%) indicates that the pooled results should be interpreted with caution and confidence interval estimates should be primarily used to understand the magnitude of effects. Across the trials, there were large standard deviations relative to the mean change, suggesting that some adults showed fairly large reductions in weight, some showed no or modest changes, and some gained weight.

Fourth, given the heterogeneity among intervention groups and differences in populations and settings, it was not possible to identify if particular intervention variables (ie, number of sessions, in-person vs remote, group- vs individual-based) were more effective. To fully address this would require examination of comparative effectiveness studies (which were specifically excluded in this review). However, the consistency seen across specific interventions and across various subgroups (albeit with a wide range in effect sizes) suggests that benefits are likely dependent on individual, social, and environmental factors rather than specific intervention characteristics.

Fifth, although weight loss interventions (both behavior-based and medication-based) were associated with short-term weight loss, there remains a paucity of data on what happens long term. Only a limited number of trials reported follow-up beyond 24 months, and in most of those, ongoing weight loss or maintenance sessions, medication use, or both occurred throughout follow-up. Survey data suggest that a minority of individuals are successful at long-term weight loss maintenance.178,179

Sixth, there was also a paucity of data on long-term health outcomes. While it appears that weight loss interventions can reduce diabetes incidence, larger trials with longer-term follow-up are required to understand the full benefits of these interventions on health outcomes and whether those effects are long-lasting. Additionally, there were few data on patient-centered outcomes such as QOL and psychological outcomes such as weight stigmatization,180 eating disorders,181-183 and weight fluctuation (“yo-yo” dieting).184-186

Seventh, many of the trials, especially those examining weight loss medications, may have been biased by high attrition; nearly half of the studies had attrition of 35% of more. Studies with high attrition were included because early discontinuation was likely a result of the intervention (ie, adverse effects, lack of weight loss, time commitments) and not necessarily design flaws. Although it was required that trials use multiple imputation methods or procedures for accounting for missing data, imputing such large amounts of data might have led to biased comparisons in unknown directions.

Eighth, almost all studies relied on BMI to identify their populations. Although long-term health risks increase with increasing BMI, the precise BMI at which increased risk occurs—and the strength of the relationship—appears to vary by race/ethnicity, age, and personal or lifestyle factors.187-213 Participants generally fell into the overweight and obese categories, and results were not reliably stratified by BMI. It was therefore not possible to make conclusions about whether the health effects of weight loss interventions varied according to baseline BMI category, age, and race/ethnicity. Future trials should examine the effects of weight loss interventions in diverse populations stratified by BMI as well as emerging classification systems, which include assessment of physical, mental, and functional health to characterize obesity severity.214,215

Conclusions

Behavior-based weight loss interventions with or without weight loss medications were associated with more weight loss and a lower risk of developing diabetes than control conditions. Weight loss medications, but not behavior-based interventions, were associated with higher rates of harms. Long-term weight and health outcomes data, as well as data on important subgroups, were limited.

Back to top
Article Information

Accepted for Publication: May 18, 2018.

Corresponding Author: Erin S. LeBlanc, MD, MPH, Kaiser Permanente Research Affiliates Evidence-based Practice Center, Center for Health Research, Kaiser Permanente Northwest, 3800 N Interstate Ave, Portland, OR 97227 (Erin.S.LeBlanc@kpchr.org).

Author Contributions: Dr Leblanc had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: LeBlanc, Patnode, Webber, O’Connor.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: LeBlanc, Webber, Redmond, Rushkin.

Critical revision of the manuscript for important intellectual content: LeBlanc, Patnode, Webber, O’Connor.

Statistical analysis: Patnode, Redmond, O’Connor.

Obtained funding: O’Connor.

Administrative, technical, or material support: Patnode, Webber, Rushkin.

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Dr LeBlanc reported that her institution received a grant from Merck Inc for a project (unrelated to the topic of this article) on which she served as principal investigator. No other disclosures were reported.

Funding/Support: This research was funded under contract HHSA290201200015I, Task Order 6, from the Agency for Healthcare Research and Quality (AHRQ), US Department of Health and Human Services, under a contract to support the USPSTF.

Role of the Funder/Sponsor: Investigators worked with USPSTF members and AHRQ staff to develop the scope, analytic framework, and key questions for this review. AHRQ had no role in study selection, quality assessment, or synthesis. AHRQ staff provided project oversight, reviewed the report to ensure that the analysis met methodological standards, and distributed the draft for peer review. Otherwise, AHRQ had no role in the conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript findings. The opinions expressed in this document are those of the authors and do not reflect the official position of AHRQ or the US Department of Health and Human Services.

Additional Contributions: We gratefully acknowledge the following individuals for their contributions to this project: Smyth Lai, MLS, and Katherine Essick, BS (Kaiser Permanente Center for Health Research); Iris Mabry-Hernandez, MD, MPH (AHRQ); and current and former members of the US Preventive Services Task Force who contributed to topic deliberations. USPSTF members, peer reviewers, and federal partner reviewers did not receive financial compensation for their contributions.

Additional Information: A draft version of this evidence report underwent external peer review from 7 content experts (George A. Bray, MD, Louisiana State University; Stephanie Fitzpatrick, PhD, Kaiser Permanente; Katherine Flegal, PhD, Stanford University; James O. Hill, PhD, University of Colorado; F. Xavier Pi-Sunyer, MD, Columbia University; Nancy E. Sherwood, PhD, University of Minnesota; Thomas A. Wadden, PhD, University of Pennsylvania) and 4 federal partners (Centers for Disease Control and Prevention, Department of Veterans Affairs, National Cancer Institute, and National Institutes of Health). Comments from reviewers were presented to the USPSTF during its deliberation of the evidence and were considered in preparing the final evidence review.

Editorial Disclaimer: This evidence report is presented as a document in support of the accompanying USPSTF Recommendation Statement. It did not undergo additional peer review after submission to JAMA.

References
1.
National Center for Health Statistics. Health, United States, Report 2016: With Chartbook on Long-term Trends in Health. Centers for Disease Control and Prevention website. https://www.cdc.gov/nchs/data/hus/hus16.pdf. 2017. Accessed May 23, 2017.
2.
Bogers  RP, Bemelmans  WJ, Hoogenveen  RT,  et al; BMI-CHD Collaboration Investigators.  Association of overweight with increased risk of coronary heart disease partly independent of blood pressure and cholesterol levels: a meta-analysis of 21 cohort studies including more than 300 000 persons.  Arch Intern Med. 2007;167(16):1720-1728. doi:10.1001/archinte.167.16.1720PubMedGoogle ScholarCrossref
3.
Colditz  GA, Willett  WC, Rotnitzky  A, Manson  JE.  Weight gain as a risk factor for clinical diabetes mellitus in women.  Ann Intern Med. 1995;122(7):481-486. doi:10.7326/0003-4819-122-7-199504010-00001PubMedGoogle ScholarCrossref
4.
Guh  DP, Zhang  W, Bansback  N, Amarsi  Z, Birmingham  CL, Anis  AH.  The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis.  BMC Public Health. 2009;9:88. doi:10.1186/1471-2458-9-88PubMedGoogle ScholarCrossref
5.
Bhaskaran  K, Douglas  I, Forbes  H, dos-Santos-Silva  I, Leon  DA, Smeeth  L.  Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults.  Lancet. 2014;384(9945):755-765. doi:10.1016/S0140-6736(14)60892-8PubMedGoogle ScholarCrossref
6.
Kyrgiou  M, Kalliala  I, Markozannes  G,  et al.  Adiposity and cancer at major anatomical sites: umbrella review of the literature.  BMJ. 2017;356:j477. doi:10.1136/bmj.j477PubMedGoogle ScholarCrossref
7.
Afshin  A, Forouzanfar  MH, Reitsma  MB,  et al; GBD 2015 Obesity Collaborators.  Health effects of overweight and obesity in 195 countries over 25 years.  N Engl J Med. 2017;377(1):13-27. doi:10.1056/NEJMoa1614362PubMedGoogle ScholarCrossref
8.
Smith  AW, Borowski  LA, Liu  B,  et al.  U.S. primary care physicians’ diet-, physical activity-, and weight-related care of adult patients.  Am J Prev Med. 2011;41(1):33-42. doi:10.1016/j.amepre.2011.03.017PubMedGoogle ScholarCrossref
9.
Steeves  JA, Liu  B, Willis  G, Lee  R, Smith  AW.  Physicians’ personal beliefs about weight-related care and their associations with care delivery: the U.S. National Survey of Energy Balance Related Care Among Primary Care Physicians.  Obes Res Clin Pract. 2015;9(3):243-255. doi:10.1016/j.orcp.2014.08.002PubMedGoogle ScholarCrossref
10.
Kraschnewski  JL, Sciamanna  CN, Stuckey  HL,  et al.  A silent response to the obesity epidemic: decline in US physician weight counseling.  Med Care. 2013;51(2):186-192. doi:10.1097/MLR.0b013e3182726c33PubMedGoogle ScholarCrossref
11.
Ma  J, Xiao  L, Yank  V.  Variations between obese Latinos and whites in weight-related counseling during preventive clinical visits in the United States.  Obesity (Silver Spring). 2013;21(8):1734-1741. doi:10.1002/oby.20285PubMedGoogle ScholarCrossref
12.
Ma  J, Xiao  L, Stafford  RS.  Underdiagnosis of obesity in adults in US outpatient settings.  Arch Intern Med. 2009;169(3):313-314. doi:10.1001/archinternmed.2008.582PubMedGoogle ScholarCrossref
13.
Simkin-Silverman  LR, Gleason  KA, King  WC,  et al.  Predictors of weight control advice in primary care practices: patient health and psychosocial characteristics.  Prev Med. 2005;40(1):71-82. doi:10.1016/j.ypmed.2004.05.012PubMedGoogle ScholarCrossref
14.
Stafford  RS, Farhat  JH, Misra  B, Schoenfeld  DA.  National patterns of physician activities related to obesity management.  Arch Fam Med. 2000;9(7):631-638. doi:10.1001/archfami.9.7.631PubMedGoogle ScholarCrossref
15.
Moyer  VA; U.S. Preventive Services Task Force.  Screening for and management of obesity in adults: U.S. Preventive Services Task Force recommendation statement.  Ann Intern Med. 2012;157(5):373-378.PubMedGoogle Scholar
16.
U.S. Preventive Services Task Force.  U.S. Preventive Services Task Force Procedure Manual. Rockville, MD: Agency for Healthcare Research and Quality; 2015.
17.
LeBlanc  E, O’Connor  E, Whitlock  EP, Patnode  C, Kapka  T.  U.S. Preventive Services Task Force Evidence Syntheses, Formerly Systematic Evidence Reviews. Rockville, MD: Agency for Healthcare Research and Quality; 2011. Evidence synthesis 89.
18.
 Guidance for Industry: Developing Products for Weight Management: Draft Guidance. US Food and Drug Administration website. https://www.fda.gov/downloads/Drugs/Guidances/ucm071612.pdf. Published February 2007. Accessed June 22, 2018.
19.
DerSimonian  R, Laird  N.  Meta-analysis in clinical trials.  Control Clin Trials. 1986;7(3):177-188. doi:10.1016/0197-2456(86)90046-2PubMedGoogle ScholarCrossref
20.
Higgins  JP, Thompson  SG.  Quantifying heterogeneity in a meta-analysis.  Stat Med. 2002;21(11):1539-1558. doi:10.1002/sim.1186PubMedGoogle ScholarCrossref
21.
Egger  M, Davey Smith  G, Schneider  M, Minder  C.  Bias in meta-analysis detected by a simple, graphical test.  BMJ. 1997;315(7109):629-634. doi:10.1136/bmj.315.7109.629PubMedGoogle ScholarCrossref
22.
Peters  JL, Sutton  AJ, Jones  DR, Abrams  KR, Rushton  L.  Comparison of two methods to detect publication bias in meta-analysis.  JAMA. 2006;295(6):676-680. doi:10.1001/jama.295.6.676PubMedGoogle ScholarCrossref
23.
Acharya  NV, Wilton  LV, Shakir  SA.  Safety profile of orlistat: results of a prescription-event monitoring study.  Int J Obes (Lond). 2006;30(11):1645-1652. doi:10.1038/sj.ijo.0803323PubMedGoogle ScholarCrossref
24.
Ackermann  RT, Finch  EA, Brizendine  E, Zhou  H, Marrero  DG.  Translating the diabetes prevention program into the community: the DEPLOY pilot study.  Am J Prev Med. 2008;35(4):357-363. doi:10.1016/j.amepre.2008.06.035PubMedGoogle ScholarCrossref
25.
Ackermann  RT, Liss  DT, Finch  EA,  et al.  A randomized comparative effectiveness trial for preventing type 2 diabetes.  Am J Public Health. 2015;105(11):2328-2334. doi:10.2105/AJPH.2015.302641PubMedGoogle ScholarCrossref
26.
Allison  DB, Gadde  KM, Garvey  WT,  et al.  Controlled-release phentermine/topiramate in severely obese adults: a randomized controlled trial (EQUIP).  Obesity (Silver Spring). 2012;20(2):330-342. doi:10.1038/oby.2011.330PubMedGoogle ScholarCrossref
27.
Anderson  AS, Craigie  AM, Caswell  S,  et al.  The impact of a bodyweight and physical activity intervention (BeWEL) initiated through a national colorectal cancer screening programme: randomised controlled trial.  BMJ. 2014;348:g1823. doi:10.1136/bmj.g1823PubMedGoogle ScholarCrossref
28.
Apovian  CM, Aronne  L, Rubino  D,  et al; COR-II Study Group.  A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II).  Obesity (Silver Spring). 2013;21(5):935-943. doi:10.1002/oby.20309PubMedGoogle ScholarCrossref
29.
Appel  LJ, Clark  JM, Yeh  HC,  et al.  Comparative effectiveness of weight-loss interventions in clinical practice.  N Engl J Med. 2011;365(21):1959-1968. doi:10.1056/NEJMoa1108660PubMedGoogle ScholarCrossref
30.
Aronne  LJ, Wadden  TA, Peterson  C, Winslow  D, Odeh  S, Gadde  KM.  Evaluation of phentermine and topiramate versus phentermine/topiramate extended-release in obese adults.  Obesity (Silver Spring). 2013;21(11):2163-2171. doi:10.1002/oby.20584PubMedGoogle ScholarCrossref
31.
Astrup  A, Carraro  R, Finer  N,  et al; NN8022-1807 Investigators.  Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide.  Int J Obes (Lond). 2012;36(6):843-854. doi:10.1038/ijo.2011.158PubMedGoogle ScholarCrossref
32.
Aveyard  P, Lewis  A, Tearne  S,  et al.  Screening and brief intervention for obesity in primary care: a parallel, two-arm, randomised trial.  Lancet. 2016;388(10059):2492-2500. doi:10.1016/S0140-6736(16)31893-1PubMedGoogle ScholarCrossref
33.
Bakris  G, Calhoun  D, Egan  B, Hellmann  C, Dolker  M, Kingma  I; Orlistat and Resistant Hypertension Investigators.  Orlistat improves blood pressure control in obese subjects with treated but inadequately controlled hypertension.  J Hypertens. 2002;20(11):2257-2267. doi:10.1097/00004872-200211000-00026PubMedGoogle ScholarCrossref
34.
Befort  CA, Klemp  JR, Sullivan  DK,  et al.  Weight loss maintenance strategies among rural breast cancer survivors: the rural women connecting for better health trial.  Obesity (Silver Spring). 2016;24(10):2070-2077. doi:10.1002/oby.21625PubMedGoogle ScholarCrossref
35.
Bennett  GG, Warner  ET, Glasgow  RE,  et al; Be Fit, Be Well Study Investigators.  Obesity treatment for socioeconomically disadvantaged patients in primary care practice.  Arch Intern Med. 2012;172(7):565-574. doi:10.1001/archinternmed.2012.1PubMedGoogle ScholarCrossref
36.
Bhopal  RS, Douglas  A, Wallia  S,  et al.  Effect of a lifestyle intervention on weight change in South Asian individuals in the UK at high risk of type 2 diabetes: a family-cluster randomised controlled trial.  Lancet Diabetes Endocrinol. 2014;2(3):218-227. doi:10.1016/S2213-8587(13)70204-3PubMedGoogle ScholarCrossref
37.
Broom  I, Hughes  E, Dodson  P, Reckless  J.  The role of orlistat in the treatment of obese patients with mild to moderate hypercholesterolaemia: consequences for coronary risk.  Br J Cardiol. 2002;9(8):460-468.Google Scholar
38.
Broom  I, Wilding  J, Stott  P, Myers  N; UK Multimorbidity Study Group.  Randomised trial of the effect of orlistat on body weight and cardiovascular disease risk profile in obese patients: UK Multimorbidity Study.  Int J Clin Pract. 2002;56(7):494-499.PubMedGoogle Scholar
39.
Burke  V, Beilin  LJ, Cutt  HE, Mansour  J, Wilson  A, Mori  TA.  Effects of a lifestyle programme on ambulatory blood pressure and drug dosage in treated hypertensive patients: a randomized controlled trial.  J Hypertens. 2005;23(6):1241-1249. doi:10.1097/01.hjh.0000170388.61579.4fPubMedGoogle ScholarCrossref
40.
Cadmus-Bertram  L, Nelson  SH, Hartman  S, Patterson  RE, Parker  BA, Pierce  JP.  Randomized trial of a phone- and web-based weight loss program for women at elevated breast cancer risk: the HELP study.  J Behav Med. 2016;39(4):551-559. doi:10.1007/s10865-016-9735-9PubMedGoogle ScholarCrossref
41.
Chirinos  DA, Goldberg  RB, Llabre  MM,  et al.  Lifestyle modification and weight reduction among low-income patients with the metabolic syndrome: the CHARMS randomized controlled trial.  J Behav Med. 2016;39(3):483-492. doi:10.1007/s10865-016-9721-2PubMedGoogle ScholarCrossref
42.
Christian  JG, Byers  TE, Christian  KK,  et al.  A computer support program that helps clinicians provide patients with metabolic syndrome tailored counseling to promote weight loss.  J Am Diet Assoc. 2011;111(1):75-83. doi:10.1016/j.jada.2010.10.006PubMedGoogle ScholarCrossref
43.
Cohen  MD, D’Amico  FJ, Merenstein  JH.  Weight reduction in obese hypertensive patients.  Fam Med. 1991;23(1):25-28.PubMedGoogle Scholar
44.
Cussler  EC, Teixeira  PJ, Going  SB,  et al.  Maintenance of weight loss in overweight middle-aged women through the Internet.  Obesity (Silver Spring). 2008;16(5):1052-1060. doi:10.1038/oby.2008.19PubMedGoogle ScholarCrossref
45.
Davidson  MH, Hauptman  J, DiGirolamo  M,  et al.  Weight control and risk factor reduction in obese subjects treated for 2 years with orlistat: a randomized controlled trial.  JAMA. 1999;281(3):235-242. doi:10.1001/jama.281.3.235PubMedGoogle ScholarCrossref
46.
de Vos  BC, Runhaar  J, Bierma-Zeinstra  SM.  Effectiveness of a tailor-made weight loss intervention in primary care.  Eur J Nutr. 2014;53(1):95-104. doi:10.1007/s00394-013-0505-yPubMedGoogle ScholarCrossref
47.
Demark-Wahnefried  W, Jones  LW, Snyder  DC,  et al.  Daughters and Mothers Against Breast Cancer (DAMES): main outcomes of a randomized controlled trial of weight loss in overweight mothers with breast cancer and their overweight daughters.  Cancer. 2014;120(16):2522-2534. doi:10.1002/cncr.28761PubMedGoogle ScholarCrossref
48.
Derosa  G, Mugellini  A, Ciccarelli  L, Fogari  R.  Randomized, double-blind, placebo-controlled comparison of the action of orlistat, fluvastatin, or both on anthropometric measurements, blood pressure, and lipid profile in obese patients with hypercholesterolemia prescribed a standardized diet.  Clin Ther. 2003;25(4):1107-1122. doi:10.1016/S0149-2918(03)80070-XPubMedGoogle ScholarCrossref
49.
Eaton  CB, Hartman  SJ, Perzanowski  E,  et al.  A randomized clinical trial of a tailored lifestyle intervention for obese, sedentary, primary care patients.  Ann Fam Med. 2016;14(4):311-319. doi:10.1370/afm.1952PubMedGoogle ScholarCrossref
50.
Farr  OM, Upadhyay  J, Gavrieli  A,  et al.  Lorcaserin administration decreases activation of brain centers in response to food cues and these emotion- and salience-related changes correlate with weight loss effects: a 4-week-long randomized, placebo-controlled, double-blind clinical trial.  Diabetes. 2016;65(10):2943-2953. doi:10.2337/db16-0635PubMedGoogle ScholarCrossref
51.
Fidler  MC, Sanchez  M, Raether  B,  et al; BLOSSOM Clinical Trial Group.  A one-year randomized trial of lorcaserin for weight loss in obese and overweight adults: the BLOSSOM trial.  J Clin Endocrinol Metab. 2011;96(10):3067-3077. doi:10.1210/jc.2011-1256PubMedGoogle ScholarCrossref
52.
Finer  N, James  WP, Kopelman  PG, Lean  ME, Williams  G.  One-year treatment of obesity: a randomized, double-blind, placebo-controlled, multicentre study of orlistat, a gastrointestinal lipase inhibitor.  Int J Obes Relat Metab Disord. 2000;24(3):306-313. doi:10.1038/sj.ijo.0801128PubMedGoogle ScholarCrossref
53.
Fitzgibbon  ML, Stolley  MR, Schiffer  L, Sharp  LK, Singh  V, Dyer  A.  Obesity Reduction Black Intervention Trial (ORBIT): 18-month results.  Obesity (Silver Spring). 2010;18(12):2317-2325. doi:10.1038/oby.2010.47PubMedGoogle ScholarCrossref
54.
Gadde  KM, Allison  DB, Ryan  DH,  et al.  Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial  [published correction appears in Lancet. 2011;377(9776):1494].  Lancet. 2011;377(9774):1341-1352. doi:10.1016/S0140-6736(11)60205-5PubMedGoogle ScholarCrossref
55.
Godino  JG, Merchant  G, Norman  GJ,  et al.  Using social and mobile tools for weight loss in overweight and obese young adults (Project SMART): a 2 year, parallel-group, randomised, controlled trial.  Lancet Diabetes Endocrinol. 2016;4(9):747-755. doi:10.1016/S2213-8587(16)30105-XPubMedGoogle ScholarCrossref
56.
Greaves  C, Gillison  F, Stathi  A,  et al.  Waste the waist: a pilot randomised controlled trial of a primary care based intervention to support lifestyle change in people with high cardiovascular risk.  Int J Behav Nutr Phys Act. 2015;12:1. doi:10.1186/s12966-014-0159-zPubMedGoogle ScholarCrossref
57.
Greenway  FL, Fujioka  K, Plodkowski  RA,  et al; COR-I Study Group.  Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial  [published corrections appear in Lancet. 2010;376(9750):1392 and 2010;376(9741):594].  Lancet. 2010;376(9741):595-605. doi:10.1016/S0140-6736(10)60888-4PubMedGoogle ScholarCrossref
58.
Haapala  I, Barengo  NC, Biggs  S, Surakka  L, Manninen  P.  Weight loss by mobile phone: a 1-year effectiveness study.  Public Health Nutr. 2009;12(12):2382-2391. doi:10.1017/S1368980009005230PubMedGoogle ScholarCrossref
59.
Hauptman  J, Lucas  C, Boldrin  MN, Collins  H, Segal  KR.  Orlistat in the long-term treatment of obesity in primary care settings.  Arch Fam Med. 2000;9(2):160-167. doi:10.1001/archfami.9.2.160PubMedGoogle ScholarCrossref
60.
Hill  JO, Hauptman  J, Anderson  JW,  et al.  Orlistat, a lipase inhibitor, for weight maintenance after conventional dieting: a 1-y study.  Am J Clin Nutr. 1999;69(6):1108-1116. doi:10.1093/ajcn/69.6.1108PubMedGoogle ScholarCrossref
61.
Hong  JL, Meier  CR, Sandler  RS, Jick  SS, Stürmer  T.  Risk of colorectal cancer after initiation of orlistat: matched cohort study.  BMJ. 2013;347:f5039. doi:10.1136/bmj.f5039PubMedGoogle ScholarCrossref
62.
Hunt  K, Wyke  S, Gray  CM,  et al.  A gender-sensitised weight loss and healthy living programme for overweight and obese men delivered by Scottish Premier League football clubs (FFIT): a pragmatic randomised controlled trial.  Lancet. 2014;383(9924):1211-1221. doi:10.1016/S0140-6736(13)62420-4PubMedGoogle ScholarCrossref
63.
Huseinovic  E, Bertz  F, Leu Agelii  M, Hellebö Johansson  E, Winkvist  A, Brekke  HK.  Effectiveness of a weight loss intervention in postpartum women: results from a randomized controlled trial in primary health care.  Am J Clin Nutr. 2016;104(2):362-370. doi:10.3945/ajcn.116.135673PubMedGoogle ScholarCrossref
64.
Jakicic  JM, Otto  AD, Lang  W,  et al.  The effect of physical activity on 18-month weight change in overweight adults.  Obesity (Silver Spring). 2011;19(1):100-109. doi:10.1038/oby.2010.122PubMedGoogle ScholarCrossref
65.
Jansson  SP, Engfeldt  P, Magnuson  A, Pt  GL, Liljegren  G.  Interventions for lifestyle changes to promote weight reduction, a randomized controlled trial in primary health care.  BMC Res Notes. 2013;6:213. doi:10.1186/1756-0500-6-213PubMedGoogle ScholarCrossref
66.
Jebb  SA, Ahern  AL, Olson  AD,  et al.  Primary care referral to a commercial provider for weight loss treatment versus standard care: a randomised controlled trial.  Lancet. 2011;378(9801):1485-1492. doi:10.1016/S0140-6736(11)61344-5PubMedGoogle ScholarCrossref
67.
Jeffery  RW, Wing  RR, Thorson  C,  et al.  Strengthening behavioral interventions for weight loss: a randomized trial of food provision and monetary incentives.  J Consult Clin Psychol. 1993;61(6):1038-1045. doi:10.1037/0022-006X.61.6.1038PubMedGoogle ScholarCrossref
68.
Jolly  K, Lewis  A, Beach  J,  et al.  Comparison of range of commercial or primary care led weight reduction programmes with minimal intervention control for weight loss in obesity: Lighten Up randomised controlled trial.  BMJ. 2011;343:d6500. doi:10.1136/bmj.d6500PubMedGoogle ScholarCrossref
69.
Jones  DW, Miller  ME, Wofford  MR,  et al.  The effect of weight loss intervention on antihypertensive medication requirements in the Hypertension Optimal Treatment (HOT) study.  Am J Hypertens. 1999;12(12, pt 1-2):1175-1180. doi:10.1016/S0895-7061(99)00123-5PubMedGoogle ScholarCrossref
70.
Kanke  S, Kawai  T, Takasawa  N, Mashiyama  Y, Ishii  A, Kassai  R.  Interventions for body weight reduction in obese patients during short consultations: an open-label randomized controlled trial in the Japanese primary care setting.  Asia Pac Fam Med. 2015;14(1):5. doi:10.1186/s12930-015-0022-7PubMedGoogle ScholarCrossref
71.
Katula  JA, Vitolins  MZ, Rosenberger  EL,  et al.  One-year results of a community-based translation of the Diabetes Prevention Program: Healthy-Living Partnerships to Prevent Diabetes (HELP PD) Project  [published correction appears in Diabetes Care. 2012;35(2):455].  Diabetes Care. 2011;34(7):1451-1457. doi:10.2337/dc10-2115PubMedGoogle ScholarCrossref
72.
Kim  SH, Abbasi  F, Lamendola  C,  et al.  Benefits of liraglutide treatment in overweight and obese older individuals with prediabetes.  Diabetes Care. 2013;36(10):3276-3282. doi:10.2337/dc13-0354PubMedGoogle ScholarCrossref
73.
Knowler  WC, Barrett-Connor  E, Fowler  SE,  et al; Diabetes Prevention Program Research Group.  Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.  N Engl J Med. 2002;346(6):393-403. doi:10.1056/NEJMoa012512PubMedGoogle ScholarCrossref
74.
Krempf  M, Louvet  JP, Allanic  H, Miloradovich  T, Joubert  JM, Attali  JR.  Weight reduction and long-term maintenance after 18 months treatment with orlistat for obesity.  Int J Obes Relat Metab Disord. 2003;27(5):591-597. doi:10.1038/sj.ijo.0802281PubMedGoogle ScholarCrossref
75.
Kuller  LH, Pettee Gabriel  KK, Kinzel  LS,  et al.  The Women on the Move Through Activity and Nutrition (WOMAN) study: final 48-month results.  Obesity (Silver Spring). 2012;20(3):636-643. doi:10.1038/oby.2011.80PubMedGoogle ScholarCrossref
76.
Kulzer  B, Hermanns  N, Gorges  D, Schwarz  P, Haak  T.  Prevention of diabetes self-management program (PREDIAS): effects on weight, metabolic risk factors, and behavioral outcomes.  Diabetes Care. 2009;32(7):1143-1146. doi:10.2337/dc08-2141PubMedGoogle ScholarCrossref
77.
Lindgärde  F.  The effect of orlistat on body weight and coronary heart disease risk profile in obese patients: the Swedish Multimorbidity Study.  J Intern Med. 2000;248(3):245-254. doi:10.1046/j.1365-2796.2000.00720.xPubMedGoogle ScholarCrossref
78.
Little  P, Stuart  B, Hobbs  FR,  et al.  An internet-based intervention with brief nurse support to manage obesity in primary care (POWeR+): a pragmatic, parallel-group, randomised controlled trial.  Lancet Diabetes Endocrinol. 2016;4(10):821-828. doi:10.1016/S2213-8587(16)30099-7PubMedGoogle ScholarCrossref
79.
Luley  C, Blaik  A, Götz  A,  et al.  Weight loss by telemonitoring of nutrition and physical activity in patients with metabolic syndrome for 1 year.  J Am Coll Nutr. 2014;33(5):363-374. doi:10.1080/07315724.2013.875437PubMedGoogle ScholarCrossref
80.
Ma  J, Yank  V, Xiao  L,  et al.  Translating the Diabetes Prevention Program lifestyle intervention for weight loss into primary care: a randomized trial.  JAMA Intern Med. 2013;173(2):113-121. doi:10.1001/2013.jamainternmed.987PubMedGoogle ScholarCrossref
81.
Marrero  DG, Palmer  KN, Phillips  EO, Miller-Kovach  K, Foster  GD, Saha  CK.  Comparison of commercial and self-initiated weight loss programs in people with prediabetes: a randomized control trial.  Am J Public Health. 2016;106(5):949-956. doi:10.2105/AJPH.2015.303035PubMedGoogle ScholarCrossref
82.
Martin  CK, Redman  LM, Zhang  J,  et al.  Lorcaserin, a 5-HT(2C) receptor agonist, reduces body weight by decreasing energy intake without influencing energy expenditure.  J Clin Endocrinol Metab. 2011;96(3):837-845. doi:10.1210/jc.2010-1848PubMedGoogle ScholarCrossref
83.
Martin  PD, Dutton  GR, Rhode  PC, Horswell  RL, Ryan  DH, Brantley  PJ.  Weight loss maintenance following a primary care intervention for low-income minority women.  Obesity (Silver Spring). 2008;16(11):2462-2467. doi:10.1038/oby.2008.399PubMedGoogle ScholarCrossref
84.
Mitsui  T, Shimaoka  K, Tsuzuku  S, Kajioka  T, Sakakibara  H.  Gentle exercise of 40 minutes with dietary counseling is effective in treating metabolic syndrome.  Tohoku J Exp Med. 2008;215(4):355-361. doi:10.1620/tjem.215.355PubMedGoogle ScholarCrossref
85.
Moore  H, Summerbell  CD, Greenwood  DC,  et al.  Improving management of obesity in primary care: cluster randomised trial.  BMJ. 2003;327(7423):1085. doi:10.1136/bmj.327.7423.1085PubMedGoogle ScholarCrossref
86.
Morgan  PJ, Lubans  DR, Collins  CE, Warren  JM, Callister  R.  12-month outcomes and process evaluation of the SHED-IT RCT: an internet-based weight loss program targeting men.  Obesity (Silver Spring). 2011;19(1):142-151. doi:10.1038/oby.2010.119PubMedGoogle ScholarCrossref
87.
Muls  E, Kolanowski  J, Scheen  A, Van Gaal  L; ObelHyx Study Group.  The effects of orlistat on weight and on serum lipids in obese patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled, multicentre study.  Int J Obes Relat Metab Disord. 2001;25(11):1713-1721. doi:10.1038/sj.ijo.0801814PubMedGoogle ScholarCrossref
88.
Nakade  M, Aiba  N, Suda  N,  et al; SCOP Group.  Behavioral change during weight loss program and one-year follow-up: Saku Control Obesity Program (SCOP) in Japan.  Asia Pac J Clin Nutr. 2012;21(1):22-34.PubMedGoogle Scholar
89.
Nanchahal  K, Power  T, Holdsworth  E,  et al.  A pragmatic randomised controlled trial in primary care of the Camden Weight Loss (CAMWEL) programme.  BMJ Open. 2012;2(3):e000793. doi:10.1136/bmjopen-2011-000793PubMedGoogle ScholarCrossref
90.
Narayan  KM, Hoskin  M, Kozak  D,  et al.  Randomized clinical trial of lifestyle interventions in Pima Indians: a pilot study.  Diabet Med. 1998;15(1):66-72. doi:10.1002/(SICI)1096-9136(199801)15:1<66::AID-DIA515>3.0.CO;2-APubMedGoogle ScholarCrossref
91.
Nicklas  JM, Zera  CA, England  LJ,  et al.  A web-based lifestyle intervention for women with recent gestational diabetes mellitus: a randomized controlled trial.  Obstet Gynecol. 2014;124(3):563-570. doi:10.1097/AOG.0000000000000420PubMedGoogle ScholarCrossref
92.
Ockene  IS, Tellez  TL, Rosal  MC,  et al.  Outcomes of a Latino community-based intervention for the prevention of diabetes: the Lawrence Latino Diabetes Prevention Project.  Am J Public Health. 2012;102(2):336-342. doi:10.2105/AJPH.2011.300357PubMedGoogle ScholarCrossref
93.
Pacanowski  CR, Levitsky  DA.  Frequent self-weighing and visual feedback for weight loss in overweight adults.  J Obes. 2015;2015:763680. doi:10.1155/2015/763680PubMedGoogle ScholarCrossref
94.
Parikh  P, Simon  EP, Fei  K, Looker  H, Goytia  C, Horowitz  CR.  Results of a pilot diabetes prevention intervention in East Harlem, New York City: Project HEED.  Am J Public Health. 2010;100(suppl 1):S232-S239. doi:10.2105/AJPH.2009.170910PubMedGoogle ScholarCrossref
95.
Patrick  K, Calfas  KJ, Norman  GJ,  et al.  Outcomes of a 12-month web-based intervention for overweight and obese men.  Ann Behav Med. 2011;42(3):391-401. doi:10.1007/s12160-011-9296-7PubMedGoogle ScholarCrossref
96.
Pekkarinen  T, Kaukua  J, Mustajoki  P.  Long-term weight maintenance after a 17-week weight loss intervention with or without a one-year maintenance program: a randomized controlled trial.  J Obes. 2015;2015:651460. doi:10.1155/2015/651460PubMedGoogle ScholarCrossref
97.
Penn  L, White  M, Oldroyd  J, Walker  M, Alberti  KG, Mathers  JC.  Prevention of type 2 diabetes in adults with impaired glucose tolerance: the European Diabetes Prevention RCT in Newcastle upon Tyne, UK.  BMC Public Health. 2009;9:342. doi:10.1186/1471-2458-9-342PubMedGoogle ScholarCrossref
98.
Perri  MG, McAllister  DA, Gange  JJ, Jordan  RC, McAdoo  G, Nezu  AM.  Effects of four maintenance programs on the long-term management of obesity.  J Consult Clin Psychol. 1988;56(4):529-534. doi:10.1037/0022-006X.56.4.529PubMedGoogle ScholarCrossref
99.
Pi-Sunyer  X, Astrup  A, Fujioka  K,  et al; SCALE Obesity and Prediabetes NN8022-1839 Study Group.  A randomized, controlled trial of 3.0 mg of liraglutide in weight management.  N Engl J Med. 2015;373(1):11-22. doi:10.1056/NEJMoa1411892PubMedGoogle ScholarCrossref
100.
Puhkala  J, Kukkonen-Harjula  K, Mansikkamäki  K,  et al.  Lifestyle counseling to reduce body weight and cardiometabolic risk factors among truck and bus drivers—a randomized controlled trial.  Scand J Work Environ Health. 2015;41(1):54-64. doi:10.5271/sjweh.3463PubMedGoogle ScholarCrossref
101.
Richelsen  B, Tonstad  S, Rössner  S,  et al.  Effect of orlistat on weight regain and cardiovascular risk factors following a very-low-energy diet in abdominally obese patients: a 3-year randomized, placebo-controlled study.  Diabetes Care. 2007;30(1):27-32. doi:10.2337/dc06-0210PubMedGoogle ScholarCrossref
102.
Rock  CL, Flatt  SW, Byers  TE,  et al.  Results of the Exercise and Nutrition to Enhance Recovery and Good Health for You (ENERGY) trial: a behavioral weight loss intervention in overweight or obese breast cancer survivors.  J Clin Oncol. 2015;33(28):3169-3176. doi:10.1200/JCO.2015.61.1095PubMedGoogle ScholarCrossref
103.
Rock  CL, Pakiz  B, Flatt  SW, Quintana  EL.  Randomized trial of a multifaceted commercial weight loss program.  Obesity (Silver Spring). 2007;15(4):939-949. doi:10.1038/oby.2007.614PubMedGoogle ScholarCrossref
104.
Rosas  LG, Thiyagarajan  S, Goldstein  BA,  et al.  The effectiveness of two community-based weight loss strategies among obese, low-income US Latinos.  J Acad Nutr Diet. 2015;115(4):537-50. doi:10.1016/j.jand.2014.10.020PubMedGoogle ScholarCrossref
105.
Ross  R, Lam  M, Blair  SN,  et al.  Trial of prevention and reduction of obesity through active living in clinical settings: a randomized controlled trial.  Arch Intern Med. 2012;172(5):414-424. doi:10.1001/archinternmed.2011.1972PubMedGoogle ScholarCrossref
106.
Rössner  S, Sjöström  L, Noack  R, Meinders  AE, Noseda  G; European Orlistat Obesity Study Group.  Weight loss, weight maintenance, and improved cardiovascular risk factors after 2 years treatment with orlistat for obesity.  Obes Res. 2000;8(1):49-61. doi:10.1038/oby.2000.8PubMedGoogle ScholarCrossref
107.
Shapiro  JR, Koro  T, Doran  N,  et al.  Text4Diet: a randomized controlled study using text messaging for weight loss behaviors.  Prev Med. 2012;55(5):412-417. doi:10.1016/j.ypmed.2012.08.011PubMedGoogle ScholarCrossref
108.
Sherwood  NE, Crain  AL, Martinson  BC,  et al.  Enhancing long-term weight loss maintenance: 2 year results from the Keep It Off randomized controlled trial.  Prev Med. 2013;56(3-4):171-177. doi:10.1016/j.ypmed.2012.12.014PubMedGoogle ScholarCrossref
109.
Silva  MN, Vieira  PN, Coutinho  SR,  et al.  Using self-determination theory to promote physical activity and weight control: a randomized controlled trial in women.  J Behav Med. 2010;33(2):110-122. doi:10.1007/s10865-009-9239-yPubMedGoogle ScholarCrossref
110.
Simpson  SA, McNamara  R, Shaw  C,  et al.  A feasibility randomised controlled trial of a motivational interviewing–based intervention for weight loss maintenance in adults.  Health Technol Assess. 2015;19(50):1-378. doi:10.3310/hta19500PubMedGoogle ScholarCrossref
111.
Sjöström  L, Rissanen  A, Andersen  T,  et al; European Multicentre Orlistat Study Group.  Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients.  Lancet. 1998;352(9123):167-172. doi:10.1016/S0140-6736(97)11509-4PubMedGoogle ScholarCrossref
112.
Smith  SR, Stenlof  KS, Greenway  FL,  et al.  Orlistat 60 mg reduces visceral adipose tissue: a 24-week randomized, placebo-controlled, multicenter trial.  Obesity (Silver Spring). 2011;19(9):1796-1803. doi:10.1038/oby.2011.143PubMedGoogle ScholarCrossref
113.
Smith  SR, Weissman  NJ, Anderson  CM,  et al; Behavioral Modification and Lorcaserin for Overweight and Obesity Management (BLOOM) Study Group.  Multicenter, placebo-controlled trial of lorcaserin for weight management.  N Engl J Med. 2010;363(3):245-256. doi:10.1056/NEJMoa0909809PubMedGoogle ScholarCrossref
114.
Smith  TJ, Crombie  A, Sanders  LF,  et al.  Efficacy of orlistat 60 mg on weight loss and body fat mass in US Army soldiers.  J Acad Nutr Diet. 2012;112(4):533-540. doi:10.1016/j.jada.2011.10.006PubMedGoogle ScholarCrossref
115.
Stevens  VJ, Corrigan  SA, Obarzanek  E,  et al; TOHP Collaborative Research Group.  Weight loss intervention in phase 1 of the Trials of Hypertension Prevention.  Arch Intern Med. 1993;153(7):849-858. doi:10.1001/archinte.1993.00410070039006PubMedGoogle ScholarCrossref
116.
Stevens  VJ, Obarzanek  E, Cook  NR,  et al; Trials for the Hypertension Prevention Research Group.  Long-term weight loss and changes in blood pressure: results of the Trials of Hypertension Prevention, Phase II.  Ann Intern Med. 2001;134(1):1-11. doi:10.7326/0003-4819-134-1-200101020-00007PubMedGoogle ScholarCrossref
117.
Svetkey  LP, Batch  BC, Lin  PH,  et al.  Cell phone intervention for you (CITY): a randomized, controlled trial of behavioral weight loss intervention for young adults using mobile technology  [published correction appears in Obesity (Silver Spring). 2016;24(2):536].  Obesity (Silver Spring). 2015;23(11):2133-2141. doi:10.1002/oby.21226PubMedGoogle ScholarCrossref
118.
Svetkey  LP, Stevens  VJ, Brantley  PJ,  et al; Weight Loss Maintenance Collaborative Research Group.  Comparison of strategies for sustaining weight loss: the weight loss maintenance randomized controlled trial.  JAMA. 2008;299(10):1139-1148. doi:10.1001/jama.299.10.1139PubMedGoogle ScholarCrossref
119.
Swinburn  BA, Carey  D, Hills  AP,  et al.  Effect of orlistat on cardiovascular disease risk in obese adults.  Diabetes Obes Metab. 2005;7(3):254-262. doi:10.1111/j.1463-1326.2004.00467.xPubMedGoogle ScholarCrossref
120.
Torgerson  JS, Hauptman  J, Boldrin  MN, Sjöström  L.  XENical in the prevention of Diabetes in Obese Subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients.  Diabetes Care. 2004;27(1):155-161. doi:10.2337/diacare.27.1.155PubMedGoogle ScholarCrossref
121.
Tsai  AG, Wadden  TA, Rogers  MA, Day  SC, Moore  RH, Islam  BJ.  A primary care intervention for weight loss: results of a randomized controlled pilot study.  Obesity (Silver Spring). 2010;18(8):1614-1618. doi:10.1038/oby.2009.457PubMedGoogle ScholarCrossref
122.
Tuomilehto  J, Lindström  J, Eriksson  JG,  et al; Finnish Diabetes Prevention Study Group.  Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance.  N Engl J Med. 2001;344(18):1343-1350. doi:10.1056/NEJM200105033441801PubMedGoogle ScholarCrossref
123.
Van Gaal  LF, Broom  JI, Enzi  G, Toplak  H; Orlistat Dose-Ranging Study Group.  Efficacy and tolerability of orlistat in the treatment of obesity: a 6-month dose-ranging study.  Eur J Clin Pharmacol. 1998;54(2):125-132. doi:10.1007/s002280050433PubMedGoogle ScholarCrossref
124.
van Wier  MF, Dekkers  JC, Hendriksen  IJ,  et al.  Effectiveness of phone and e-mail lifestyle counseling for long term weight control among overweight employees.  J Occup Environ Med. 2011;53(6):680-686. doi:10.1097/JOM.0b013e31821f2bbbPubMedGoogle ScholarCrossref
125.
Voils  CI, Olsen  MK, Gierisch  JM,  et al.  Maintenance of weight loss after initiation of nutrition training: a randomized trial.  Ann Intern Med. 2017;166(7):463-471. doi:10.7326/M16-2160PubMedGoogle ScholarCrossref
126.
von Gruenigen  V, Frasure  H, Kavanagh  MB,  et al.  Survivors of uterine cancer empowered by exercise and healthy diet (SUCCEED): a randomized controlled trial.  Gynecol Oncol. 2012;125(3):699-704. doi:10.1016/j.ygyno.2012.03.042PubMedGoogle ScholarCrossref
127.
Wadden  TA, Volger  S, Sarwer  DB,  et al.  A two-year randomized trial of obesity treatment in primary care practice.  N Engl J Med. 2011;365(21):1969-1979. doi:10.1056/NEJMoa1109220PubMedGoogle ScholarCrossref
128.
Wadden  TA, Foreyt  JP, Foster  GD,  et al.  Weight loss with naltrexone SR/bupropion SR combination therapy as an adjunct to behavior modification: the COR-BMOD trial.  Obesity (Silver Spring). 2011;19(1):110-120. doi:10.1038/oby.2010.147PubMedGoogle ScholarCrossref
129.
Wadden  TA, Hollander  P, Klein  S,  et al; NN8022-1923 Investigators.  Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE Maintenance randomized study  [published corrections appear in Int J Obes (Lond). 2015;39(1):187, 2013;37(11):1514, and 2015;39(1):187].  Int J Obes (Lond). 2013;37(11):1443-1451. doi:10.1038/ijo.2013.120PubMedGoogle ScholarCrossref
130.
Wing  RR, Tate  DF, Gorin  AA, Raynor  HA, Fava  JL.  A self-regulation program for maintenance of weight loss.  N Engl J Med. 2006;355(15):1563-1571. doi:10.1056/NEJMoa061883PubMedGoogle ScholarCrossref
131.
Wing  RR, Venditti  E, Jakicic  JM, Polley  BA, Lang  W.  Lifestyle intervention in overweight individuals with a family history of diabetes.  Diabetes Care. 1998;21(3):350-359. doi:10.2337/diacare.21.3.350PubMedGoogle ScholarCrossref
132.
Wylie-Rosett  J, Swencionis  C, Ginsberg  M,  et al.  Computerized weight loss intervention optimizes staff time: the clinical and cost results of a controlled clinical trial conducted in a managed care setting.  J Am Diet Assoc. 2001;101(10):1155-1162. doi:10.1016/S0002-8223(01)00284-XPubMedGoogle ScholarCrossref
133.
Yeh  MC, Heo  M, Suchday  S,  et al.  Translation of the Diabetes Prevention Program for diabetes risk reduction in Chinese immigrants in New York City.  Diabet Med. 2016;33(4):547-551. doi:10.1111/dme.12848PubMedGoogle ScholarCrossref
134.
Young  MD, Callister  R, Collins  CE, Plotnikoff  RC, Aguiar  EJ, Morgan  PJ.  Efficacy of a gender-tailored intervention to prevent weight regain in men over 3 years: a weight loss maintenance RCT.  Obesity (Silver Spring). 2017;25(1):56-65. doi:10.1002/oby.21696PubMedGoogle ScholarCrossref
135.
Beeken  RJ, Leurent  B, Vickerstaff  V,  et al.  A brief intervention for weight control based on habit-formation theory delivered through primary care: results from a randomised controlled trial.  Int J Obes (Lond). 2017;41(2):246-254. doi:10.1038/ijo.2016.206PubMedGoogle ScholarCrossref
136.
Fischer  HH, Fischer  IP, Pereira  RI,  et al.  Text message support for weight loss in patients with prediabetes: a randomized clinical trial.  Diabetes Care. 2016;39(8):1364-1370. doi:10.2337/dc15-2137PubMedGoogle ScholarCrossref
137.
Jenkins  DJA, Boucher  BA, Ashbury  FD,  et al.  Effect of current dietary recommendations on weight loss and cardiovascular risk factors.  J Am Coll Cardiol. 2017;69(9):1103-1112. doi:10.1016/j.jacc.2016.10.089PubMedGoogle ScholarCrossref
138.
O’Brien  MJ, Perez  A, Scanlan  AB,  et al.  PREVENT-DM comparative effectiveness trial of lifestyle intervention and metformin.  Am J Prev Med. 2017;52(6):788-797. doi:10.1016/j.amepre.2017.01.008PubMedGoogle ScholarCrossref
139.
Thomas  JG, Raynor  HA, Bond  DS,  et al.  Weight loss in Weight Watchers Online with and without an activity tracking device compared to control: a randomized trial.  Obesity (Silver Spring). 2017;25(6):1014-1021. doi:10.1002/oby.21846PubMedGoogle ScholarCrossref
140.
Ahern  AL, Wheeler  GM, Aveyard  P,  et al.  Extended and standard duration weight-loss programme referrals for adults in primary care (WRAP): a randomised controlled trial.  Lancet. 2017;389(10085):2214-2225. doi:10.1016/S0140-6736(17)30647-5PubMedGoogle ScholarCrossref
141.
Logue  E, Sutton  K, Jarjoura  D, Smucker  W, Baughman  K, Capers  C.  Transtheoretical model–chronic disease care for obesity in primary care: a randomized trial.  Obes Res. 2005;13(5):917-927. doi:10.1038/oby.2005.106PubMedGoogle ScholarCrossref
142.
Mensink  M, Corpeleijn  E, Feskens  EJ,  et al.  Study on lifestyle-intervention and impaired glucose tolerance Maastricht (SLIM): design and screening results.  Diabetes Res Clin Pract. 2003;61(1):49-58. doi:10.1016/S0168-8227(03)00067-6PubMedGoogle ScholarCrossref
143.
Whelton  PK, Appel  LJ, Espeland  MA,  et al; TONE Collaborative Research Group.  Sodium reduction and weight loss in the treatment of hypertension in older persons: a randomized controlled trial of nonpharmacologic interventions in the elderly (TONE).  JAMA. 1998;279(11):839-846. doi:10.1001/jama.279.11.839PubMedGoogle ScholarCrossref
144.
Nilsen  V, Bakke  PS, Gallefoss  F.  Effects of lifestyle intervention in persons at risk for type 2 diabetes mellitus—results from a randomised, controlled trial.  BMC Public Health. 2011;11:893. doi:10.1186/1471-2458-11-893PubMedGoogle ScholarCrossref
145.
Kumanyika  SK, Fassbender  JE, Sarwer  DB,  et al.  One-year results of the Think Health! study of weight management in primary care practices.  Obesity (Silver Spring). 2012;20(6):1249-1257. doi:10.1038/oby.2011.329PubMedGoogle ScholarCrossref
146.
Rodriguez-Cristobal  JJ, Alonso-Villaverde  C, Panisello  JM,  et al.  Effectiveness of a motivational intervention on overweight/obese patients in the primary healthcare: a cluster randomized trial.  BMC Fam Pract. 2017;18(1):74. doi:10.1186/s12875-017-0644-yPubMedGoogle ScholarCrossref
147.
Phelan  S, Hagobian  T, Brannen  A,  et al.  Effect of an internet-based program on weight loss for low-income postpartum women: a randomized clinical trial.  JAMA. 2017;317(23):2381-2391. doi:10.1001/jama.2017.7119PubMedGoogle ScholarCrossref
148.
Trials of Hypertension Prevention Collaborative Research Group.  The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels: results of the Trials of Hypertension Prevention, Phase I.  JAMA. 1992;267(9):1213-1220. doi:10.1001/jama.1992.03480090061028PubMedGoogle ScholarCrossref
149.
Uusitupa  M, Peltonen  M, Lindström  J,  et al; Finnish Diabetes Prevention Study Group.  Ten-year mortality and cardiovascular morbidity in the Finnish Diabetes Prevention Study—secondary analysis of the randomized trial.  PLoS One. 2009;4(5):e5656. doi:10.1371/journal.pone.0005656PubMedGoogle ScholarCrossref
150.
Shea  MK, Nicklas  BJ, Houston  DK,  et al.  The effect of intentional weight loss on all-cause mortality in older adults: results of a randomized controlled weight-loss trial.  Am J Clin Nutr. 2011;94(3):839-846. doi:10.3945/ajcn.110.006379PubMedGoogle ScholarCrossref
151.
Ratner  R, Goldberg  R, Haffner  S,  et al; Diabetes Prevention Program Research Group.  Impact of intensive lifestyle and metformin therapy on cardiovascular disease risk factors in the Diabetes Prevention Program.  Diabetes Care. 2005;28(4):888-894. doi:10.2337/diacare.28.4.888PubMedGoogle ScholarCrossref
152.
Rubin  RR, Peyrot  M, Wang  NY,  et al.  Patient-reported outcomes in the practice-based opportunities for weight reduction (POWER) trial.  Qual Life Res. 2013;22(9):2389-2398. doi:10.1007/s11136-013-0363-3PubMedGoogle ScholarCrossref
153.
Florez  H, Pan  Q, Ackermann  RT,  et al; Diabetes Prevention Program Research Group.  Impact of lifestyle intervention and metformin on health-related quality of life: the Diabetes Prevention Program randomized trial.  J Gen Intern Med. 2012;27(12):1594-1601. doi:10.1007/s11606-012-2122-5PubMedGoogle ScholarCrossref
154.
Ackermann  RT, Edelstein  SL, Narayan  KM,  et al; Diabetes Prevention Program Research Group.  Changes in health state utilities with changes in body mass in the Diabetes Prevention Program.  Obesity (Silver Spring). 2009;17(12):2176-2181. doi:10.1038/oby.2009.114PubMedGoogle ScholarCrossref
155.
Demark-Wahnefried  W, Colditz  GA, Rock  CL,  et al; ENERGY Trial Group.  Quality of life outcomes from the Exercise and Nutrition Enhance Recovery and Good Health for You (ENERGY) randomized weight loss trial among breast cancer survivors.  Breast Cancer Res Treat. 2015;154(2):329-337. doi:10.1007/s10549-015-3627-5PubMedGoogle ScholarCrossref
156.
McCarroll  ML, Armbruster  S, Frasure  HE,  et al.  Self-efficacy, quality of life, and weight loss in overweight/obese endometrial cancer survivors (SUCCEED): a randomized controlled trial.  Gynecol Oncol. 2014;132(2):397-402. doi:10.1016/j.ygyno.2013.12.023PubMedGoogle ScholarCrossref
157.
Sarwer  DB, Moore  RH, Diewald  LK,  et al; POWER-UP Research Group.  The impact of a primary care-based weight loss intervention on the quality of life.  Int J Obes (Lond). 2013;37(suppl 1):S25-S30. doi:10.1038/ijo.2013.93PubMedGoogle ScholarCrossref
158.
Swencionis  C, Wylie-Rosett  J, Lent  MR,  et al.  Weight change, psychological well-being, and vitality in adults participating in a cognitive-behavioral weight loss program.  Health Psychol. 2013;32(4):439-446. doi:10.1037/a0029186PubMedGoogle ScholarCrossref
159.
Lindström  J, Peltonen  M, Eriksson  JG,  et al; Finnish Diabetes Prevention Study (DPS).  Improved lifestyle and decreased diabetes risk over 13 years: long-term follow-up of the randomised Finnish Diabetes Prevention Study (DPS).  Diabetologia. 2013;56(2):284-293. doi:10.1007/s00125-012-2752-5PubMedGoogle ScholarCrossref
160.
le Roux  CW, Astrup  A, Fujioka  K,  et al; SCALE Obesity Prediabetes NN8022-1839 Study Group.  3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial.  Lancet. 2017;389(10077):1399-1409. doi:10.1016/S0140-6736(17)30069-7PubMedGoogle ScholarCrossref
161.
Williamson  DF, Pamuk  E, Thun  M, Flanders  D, Byers  T, Heath  C.  Prospective study of intentional weight loss and mortality in never-smoking overweight US white women aged 40-64 years.  Am J Epidemiol. 1995;141(12):1128-1141. doi:10.1093/oxfordjournals.aje.a117386PubMedGoogle ScholarCrossref
162.
Wannamethee  SG, Shaper  AG, Walker  M.  Overweight and obesity and weight change in middle aged men: impact on cardiovascular disease and diabetes.  J Epidemiol Community Health. 2005;59(2):134-139. doi:10.1136/jech.2003.015651PubMedGoogle ScholarCrossref
163.
Gregg  EW, Gerzoff  RB, Thompson  TJ, Williamson  DF.  Intentional weight loss and death in overweight and obese U.S. adults 35 years of age and older.  Ann Intern Med. 2003;138(5):383-389. doi:10.7326/0003-4819-138-5-200303040-00007PubMedGoogle ScholarCrossref
164.
Parker  ED, Folsom  AR.  Intentional weight loss and incidence of obesity-related cancers: the Iowa Women’s Health Study.  Int J Obes Relat Metab Disord. 2003;27(12):1447-1452. doi:10.1038/sj.ijo.0802437PubMedGoogle ScholarCrossref
165.
Danaei  G, Robins  JM, Young  JG, Hu  FB, Manson  JE, Hernán  MA.  Weight loss and coronary heart disease: sensitivity analysis for unmeasured confounding by undiagnosed disease.  Epidemiology. 2016;27(2):302-310.PubMedGoogle Scholar
166.
Wijnhoven  HA, van Zon  SK, Twisk  J, Visser  M.  Attribution of causes of weight loss and weight gain to 3-year mortality in older adults: results from the Longitudinal Aging Study Amsterdam.  J Gerontol A Biol Sci Med Sci. 2014;69(10):1236-1243. doi:10.1093/gerona/glu005PubMedGoogle ScholarCrossref
167.
French  SA, Folsom  AR, Jeffery  RW, Williamson  DF.  Prospective study of intentionality of weight loss and mortality in older women: the Iowa Women’s Health Study.  Am J Epidemiol. 1999;149(6):504-514. doi:10.1093/oxfordjournals.aje.a009844PubMedGoogle ScholarCrossref
168.
Williamson  DF, Pamuk  E, Thun  M, Flanders  D, Byers  T, Heath  C.  Prospective study of intentional weight loss and mortality in overweight white men aged 40-64 years.  Am J Epidemiol. 1999;149(6):491-503. doi:10.1093/oxfordjournals.aje.a009843PubMedGoogle ScholarCrossref
169.
Sørensen  TI, Rissanen  A, Korkeila  M, Kaprio  J.  Intention to lose weight, weight changes, and 18-y mortality in overweight individuals without co-morbidities.  PLoS Med. 2005;2(6):e171. doi:10.1371/journal.pmed.0020171PubMedGoogle ScholarCrossref
170.
Yaari  S, Goldbourt  U.  Voluntary and involuntary weight loss: associations with long term mortality in 9,228 middle-aged and elderly men.  Am J Epidemiol. 1998;148(6):546-555. doi:10.1093/oxfordjournals.aje.a009680PubMedGoogle ScholarCrossref
171.
Courcoulas  AP, Goodpaster  BH, Eagleton  JK,  et al.  Surgical vs medical treatments for type 2 diabetes mellitus: a randomized clinical trial.  JAMA Surg. 2014;149(7):707-715. doi:10.1001/jamasurg.2014.467PubMedGoogle ScholarCrossref
172.
Chang  SH, Stoll  CR, Song  J, Varela  JE, Eagon  CJ, Colditz  GA.  The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003-2012.  JAMA Surg. 2014;149(3):275-287. doi:10.1001/jamasurg.2013.3654PubMedGoogle ScholarCrossref
173.
Sarkhosh  K, Switzer  NJ, El-Hadi  M, Birch  DW, Shi  X, Karmali  S.  The impact of bariatric surgery on obstructive sleep apnea: a systematic review.  Obes Surg. 2013;23(3):414-423. doi:10.1007/s11695-012-0862-2PubMedGoogle ScholarCrossref
174.
Sarwer  DB, Wadden  TA, Moore  RH, Eisenberg  MH, Raper  SE, Williams  NN.  Changes in quality of life and body image after gastric bypass surgery.  Surg Obes Relat Dis. 2010;6(6):608-614. doi:10.1016/j.soard.2010.07.015PubMedGoogle ScholarCrossref
175.
Dawes  AJ, Maggard-Gibbons  M, Maher  AR,  et al.  Mental health conditions among patients seeking and undergoing bariatric surgery: a meta-analysis.  JAMA. 2016;315(2):150-163. doi:10.1001/jama.2015.18118PubMedGoogle ScholarCrossref
176.
King  WC, Chen  JY, Belle  SH,  et al.  Change in pain and physical function following bariatric surgery for severe obesity.  JAMA. 2016;315(13):1362-1371. doi:10.1001/jama.2016.3010PubMedGoogle ScholarCrossref
177.
Kamvissi-Lorenz  V, Raffaelli  M, Bornstein  S, Mingrone  G.  Role of the gut on glucose homeostasis: lesson learned from metabolic surgery.  Curr Atheroscler Rep. 2017;19(2):9. doi:10.1007/s11883-017-0642-5PubMedGoogle ScholarCrossref
178.
Wing  RR, Phelan  S.  Long-term weight loss maintenance.  Am J Clin Nutr. 2005;82(1)(suppl):222S-225S. doi:10.1093/ajcn/82.1.222SPubMedGoogle ScholarCrossref
179.
Weiss  EC, Galuska  DA, Kettel Khan  L, Gillespie  C, Serdula  MK.  Weight regain in U.S. adults who experienced substantial weight loss, 1999-2002.  Am J Prev Med. 2007;33(1):34-40. doi:10.1016/j.amepre.2007.02.040PubMedGoogle ScholarCrossref
180.
Puhl  RM, Quinn  DM, Weisz  BM, Suh  YJ.  The role of stigma in weight loss maintenance among U.S. adults.  Ann Behav Med. 2017;51(5):754-763. doi:10.1007/s12160-017-9898-9PubMedGoogle ScholarCrossref
181.
Kruseman  M, Schmutz  N, Carrard  I.  Long-term weight maintenance strategies are experienced as a burden by persons who have lost weight compared to persons with a lifetime normal, stable weight.  Obes Facts. 2017;10(4):373-385. doi:10.1159/000478096PubMedGoogle ScholarCrossref
182.
Vieira  PN, Silva  MN, Mata  J,  et al.  Correlates of health-related quality of life, psychological well-being, and eating self-regulation after successful weight loss maintenance.  J Behav Med. 2013;36(6):601-610. doi:10.1007/s10865-012-9454-9PubMedGoogle ScholarCrossref
183.
Feller  S, Müller  A, Mayr  A, Engeli  S, Hilbert  A, de Zwaan  M.  What distinguishes weight loss maintainers of the German Weight Control Registry from the general population?  Obesity (Silver Spring). 2015;23(5):1112-1118. doi:10.1002/oby.21054PubMedGoogle ScholarCrossref
184.
Dulloo  AG, Montani  JP.  Pathways from dieting to weight regain, to obesity and to the metabolic syndrome: an overview.  Obes Rev. 2015;16(suppl 1):1-6. doi:10.1111/obr.12250PubMedGoogle ScholarCrossref
185.
Mackie  GM, Samocha-Bonet  D, Tam  CS.  Does weight cycling promote obesity and metabolic risk factors?  Obes Res Clin Pract. 2017;11(2):131-139. doi:10.1016/j.orcp.2016.10.284PubMedGoogle ScholarCrossref
186.
DerSarkissian  M, Bhak  RH, Huang  J,  et al.  Maintenance of weight loss or stability in subjects with obesity: a retrospective longitudinal analysis of a real-world population.  Curr Med Res Opin. 2017;33(6):1105-1110. doi:10.1080/03007995.2017.1307173PubMedGoogle ScholarCrossref
187.
Abell  JE, Egan  BM, Wilson  PW, Lipsitz  S, Woolson  RF, Lackland  DT.  Age and race impact the association between BMI and CVD mortality in women.  Public Health Rep. 2007;122(4):507-512. doi:10.1177/003335490712200412PubMedGoogle ScholarCrossref
188.
Abell  JE, Egan  BM, Wilson  PW, Lipsitz  S, Woolson  RF, Lackland  DT.  Differences in cardiovascular disease mortality associated with body mass between black and white persons.  Am J Public Health. 2008;98(1):63-66. doi:10.2105/AJPH.2006.093781PubMedGoogle ScholarCrossref
189.
Chen  Y, Henson  S, Jackson  AB, Richards  JS.  Obesity intervention in persons with spinal cord injury.  Spinal Cord. 2006;44(2):82-91. doi:10.1038/sj.sc.3101818PubMedGoogle ScholarCrossref
190.
Low  S, Chin  MC, Ma  S, Heng  D, Deurenberg-Yap  M.  Rationale for redefining obesity in Asians.  Ann Acad Med Singapore. 2009;38(1):66-69.PubMedGoogle Scholar
191.
Maskarinec  G, Grandinetti  A, Matsuura  G,  et al.  Diabetes prevalence and body mass index differ by ethnicity: the Multiethnic Cohort.  Ethn Dis. 2009;19(1):49-55.PubMedGoogle Scholar
192.
Ni Mhurchu  C, Rodgers  A, Pan  WH, Gu  DF, Woodward  M; Asia Pacific Cohort Studies Collaboration.  Body mass index and cardiovascular disease in the Asia-Pacific Region: an overview of 33 cohorts involving 310 000 participants.  Int J Epidemiol. 2004;33(4):751-758. doi:10.1093/ije/dyh163PubMedGoogle ScholarCrossref
193.
Huxley  R, Barzi  F, Lee  CM,  et al; Obesity in Asia Collaboration.  Waist circumference thresholds provide an accurate and widely applicable method for the discrimination of diabetes.  Diabetes Care. 2007;30(12):3116-3118. doi:10.2337/dc07-1455PubMedGoogle ScholarCrossref
194.
Razak  F, Anand  S, Vuksan  V,  et al; SHARE Investigators.  Ethnic differences in the relationships between obesity and glucose-metabolic abnormalities: a cross-sectional population-based study.  Int J Obes (Lond). 2005;29(6):656-667. doi:10.1038/sj.ijo.0802937PubMedGoogle ScholarCrossref
195.
Razak  F, Anand  SS, Shannon  H,  et al.  Defining obesity cut points in a multiethnic population.  Circulation. 2007;115(16):2111-2118. doi:10.1161/CIRCULATIONAHA.106.635011PubMedGoogle ScholarCrossref
196.
Sánchez-Castillo  CP, Velázquez-Monroy  O, Berber  A, Lara-Esqueda  A, Tapia-Conyer  R, James  WP; Encuesta Nacional de Salud (ENSA) 2000 Working Group.  Anthropometric cutoff points for predicting chronic diseases in the Mexican National Health Survey 2000.  Obes Res. 2003;11(3):442-451. doi:10.1038/oby.2003.60PubMedGoogle ScholarCrossref
197.
Stevens  J, Juhaeri, Cai  J, Jones  DW.  The effect of decision rules on the choice of a body mass index cutoff for obesity: examples from African American and white women.  Am J Clin Nutr. 2002;75(6):986-992. doi:10.1093/ajcn/75.6.986PubMedGoogle ScholarCrossref
198.
Stommel  M, Schoenborn  CA.  Variations in BMI and prevalence of health risks in diverse racial and ethnic populations.  Obesity (Silver Spring). 2010;18(9):1821-1826. doi:10.1038/oby.2009.472PubMedGoogle ScholarCrossref
199.
WHO Expert Consultation.  Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies.  Lancet. 2004;363(9403):157-163. doi:10.1016/S0140-6736(03)15268-3PubMedGoogle ScholarCrossref
200.
Wen  CP, David Cheng  TY, Tsai  SP,  et al.  Are Asians at greater mortality risks for being overweight than Caucasians? redefining obesity for Asians.  Public Health Nutr. 2009;12(4):497-506. doi:10.1017/S1368980008002802PubMedGoogle ScholarCrossref
201.
Jackson  CL, Wang  NY, Yeh  HC, Szklo  M, Dray-Spira  R, Brancati  FL.  Body-mass index and mortality risk in U.S. blacks compared to whites.  Obesity (Silver Spring). 2014;22(3):842-851. doi:10.1002/oby.20471PubMedGoogle ScholarCrossref
202.
Adams  KF, Schatzkin  A, Harris  TB,  et al.  Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old.  N Engl J Med. 2006;355(8):763-778. doi:10.1056/NEJMoa055643PubMedGoogle ScholarCrossref
203.
Whitlock  G, Lewington  S, Sherliker  P,  et al; Prospective Studies Collaboration.  Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies.  Lancet. 2009;373(9669):1083-1096. doi:10.1016/S0140-6736(09)60318-4PubMedGoogle ScholarCrossref
204.
Danaei  G, Ding  EL, Mozaffarian  D,  et al.  The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors.  PLoS Med. 2009;6(4):e1000058. doi:10.1371/journal.pmed.1000058PubMedGoogle ScholarCrossref
205.
Peeters  A, Barendregt  JJ, Willekens  F, Mackenbach  JP, Al Mamun  A, Bonneux  L; Netherlands Epidemiology and Demography Compression of Morbidity Research Group.  Obesity in adulthood and its consequences for life expectancy: a life-table analysis.  Ann Intern Med. 2003;138(1):24-32. doi:10.7326/0003-4819-138-1-200301070-00008PubMedGoogle ScholarCrossref
206.
Berrington de Gonzalez  A, Hartge  P, Cerhan  JR,  et al.  Body-mass index and mortality among 1.46 million white adults.  N Engl J Med. 2010;363(23):2211-2219. doi:10.1056/NEJMoa1000367PubMedGoogle ScholarCrossref
207.
Di Angelantonio  E, Bhupathiraju  ShN, Wormser  D,  et al; Global BMI Mortality Collaboration.  Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents.  Lancet. 2016;388(10046):776-786. doi:10.1016/S0140-6736(16)30175-1PubMedGoogle ScholarCrossref
208.
Flegal  KM, Williamson  DF, Pamuk  ER, Rosenberg  HM.  Estimating deaths attributable to obesity in the United States.  Am J Public Health. 2004;94(9):1486-1489. doi:10.2105/AJPH.94.9.1486PubMedGoogle ScholarCrossref
209.
Calle  EE, Thun  MJ, Petrelli  JM, Rodriguez  C, Heath  CW  Jr.  Body-mass index and mortality in a prospective cohort of U.S. adults.  N Engl J Med. 1999;341(15):1097-1105. doi:10.1056/NEJM199910073411501PubMedGoogle ScholarCrossref
210.
Lenz  M, Richter  T, Mühlhauser  I.  The morbidity and mortality associated with overweight and obesity in adulthood: a systematic review.  Dtsch Arztebl Int. 2009;106(40):641-648.PubMedGoogle Scholar
211.
Flegal  KM, Kit  BK, Orpana  H, Graubard  BI.  Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis.  JAMA. 2013;309(1):71-82. doi:10.1001/jama.2012.113905PubMedGoogle ScholarCrossref
212.
Yu  E, Ley  SH, Manson  JE,  et al.  Weight history and all-cause and cause-specific mortality in three prospective cohort studies.  Ann Intern Med. 2017;166(9):613-620. doi:10.7326/M16-1390PubMedGoogle ScholarCrossref
213.
Flegal  KM, Ioannidis  JPA.  A meta-analysis but not a systematic review: an evaluation of the Global BMI Mortality Collaboration.  J Clin Epidemiol. 2017;88:21-29. doi:10.1016/j.jclinepi.2017.04.007PubMedGoogle ScholarCrossref
214.
Padwal  RS, Pajewski  NM, Allison  DB, Sharma  AM.  Using the Edmonton obesity staging system to predict mortality in a population-representative cohort of people with overweight and obesity.  CMAJ. 2011;183(14):E1059-E1066. doi:10.1503/cmaj.110387PubMedGoogle ScholarCrossref
215.
Sharma  AM, Campbell-Scherer  DL.  Redefining obesity: beyond the numbers.  Obesity (Silver Spring). 2017;25(4):660-661. doi:10.1002/oby.21801PubMedGoogle ScholarCrossref
×