Effect of a Resuscitation Strategy Targeting Peripheral Perfusion Status vs Serum Lactate Levels on 28-Day Mortality Among Patients With Septic Shock: The ANDROMEDA-SHOCK Randomized Clinical Trial | Critical Care Medicine | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Rhodes  A, Evans  LE, Alhazzani  W,  et al.  Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016.  Crit Care Med. 2017;45(3):486-552. doi:10.1097/CCM.0000000000002255PubMedGoogle ScholarCrossref
Cecconi  M, De Backer  D, Antonelli  M,  et al; Task Force of the European Society of Intensive Care Medicine.  Consensus on circulatory shock and hemodynamic monitoring.  Intensive Care Med. 2014;40(12):1795-1815. doi:10.1007/s00134-014-3525-zPubMedGoogle ScholarCrossref
Vincent  JL, Quintairos E Silva  A, Couto  L  Jr, Taccone  FS.  The value of blood lactate kinetics in critically ill patients: a systematic review.  Crit Care. 2016;20(1):257. doi:10.1186/s13054-016-1403-5PubMedGoogle ScholarCrossref
Jansen  TC, van Bommel  J, Schoonderbeek  FJ,  et al; LACTATE Study Group.  Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial.  Am J Respir Crit Care Med. 2010;182(6):752-761. doi:10.1164/rccm.200912-1918OCPubMedGoogle ScholarCrossref
Levy  MM, Evans  LE, Rhodes  A.  The Surviving Sepsis Campaign bundle: 2018 update.  Crit Care Med. 2018;46(6):997-1000. doi:10.1097/CCM.0000000000003119PubMedGoogle ScholarCrossref
Garcia-Alvarez  M, Marik  P, Bellomo  R.  Sepsis-associated hyperlactatemia.  Crit Care. 2014;18(5):503. doi:10.1186/s13054-014-0503-3PubMedGoogle ScholarCrossref
Hernandez  G, Luengo  C, Bruhn  A,  et al.  When to stop septic shock resuscitation: clues from a dynamic perfusion monitoring.  Ann Intensive Care. 2014;4:30. doi:10.1186/s13613-014-0030-zPubMedGoogle ScholarCrossref
Coopersmith  CM, De Backer  D, Deutschman  CS,  et al.  Surviving Sepsis Campaign: research priorities for sepsis and septic shock.  Crit Care Med. 2018;46(8):1334-1356. doi:10.1097/CCM.0000000000003225PubMedGoogle ScholarCrossref
Lima  A, Jansen  TC, van Bommel  J, Ince  C, Bakker  J.  The prognostic value of the subjective assessment of peripheral perfusion in critically ill patients.  Crit Care Med. 2009;37(3):934-938. doi:10.1097/CCM.0b013e31819869dbPubMedGoogle ScholarCrossref
Lara  B, Enberg  L, Ortega  M,  et al.  Capillary refill time during fluid resuscitation in patients with sepsis-related hyperlactatemia at the emergency department is related to mortality.  PLoS One. 2017;12(11):e0188548. doi:10.1371/journal.pone.0188548PubMedGoogle ScholarCrossref
Ait-Oufella  H, Bige  N, Boelle  PY,  et al.  Capillary refill time exploration during septic shock.  Intensive Care Med. 2014;40(7):958-964. doi:10.1007/s00134-014-3326-4PubMedGoogle ScholarCrossref
van Genderen  ME, Paauwe  J, de Jonge  J,  et al.  Clinical assessment of peripheral perfusion to predict postoperative complications after major abdominal surgery early: a prospective observational study in adults.  Crit Care. 2014;18(3):R114. doi:10.1186/cc13905PubMedGoogle ScholarCrossref
Lima  A, van Genderen  ME, van Bommel  J, Klijn  E, Jansem  T, Bakker  J.  Nitroglycerin reverts clinical manifestations of poor peripheral perfusion in patients with circulatory shock.  Crit Care. 2014;18(3):R126. doi:10.1186/cc13932PubMedGoogle ScholarCrossref
van Genderen  ME, Engels  N, van der Valk  RJ,  et al.  Early peripheral perfusion–guided fluid therapy in patients with septic shock.  Am J Respir Crit Care Med. 2015;191(4):477-480. doi:10.1164/rccm.201408-1575LEPubMedGoogle ScholarCrossref
Hernández  G, Cavalcanti  AB, Ospina-Tascón  G,  et al; ANDROMEDA-SHOCK Study Investigators.  Early goal-directed therapy using a physiological holistic view: the ANDROMEDA-SHOCK—a randomized controlled trial.  Ann Intensive Care. 2018;8(1):52. doi:10.1186/s13613-018-0398-2PubMedGoogle ScholarCrossref
Hernández  G, Cavalcanti  AB, Ospina-Tascón  G,  et al.  Statistical analysis plan for early goal-directed therapy using a physiological holistic view—the ANDROMEDA-SHOCK: a randomized controlled trial.  Rev Bras Ter Intensiva. 2018;30(3):253-263.PubMedGoogle Scholar
Shankar-Hari  M, Phillips  GS, Levy  ML,  et al; Sepsis Definitions Task Force.  Developing a new definition and assessing new clinical criteria for septic shock: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).  JAMA. 2016;315(8):775-787. doi:10.1001/jama.2016.0289PubMedGoogle ScholarCrossref
Monnet  X, Marik  PE, Teboul  JL.  Prediction of fluid responsiveness: an update.  Ann Intensive Care. 2016;6(1):111. doi:10.1186/s13613-016-0216-7PubMedGoogle ScholarCrossref
Hernandez  G, Pedreros  C, Veas  E,  et al.  Evolution of peripheral vs metabolic perfusion parameters during septic shock resuscitation: a clinical-physiologic study.  J Crit Care. 2012;27(3):283-288. doi:10.1016/j.jcrc.2011.05.024PubMedGoogle ScholarCrossref
Pinsky  MR, Kellum  JA, Bellomo  R.  Central venous pressure is a stopping rule, not a target of fluid resuscitation.  Crit Care Resusc. 2014;16(4):245-246.PubMedGoogle Scholar
Asfar  P, Meziani  F, Hamel  JF,  et al; SEPSISPAM Investigators.  High versus low blood-pressure target in patients with septic shock.  N Engl J Med. 2014;370(17):1583-1593. doi:10.1056/NEJMoa1312173PubMedGoogle ScholarCrossref
Ferreira  FL, Bota  DP, Bross  A, Mélot  C, Vincent  JL.  Serial evaluation of the SOFA score to predict outcome in critically ill patients.  JAMA. 2001;286(14):1754-1758. doi:10.1001/jama.286.14.1754PubMedGoogle ScholarCrossref
Knaus  WA, Draper  EA, Wagner  DP, Zimmerman  JE.  APACHE II: a severity of disease classification system.  Crit Care Med. 1985;13(10):818-829. doi:10.1097/00003246-198510000-00009PubMedGoogle ScholarCrossref
Vincent  JL, Moreno  R, Takala  J,  et al; Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine.  The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure.  Intensive Care Med. 1996;22(7):707-710. doi:10.1007/BF01709751PubMedGoogle ScholarCrossref
Grambsch  P, Therneau  TM.  Proportional hazards tests and diagnostics based on weighted residuals.  Biometrika. 1994;81(3):515-526. doi:10.1093/biomet/81.3.515Google ScholarCrossref
Teboul  JL, Saugel  B, Cecconi  M,  et al.  Less invasive hemodynamic monitoring in critically ill patients.  Intensive Care Med. 2016;42(9):1350-1359. doi:10.1007/s00134-016-4375-7PubMedGoogle ScholarCrossref
Cecconi  M, Hofer  C, Teboul  JL,  et al; FENICE Investigators; ESICM Trial Group.  Fluid challenges in intensive care: the FENICE study: a global inception cohort study  [published correction appears in Intensive Care Med. 2015;41(9):1737-1738].  Intensive Care Med. 2015;41(9):1529-1537. doi:10.1007/s00134-015-3850-xPubMedGoogle ScholarCrossref
Anderson  B, Kelly  AM, Kerr  D, Clooney  M, Jolley  D.  Impact of patient and environmental factors on capillary refill time in adults.  Am J Emerg Med. 2008;26(1):62-65. doi:10.1016/j.ajem.2007.06.026PubMedGoogle ScholarCrossref
Brown  LH, Prasad  NH, Whitley  TW.  Adverse lighting condition effects on the assessment of capillary refill.  Am J Emerg Med. 1994;12(1):46-47. doi:10.1016/0735-6757(94)90196-1PubMedGoogle ScholarCrossref
Saavedra  JM, Harris  GD, Li  S, Finberg  L.  Capillary refilling (skin turgor) in the assessment of dehydration.  Am J Dis Child. 1991;145(3):296-298.PubMedGoogle Scholar
Schriger  DL, Baraff  LJ.  Capillary refill—is it a useful predictor of hypovolemic states?  Ann Emerg Med. 1991;20(6):601-605. doi:10.1016/S0196-0644(05)82375-3PubMedGoogle ScholarCrossref
van Genderen  ME, Lima  A, Akkerhuis  M, Bakker  J, van Bommel  J.  Persistent peripheral and microcirculatory perfusion alterations after out-of-hospital cardiac arrest are associated with poor survival.  Crit Care Med. 2012;40(8):2287-2294. doi:10.1097/CCM.0b013e31825333b2PubMedGoogle ScholarCrossref
Pickard  A, Karlen  W, Ansermino  JM.  Capillary refill time: is it still a useful clinical sign?  Anesth Analg. 2011;113(1):120-123. doi:10.1213/ANE.0b013e31821569f9PubMedGoogle ScholarCrossref
Alsma  J, van Saase  JLCM, Nanayakkara  PWB,  et al; FAMOUS Study Group.  The power of flash mob research: conducting a nationwide observational clinical study on capillary refill time in a single day.  Chest. 2017;151(5):1106-1113. doi:10.1016/j.chest.2016.11.035PubMedGoogle ScholarCrossref
Original Investigation
Caring for the Critically Ill Patient
February 17, 2019

Effect of a Resuscitation Strategy Targeting Peripheral Perfusion Status vs Serum Lactate Levels on 28-Day Mortality Among Patients With Septic Shock: The ANDROMEDA-SHOCK Randomized Clinical Trial

Author Affiliations
  • 1Departmento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago
  • 2Fundación Valle del Lili, Universidad ICESI, Department of Intensive Care Medicine, Cali, Colombia
  • 3HCor Research Institute–Hospital do Coração, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
  • 4Hospital Interzonal de Agudos San Martín de La Plata, La Plata, Argentina
  • 5Sanatorio Otamendi, Buenos Aires, Argentina
  • 6Cátedra de Farmacología Aplicada, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
  • 7Intensive Care Unit, Hospital Español–ASSE, Montevideo, Uruguay
  • 8Department of Pathophysiology, School of Medicine Universidad de la República, Montevideo, Uruguay
  • 9Post-Graduation Program in Pneumological Sciences, Department of Internal Medicine, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
  • 10Service de Réanimation Médicale, Hopital Bicetre, Hopitaux Universitaires Paris–Sud, Paris, France
  • 11Assistance Publique Hôpitaux de Paris, Université Paris–Sud, Paris, France
  • 12Humanitas Clinical and Research Center, Department of Biomedical Sciences, Humanitas University, Milan, Italy
  • 13Unidad de Cuidados Intensivos, Hospital Barros Luco Trudeau, Santiago, Chile
  • 14Unidad de Cuidados Intensivos, Hospital Eugenio Espejo, Escuela de Medicina, Universidad Internacional del Ecuador, Quito
  • 15Unidad de Pacientes Críticos, Hospital Guillermo Grant Benavente, Concepción, Chile
  • 16Unidad de Cuidados Intensivos, Hospital General Docente de Calderón, Universidad Central del Ecuador, Quito
  • 17Unidad de Cuidados Intensivos, Hospital San Francisco, Pontificia Universidad Católica de Quito, Quito, Ecuador
  • 18Department of Intensive Care Adults, Erasmus MC University Medical Center, Rotterdam, the Netherlands
  • 19Department of Pulmonary and Critical Care, New York University, New York, New York
  • 20Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center, New York, New York
JAMA. 2019;321(7):654-664. doi:10.1001/jama.2019.0071
Key Points

Question  Does the use of a resuscitation strategy targeting normalization of capillary refill time, compared with a strategy targeting serum lactate levels, reduce mortality among patients with septic shock?

Findings  In this randomized clinical trial of 424 patients with early septic shock, 28-day mortality was 34.9% in the peripheral perfusion–targeted resuscitation group compared with 43.4% in the lactate level–targeted resuscitation group, a difference that did not reach statistical significance.

Meaning  These findings do not support the use of a peripheral perfusion–targeted resuscitation strategy in patients with septic shock.


Importance  Abnormal peripheral perfusion after septic shock resuscitation has been associated with organ dysfunction and mortality. The potential role of the clinical assessment of peripheral perfusion as a target during resuscitation in early septic shock has not been established.

Objective  To determine if a peripheral perfusion–targeted resuscitation during early septic shock in adults is more effective than a lactate level–targeted resuscitation for reducing mortality.

Design, Setting, and Participants  Multicenter, randomized trial conducted at 28 intensive care units in 5 countries. Four-hundred twenty-four patients with septic shock were included between March 2017 and March 2018. The last date of follow-up was June 12, 2018.

Interventions  Patients were randomized to a step-by-step resuscitation protocol aimed at either normalizing capillary refill time (n = 212) or normalizing or decreasing lactate levels at rates greater than 20% per 2 hours (n = 212), during an 8-hour intervention period.

Main Outcomes and Measures  The primary outcome was all-cause mortality at 28 days. Secondary outcomes were organ dysfunction at 72 hours after randomization, as assessed by Sequential Organ Failure Assessment (SOFA) score (range, 0 [best] to 24 [worst]); death within 90 days; mechanical ventilation–, renal replacement therapy–, and vasopressor-free days within 28 days; intensive care unit and hospital length of stay.

Results  Among 424 patients randomized (mean age, 63 years; 226 [53%] women), 416 (98%) completed the trial. By day 28, 74 patients (34.9%) in the peripheral perfusion group and 92 patients (43.4%) in the lactate group had died (hazard ratio, 0.75 [95% CI, 0.55 to 1.02]; P = .06; risk difference, −8.5% [95% CI, −18.2% to 1.2%]). Peripheral perfusion–targeted resuscitation was associated with less organ dysfunction at 72 hours (mean SOFA score, 5.6 [SD, 4.3] vs 6.6 [SD, 4.7]; mean difference, −1.00 [95% CI, −1.97 to −0.02]; P = .045). There were no significant differences in the other 6 secondary outcomes. No protocol-related serious adverse reactions were confirmed.

Conclusions and Relevance  Among patients with septic shock, a resuscitation strategy targeting normalization of capillary refill time, compared with a strategy targeting serum lactate levels, did not reduce all-cause 28-day mortality.

Trial Registration  ClinicalTrials.gov Identifier: NCT03078712