[Skip to Content]
Sign In
Individual Sign In
Create an Account
Institutional Sign In
OpenAthens Shibboleth
Purchase Options:
[Skip to Content Landing]
Figure 1.
Analytic Framework: Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer in Women
Analytic Framework: Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer in Women

Evidence reviews for the US Preventive Services Task Force (USPSTF) use an analytic framework to visually display key questions addressed by the review to allow the USPSTF to evaluate the effectiveness and harms of a preventive service. The questions are depicted by linkages that relate interventions to outcomes; a dashed line indicates a linkage that is known and not addressed by the evidence review. Refer to the USPSTF procedure manual for further details.36BRCA indicates breast cancer susceptibility gene.

aClinically significant pathogenic mutations in the BRCA1 and BRCA2 genes associated with increased risk for breast cancer, ovarian cancer, or both. bIncludes women who may have a previous diagnosis of breast or ovarian cancer but have completed treatment and are considered cancer-free. cDescriptions of genetic counseling, scope of services, and appropriate clinicians are described in the full report. dTesting may be conducted on the index patient, her relative with cancer, or her relative with highest risk, as appropriate. eIncludes interpretation of results, determination of eligibility for risk-reducing interventions, and patient decision-making. fInterventions include early detection through intensive screening, use of risk-reducing medications, and risk-reducing surgery when performed for prevention purposes.

Figure 2.
Literature Search Flow Diagram: Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer in Women
Literature Search Flow Diagram: Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer in Women

BRCA indicates breast cancer susceptibility gene; KQ, key question.

aIncludes reference lists of relevant articles, studies, and systematic reviews; suggestions from reviewers.

bOne hundred three studies in 110 publications provided data; some addressed more than 1 KQ.

Table 1.  
Risk Assessment Tools to Predict Individual Risk for BRCA1/2 Mutations in Primary Care Settings (Key Question 2a)a
Risk Assessment Tools to Predict Individual Risk for BRCA1/2 Mutations in Primary Care Settings (Key Question 2a)a
Table 2.  
Studies of Benefits and Harms of Pretest Genetic Counseling (Key Questions 2b, 3b)a
Studies of Benefits and Harms of Pretest Genetic Counseling (Key Questions 2b, 3b)a
Table 3.  
Studies of Risk-Reducing Surgery (Key Question 4)
Studies of Risk-Reducing Surgery (Key Question 4)
Table 4.  
Summary of Evidence
Summary of Evidence
1.
Brody  LC, Biesecker  BB.  Breast cancer susceptibility genes: BRCA1 and BRCA2 Medicine (Baltimore). 1998;77(3):208-226. doi:10.1097/00005792-199805000-00006PubMedGoogle ScholarCrossref
2.
Mersch  J, Jackson  MA, Park  M,  et al.  Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian.  Cancer. 2015;121(2):269-275. doi:10.1002/cncr.29041PubMedGoogle ScholarCrossref
3.
Miki  Y, Swensen  J, Shattuck-Eidens  D,  et al.  A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1 Science. 1994;266(5182):66-71. doi:10.1126/science.7545954PubMedGoogle ScholarCrossref
4.
Wooster  R, Weber  BL.  Breast and ovarian cancer.  N Engl J Med. 2003;348(23):2339-2347. doi:10.1056/NEJMra012284PubMedGoogle ScholarCrossref
5.
Sherman  ME, Piedmonte  M, Mai  PL,  et al.  Pathologic findings at risk-reducing salpingo-oophorectomy: primary results from Gynecologic Oncology Group Trial GOG-0199.  J Clin Oncol. 2014;32(29):3275-3283. doi:10.1200/JCO.2013.54.1987PubMedGoogle ScholarCrossref
6.
Norquist  BM, Garcia  RL, Allison  KH,  et al.  The molecular pathogenesis of hereditary ovarian carcinoma: alterations in the tubal epithelium of women with BRCA1 and BRCA2 mutations.  Cancer. 2010;116(22):5261-5271. doi:10.1002/cncr.25439PubMedGoogle ScholarCrossref
7.
Anglian Breast Cancer Study Group.  Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases.  Br J Cancer. 2000;83(10):1301-1308. doi:10.1054/bjoc.2000.1407PubMedGoogle ScholarCrossref
8.
Antoniou  AC, Gayther  SA, Stratton  JF, Ponder  BA, Easton  DF.  Risk models for familial ovarian and breast cancer.  Genet Epidemiol. 2000;18(2):173-190. doi:10.1002/(SICI)1098-2272(200002)18:2<173::AID-GEPI6>3.0.CO;2-RPubMedGoogle ScholarCrossref
9.
Antoniou  AC, Pharoah  PD, McMullan  G,  et al.  A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes.  Br J Cancer. 2002;86(1):76-83. doi:10.1038/sj.bjc.6600008PubMedGoogle ScholarCrossref
10.
Peto  J, Collins  N, Barfoot  R,  et al.  Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer.  J Natl Cancer Inst. 1999;91(11):943-949. doi:10.1093/jnci/91.11.943PubMedGoogle ScholarCrossref
11.
Whittemore  AS, Gong  G, John  EM,  et al.  Prevalence of BRCA1 mutation carriers among U.S. non-Hispanic whites.  Cancer Epidemiol Biomarkers Prev. 2004;13(12):2078-2083.PubMedGoogle Scholar
12.
Neuhausen  S, Gilewski  T, Norton  L,  et al.  Recurrent BRCA2 6174delT mutations in Ashkenazi Jewish women affected by breast cancer.  Nat Genet. 1996;13(1):126-128. doi:10.1038/ng0596-126PubMedGoogle ScholarCrossref
13.
Struewing  JP, Hartge  P, Wacholder  S,  et al.  The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews.  N Engl J Med. 1997;336(20):1401-1408. doi:10.1056/NEJM199705153362001PubMedGoogle ScholarCrossref
14.
Roa  BB, Boyd  AA, Volcik  K, Richards  CS.  Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2 Nat Genet. 1996;14(2):185-187. doi:10.1038/ng1096-185PubMedGoogle ScholarCrossref
15.
Antoniou  A, Pharoah  PD, Narod  S,  et al.  Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies.  Am J Hum Genet. 2003;72(5):1117-1130. doi:10.1086/375033PubMedGoogle ScholarCrossref
16.
Chen  S, Parmigiani  G.  Meta-analysis of BRCA1 and BRCA2 penetrance.  J Clin Oncol. 2007;25(11):1329-1333. doi:10.1200/JCO.2006.09.1066PubMedGoogle ScholarCrossref
17.
Lakhani  SR, Manek  S, Penault-Llorca  F,  et al.  Pathology of ovarian cancers in BRCA1 and BRCA2 carriers.  Clin Cancer Res. 2004;10(7):2473-2481. doi:10.1158/1078-0432.CCR-1029-3PubMedGoogle ScholarCrossref
18.
Evans  DG, Young  K, Bulman  M, Shenton  A, Wallace  A, Lalloo  F.  Probability of BRCA1/2 mutation varies with ovarian histology: results from screening 442 ovarian cancer families.  Clin Genet. 2008;73(4):338-345. doi:10.1111/j.1399-0004.2008.00974.xPubMedGoogle ScholarCrossref
19.
Tonin  PN, Maugard  CM, Perret  C, Mes-Masson  AM, Provencher  DM.  A review of histopathological subtypes of ovarian cancer in BRCA-related French Canadian cancer families.  Fam Cancer. 2007;6(4):491-497. doi:10.1007/s10689-007-9152-xPubMedGoogle ScholarCrossref
20.
Crum  CP, Drapkin  R, Kindelberger  D, Medeiros  F, Miron  A, Lee  Y.  Lessons from BRCA: the tubal fimbria emerges as an origin for pelvic serous cancer.  Clin Med Res. 2007;5(1):35-44. doi:10.3121/cmr.2007.702PubMedGoogle ScholarCrossref
21.
Bolton  KL, Chenevix-Trench  G, Goh  C,  et al; EMBRACE; kConFab Investigators; Cancer Genome Atlas Research Network.  Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer.  JAMA. 2012;307(4):382-390. doi:10.1001/jama.2012.20PubMedGoogle ScholarCrossref
22.
Levine  DA, Argenta  PA, Yee  CJ,  et al.  Fallopian tube and primary peritoneal carcinomas associated with BRCA mutations.  J Clin Oncol. 2003;21(22):4222-4227. doi:10.1200/JCO.2003.04.131PubMedGoogle ScholarCrossref
23.
Mavaddat  N, Barrowdale  D, Andrulis  IL,  et al; HEBON; EMBRACE; GEMO Study Collaborators; kConFab Investigators; SWE-BRCA Collaborators; Consortium of Investigators of Modifiers of BRCA1/2.  Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA).  Cancer Epidemiol Biomarkers Prev. 2012;21(1):134-147. doi:10.1158/1055-9965.EPI-11-0775PubMedGoogle ScholarCrossref
24.
National Comprehensive Cancer Network (NCCN). Genetic/familial high-risk assessment: breast and ovarian. NCCN website. https://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf. Published 2019. Accessed April 16, 2019.
25.
Hampel  H, Bennett  RL, Buchanan  A, Pearlman  R, Wiesner  GL; Guideline Development Group, American College of Medical Genetics and Genomics Professional Practice and Guidelines Committee and National Society of Genetic Counselors Practice Guidelines Committee.  A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment.  Genet Med. 2015;17(1):70-87. doi:10.1038/gim.2014.147PubMedGoogle ScholarCrossref
26.
National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: breast cancer screening and diagnosis. NCCN website. https://www.nccn.org. Published 2018. Accessed May 1, 2019.
27.
American College of Surgeons (ACS). Cancer Program Standards 2016. ACS website. https://www.facs.org/cancer/coc/programstandards2012.html. Published 2016. Accessed May 1, 2019.
28.
Moyer  V; U.S. Preventive Services Task Force.  Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: U.S. Preventive Services Task Force recommendation statement.  Ann Intern Med. 2014;160(4):271-281. doi:10.7326/M13-2747PubMedGoogle ScholarCrossref
29.
Nelson  HD, Fu  R, Goddard  K,  et al.  Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer: Systematic Review to update the U.S. Preventive Services Task Force Recommendation. Rockville, MD: Agency for Healthcare Research and Quality; 2013.
30.
Lindor  NM, Greene  MH. The concise handbook of family cancer syndromes: Mayo Familial Cancer Program.  J Natl Cancer Inst. 1998;90(14):1039-1071. doi:10.1093/jnci/90.14.1039PubMedCrossref
31.
National Cancer Institute. PDQ® Breast Cancer Treatment. 2013. https://www.cancer.gov/cancertopics/pdq/treatment/breast/healthprofessional. Accessed May 1, 2019.
32.
Daly  MB, Pilarski  R, Berry  M,  et al.  NCCN guidelines insights: genetic/familial high-risk assessment: breast and ovarian, version 2.2017.  J Natl Compr Canc Netw. 2017;15(1):9-20. doi:10.6004/jnccn.2017.0003PubMedGoogle ScholarCrossref
33.
Stuckey  AR, Onstad  MA.  Hereditary breast cancer: an update on risk assessment and genetic testing in 2015.  Am J Obstet Gynecol. 2015;213(2):161-165. doi:10.1016/j.ajog.2015.03.003PubMedGoogle ScholarCrossref
34.
Easton  DF, Pharoah  PD, Antoniou  AC,  et al.  Gene-panel sequencing and the prediction of breast-cancer risk.  N Engl J Med. 2015;372(23):2243-2257. doi:10.1056/NEJMsr1501341PubMedGoogle ScholarCrossref
35.
Nelson  HD, Cantor  A, Holmes  R,  et al.  Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer: Systematic Review to Update the U.S. Preventive Services Task Force Recommendation. Rockville, MD: Agency for Healthcare Research and Quality; 2019.
36.
US Preventive Services Task Force (USPSTF). Methods and Processes. USPSTF website. https://www.uspreventiveservicestaskforce.org/Page/Name/methods-and-processes. Published 2018. Accessed May 1, 2019.
37.
Nelson  HD, Pappas  M, Zakher  B, Priest Mitchell  J, Kinaka-Hu  L, Fu  R.  Risk assessment, gentic counseling, and genetic testing for BRCA-related cancer in women: a systematic review to update the U.S.Preventive Services Task Force recommendation.  Ann Intern Med. 2014;160(4):255-266. doi:10.7326/M13-1684PubMedGoogle ScholarCrossref
38.
Antoniou  AC, Hardy  R, Walker  L,  et al.  Predicting the likelihood of carrying a BRCA1 or BRCA2 mutation: validation of BOADICEA, BRCAPRO, IBIS, Myriad and the Manchester scoring system using data from UK genetics clinics.  J Med Genet. 2008;45(7):425-431. doi:10.1136/jmg.2007.056556PubMedGoogle ScholarCrossref
39.
Ashton-Prolla  P, Giacomazzi  J, Schmidt  AV,  et al.  Development and validation of a simple questionnaire for the identification of hereditary breast cancer in primary care.  BMC Cancer. 2009;9:283. doi:10.1186/1471-2407-9-283PubMedGoogle ScholarCrossref
40.
Barcenas  CH, Hosain  GMM, Arun  B,  et al.  Assessing BRCA carrier probabilities in extended families.  J Clin Oncol. 2006;24(3):354-360. doi:10.1200/JCO.2005.02.2368PubMedGoogle ScholarCrossref
41.
Bellcross  CA, Lemke  AA, Pape  LS, Tess  AL, Meisner  LT.  Evaluation of a breast/ovarian cancer genetics referral screening tool in a mammography population.  Genet Med. 2009;11(11):783-789. doi:10.1097/GIM.0b013e3181b9b04aPubMedGoogle ScholarCrossref
42.
Biswas  S, Atienza  P, Chipman  J,  et al.  A two-stage approach to genetic risk assessment in primary care.  Breast Cancer Res Treat. 2016;155(2):375-383. doi:10.1007/s10549-016-3686-2PubMedGoogle ScholarCrossref
43.
Evans  DG, Eccles  DM, Rahman  N,  et al.  A new scoring system for the chances of identifying a BRCA1/2 mutation outperforms existing models including BRCAPRO.  J Med Genet. 2004;41(6):474-480. doi:10.1136/jmg.2003.017996PubMedGoogle ScholarCrossref
44.
Fischer  C, Kuchenbäcker  K, Engel  C,  et al; German Consortium for Hereditary Breast and Ovarian Cancer.  Evaluating the performance of the breast cancer genetic risk models BOADICEA, IBIS, BRCAPRO and Claus for predicting BRCA1/2 mutation carrier probabilities: a study based on 7352 families from the German Hereditary Breast and Ovarian Cancer Consortium.  J Med Genet. 2013;50(6):360-367. doi:10.1136/jmedgenet-2012-101415PubMedGoogle ScholarCrossref
45.
Gilpin  CA, Carson  N, Hunter  AG.  A preliminary validation of a family history assessment form to select women at risk for breast or ovarian cancer for referral to a genetics center.  Clin Genet. 2000;58(4):299-308. doi:10.1034/j.1399-0004.2000.580408.xPubMedGoogle ScholarCrossref
46.
Hoskins  KF, Zwaagstra  A, Ranz  M.  Validation of a tool for identifying women at high risk for hereditary breast cancer in population-based screening.  Cancer. 2006;107(8):1769-1776. doi:10.1002/cncr.22202PubMedGoogle ScholarCrossref
47.
Kast  K, Schmutzler  RK, Rhiem  K,  et al.  Validation of the Manchester scoring system for predicting BRCA1/2 mutations in 9,390 families suspected of having hereditary breast and ovarian cancer.  Int J Cancer. 2014;135(10):2352-2361. doi:10.1002/ijc.28875PubMedGoogle ScholarCrossref
48.
Oros  KK, Ghadirian  P, Maugard  CM,  et al.  Application of BRCA1 and BRCA2 mutation carrier prediction models in breast and/or ovarian cancer families of French Canadian descent.  Clin Genet. 2006;70(4):320-329. doi:10.1111/j.1399-0004.2006.00673.xPubMedGoogle ScholarCrossref
49.
Panchal  SM, Ennis  M, Canon  S, Bordeleau  LJ.  Selecting a BRCA risk assessment model for use in a familial cancer clinic.  BMC Med Genet. 2008;9:116. doi:10.1186/1471-2350-9-116PubMedGoogle ScholarCrossref
50.
Parmigiani  G, Chen  S, Iversen  ES  Jr,  et al.  Validity of models for predicting BRCA1 and BRCA2 mutations.  Ann Intern Med. 2007;147(7):441-450. doi:10.7326/0003-4819-147-7-200710020-00002PubMedGoogle ScholarCrossref
51.
Teller  P, Hoskins  KF, Zwaagstra  A,  et al.  Validation of the pedigree assessment tool (PAT) in families with BRCA1 and BRCA2 mutations.  Ann Surg Oncol. 2010;17(1):240-246. doi:10.1245/s10434-009-0697-9PubMedGoogle ScholarCrossref
52.
Albada  A, van Dulmen  S, Dijkstra  H, Wieffer  I, Witkamp  A, Ausems  MG.  Counselees’ expressed level of understanding of the risk estimate and surveillance recommendation are not associated with breast cancer surveillance adherence.  J Genet Couns. 2016;25(2):279-289. doi:10.1007/s10897-015-9869-xPubMedGoogle ScholarCrossref
53.
Armstrong  K, Micco  E, Carney  A, Stopfer  J, Putt  M.  Racial differences in the use of BRCA1/2 testing among women with a family history of breast or ovarian cancer.  JAMA. 2005;293(14):1729-1736. doi:10.1001/jama.293.14.1729PubMedGoogle ScholarCrossref
54.
Bennett  P, Wilkinson  C, Turner  J,  et al.  Psychological factors associated with emotional responses to receiving genetic risk information.  J Genet Couns. 2008;17(3):234-241. doi:10.1007/s10897-007-9136-xPubMedGoogle ScholarCrossref
55.
Bennett  P, Wilkinson  C, Turner  J,  et al.  Factors associated with intrusive cancer-related worries in women undergoing cancer genetic risk assessment  [published correction appears in Fam Cancer. 2009;8(3):263].  Fam Cancer. 2009;8(2):159-165. doi:10.1007/s10689-008-9221-9PubMedGoogle ScholarCrossref
56.
Bloom  JR, Stewart  SL, Chang  S, You  M.  Effects of a telephone counseling intervention on sisters of young women with breast cancer.  Prev Med. 2006;43(5):379-384. doi:10.1016/j.ypmed.2006.07.002PubMedGoogle ScholarCrossref
57.
Bowen  DJ, Burke  W, Culver  JO, Press  N, Crystal  S.  Effects of counseling Ashkenazi Jewish women about breast cancer risk.  Cultur Divers Ethnic Minor Psychol. 2006;12(1):45-56. doi:10.1037/1099-9809.12.1.45PubMedGoogle ScholarCrossref
58.
Bowen  DJ, Burke  W, McTiernan  A, Yasui  Y, Andersen  MR.  Breast cancer risk counseling improves women’s functioning.  Patient Educ Couns. 2004;53(1):79-86. doi:10.1016/S0738-3991(03)00122-8PubMedGoogle ScholarCrossref
59.
Bowen  DJ, Burke  W, Yasui  Y,  et al.  Effects of risk counseling on interest in breast cancer genetic testing for lower risk women.  Genet Med. 2002;4(5):359-365. PubMedGoogle ScholarCrossref
60.
Brain  K, Norman  P, Gray  J,  et al.  A randomized trial of specialist genetic assessment: psychological impact on women at different levels of familial breast cancer risk.  Br J Cancer. 2002;86(2):233-238. doi:10.1038/sj.bjc.6600051PubMedGoogle ScholarCrossref
61.
Brain  K, Parsons  E, Bennett  P, Cannings-John  R, Hood  K.  The evolution of worry after breast cancer risk assessment: 6-year follow-up of the TRACE study cohort.  Psychooncology. 2011;20(9):984-991.PubMedGoogle Scholar
62.
Braithwaite  D, Sutton  S, Mackay  J, Stein  J, Emery  J.  Development of a risk assessment tool for women with a family history of breast cancer.  Cancer Detect Prev. 2005;29(5):433-439. doi:10.1016/j.cdp.2005.06.001PubMedGoogle ScholarCrossref
63.
Burke  W, Culver  JO, Bowen  D,  et al.  Genetic counseling for women with an intermediate family history of breast cancer.  Am J Med Genet. 2000;90(5):361-368. doi:10.1002/(SICI)1096-8628(20000228)90:5<361::AID-AJMG4>3.0.CO;2-8PubMedGoogle ScholarCrossref
64.
Cull  A, Miller  H, Porterfield  T,  et al.  The use of videotaped information in cancer genetic counselling: a randomized evaluation study.  Br J Cancer. 1998;77(5):830-837. doi:10.1038/bjc.1998.135PubMedGoogle ScholarCrossref
65.
Fry  A, Cull  A, Appleton  S,  et al.  A randomised controlled trial of breast cancer genetics services in South East Scotland: psychological impact.  Br J Cancer. 2003;89(4):653-659. doi:10.1038/sj.bjc.6601170PubMedGoogle ScholarCrossref
66.
Gurmankin  AD, Domchek  S, Stopfer  J, Fels  C, Armstrong  K.  Patients’ resistance to risk information in genetic counseling for BRCA1/2 Arch Intern Med. 2005;165(5):523-529. doi:10.1001/archinte.165.5.523PubMedGoogle ScholarCrossref
67.
Helmes  AW, Culver  JO, Bowen  DJ.  Results of a randomized study of telephone versus in-person breast cancer risk counseling.  Patient Educ Couns. 2006;64(1-3):96-103. doi:10.1016/j.pec.2005.12.002PubMedGoogle ScholarCrossref
68.
Hopwood  P, Keeling  F, Long  A,  et al.  Psychological support needs for women at high genetic risk of breast cancer: some preliminary indicators.  Psychooncology. 1998;7(5):402-412. doi:10.1002/(SICI)1099-1611(1998090)7:5<402::AID-PON317>3.0.CO;2-XPubMedGoogle ScholarCrossref
69.
Hopwood  P, Wonderling  D, Watson  M,  et al.  A randomised comparison of UK genetic risk counselling services for familial cancer: psychosocial outcomes.  Br J Cancer. 2004;91(5):884-892. doi:10.1038/sj.bjc.6602081PubMedGoogle ScholarCrossref
70.
Kelly  KM, Senter  L, Leventhal  H, Ozakinci  G, Porter  K.  Subjective and objective risk of ovarian cancer in Ashkenazi Jewish women testing for BRCA1/2 mutations.  Patient Educ Couns. 2008;70(1):135-142. doi:10.1016/j.pec.2007.09.007PubMedGoogle ScholarCrossref
71.
Lerman  C, Hughes  C, Benkendorf  JL,  et al.  Racial differences in testing motivation and psychological distress following pretest education for BRCA1 gene testing.  Cancer Epidemiol Biomarkers Prev. 1999;8(4, pt 2):361-367.PubMedGoogle Scholar
72.
Lerman  C, Schwartz  MD, Miller  SM, Daly  M, Sands  C, Rimer  BK.  A randomized trial of breast cancer risk counseling: interacting effects of counseling, educational level, and coping style.  Health Psychol. 1996;15(2):75-83. doi:10.1037/0278-6133.15.2.75PubMedGoogle ScholarCrossref
73.
Lobb  EA, Butow  PN, Barratt  A,  et al.  Communication and information-giving in high-risk breast cancer consultations: influence on patient outcomes.  Br J Cancer. 2004;90(2):321-327. doi:10.1038/sj.bjc.6601502PubMedGoogle ScholarCrossref
74.
Matloff  ET, Moyer  A, Shannon  KM, Niendorf  KB, Col  NF.  Healthy women with a family history of breast cancer: impact of a tailored genetic counseling intervention on risk perception, knowledge, and menopausal therapy decision making.  J Womens Health (Larchmt). 2006;15(7):843-856. doi:10.1089/jwh.2006.15.843PubMedGoogle ScholarCrossref
75.
Mikkelsen  EM, Sunde  L, Johansen  C, Johnsen  SP.  Risk perception among women receiving genetic counseling: a population-based follow-up study.  Cancer Detect Prev. 2007;31(6):457-464. doi:10.1016/j.cdp.2007.10.013PubMedGoogle ScholarCrossref
76.
Mikkelsen  EM, Sunde  L, Johansen  C, Johnsen  SP.  Psychosocial consequences of genetic counseling: a population-based follow-up study.  Breast J. 2009;15(1):61-68. doi:10.1111/j.1524-4741.2008.00672.xPubMedGoogle ScholarCrossref
77.
Pieterse  AH, Ausems  MG, Spreeuwenberg  P, van Dulmen  S.  Longer-term influence of breast cancer genetic counseling on cognitions and distress: smaller benefits for affected versus unaffected women.  Patient Educ Couns. 2011;85(3):425-431. doi:10.1016/j.pec.2011.01.017PubMedGoogle ScholarCrossref
78.
Roshanai  AH, Rosenquist  R, Lampic  C, Nordin  K.  Does enhanced information at cancer genetic counseling improve counselees’ knowledge, risk perception, satisfaction and negotiation of information to at-risk relatives?—a randomized study.  Acta Oncol. 2009;48(7):999-1009. doi:10.1080/02841860903104137PubMedGoogle ScholarCrossref
79.
Smerecnik  CMR, Mesters  I, Verweij  E, de Vries  NK, de Vries  H.  A systematic review of the impact of genetic counseling on risk perception accuracy.  J Genet Couns. 2009;18(3):217-228. doi:10.1007/s10897-008-9210-zPubMedGoogle ScholarCrossref
80.
Watson  M, Duvivier  V, Wade Walsh  M,  et al.  Family history of breast cancer: what do women understand and recall about their genetic risk?  J Med Genet. 1998;35(9):731-738. doi:10.1136/jmg.35.9.731PubMedGoogle ScholarCrossref
81.
Watson  M, Lloyd  S, Davidson  J,  et al.  The impact of genetic counselling on risk perception and mental health in women with a family history of breast cancer.  Br J Cancer. 1999;79(5-6):868-874. doi:10.1038/sj.bjc.6690139PubMedGoogle ScholarCrossref
82.
Andrews  L, Meiser  B, Apicella  C, Tucker  K.  Psychological impact of genetic testing for breast cancer susceptibility in women of Ashkenazi Jewish background: a prospective study.  Genet Test. 2004;8(3):240-247. doi:10.1089/gte.2004.8.240PubMedGoogle ScholarCrossref
83.
Arver  B, Haegermark  A, Platten  U, Lindblom  A, Brandberg  Y.  Evaluation of psychosocial effects of pre-symptomatic testing for breast/ovarian and colon cancer pre-disposing genes: a 12-month follow-up.  Fam Cancer. 2004;3(2):109-116. doi:10.1023/B:FAME.0000039863.89137.f9PubMedGoogle ScholarCrossref
84.
Dagan  E, Shochat  T.  Quality of life in asymptomatic BRCA1/2 mutation carriers.  Prev Med. 2009;48(2):193-196. doi:10.1016/j.ypmed.2008.11.007PubMedGoogle ScholarCrossref
85.
Ertmański  S, Metcalfe  K, Trempała  J,  et al.  Identification of patients at high risk of psychological distress after BRCA1 genetic testing.  Genet Test Mol Biomarkers. 2009;13(3):325-330. doi:10.1089/gtmb.2008.0126PubMedGoogle ScholarCrossref
86.
Foster  C, Watson  M, Eeles  R,  et al; Psychosocial Study Collaborators.  Predictive genetic testing for BRCA1/2 in a UK clinical cohort: three-year follow-up.  Br J Cancer. 2007;96(5):718-724. doi:10.1038/sj.bjc.6603610PubMedGoogle ScholarCrossref
87.
Geirdal  AO, Dahl  AA.  The relationship between coping strategies and anxiety in women from families with familial breast-ovarian cancer in the absence of demonstrated mutations.  Psychooncology. 2008;17(1):49-57. doi:10.1002/pon.1198PubMedGoogle ScholarCrossref
88.
Geirdal  AO, Reichelt  JG, Dahl  AA,  et al.  Psychological distress in women at risk of hereditary breast/ovarian or HNPCC cancers in the absence of demonstrated mutations.  Fam Cancer. 2005;4(2):121-126. doi:10.1007/s10689-004-7995-yPubMedGoogle ScholarCrossref
89.
Godard  B, Pratte  A, Dumont  M, Simard-Lebrun  A, Simard  J.  Factors associated with an individual’s decision to withdraw from genetic testing for breast and ovarian cancer susceptibility: implications for counseling.  Genet Test. 2007;11(1):45-54. doi:10.1089/gte.2006.9998PubMedGoogle ScholarCrossref
90.
Graves  KD, Vegella  P, Poggi  EA,  et al.  Long-term psychosocial outcomes of BRCA1/BRCA2 testing: differences across affected status and risk-reducing surgery choice.  Cancer Epidemiol Biomarkers Prev. 2012;21(3):445-455. doi:10.1158/1055-9965.EPI-11-0991PubMedGoogle ScholarCrossref
91.
Julian-Reynier  C, Mancini  J, Mouret-Fourme  E,  et al.  Cancer risk management strategies and perceptions of unaffected women 5 years after predictive genetic testing for BRCA1/2 mutations.  Eur J Hum Genet. 2011;19(5):500-506. doi:10.1038/ejhg.2010.241PubMedGoogle ScholarCrossref
92.
Kinney  AY, Bloor  LE, Mandal  D,  et al.  The impact of receiving genetic test results on general and cancer-specific psychologic distress among members of an African-American kindred with a BRCA1 mutation.  Cancer. 2005;104(11):2508-2516. doi:10.1002/cncr.21479PubMedGoogle ScholarCrossref
93.
Lieberman  S, Tomer  A, Ben-Chetrit  A,  et al.  Population screening for BRCA1/BRCA2 founder mutations in Ashkenazi Jews: proactive recruitment compared with self-referral.  Genet Med. 2017;19(7):754-762. doi:10.1038/gim.2016.182PubMedGoogle ScholarCrossref
94.
Low  CA, Bower  JE, Kwan  L, Seldon  J.  Benefit finding in response to BRCA1/2 testing.  Ann Behav Med. 2008;35(1):61-69. doi:10.1007/s12160-007-9004-9PubMedGoogle ScholarCrossref
95.
Lumish  HS, Steinfeld  H, Koval  C,  et al.  Impact of panel gene testing for hereditary breast and ovarian cancer on patients.  J Genet Couns. 2017;26(5):1116-1129. doi:10.1007/s10897-017-0090-yPubMedGoogle ScholarCrossref
96.
Manchanda  R, Loggenberg  K, Sanderson  S,  et al.  Population testing for cancer predisposing BRCA1/BRCA2 mutations in the Ashkenazi-Jewish community: a randomized controlled trial.  J Natl Cancer Inst. 2014;107(1):379. doi:10.1093/jnci/dju379PubMedGoogle Scholar
97.
Meiser  B, Butow  P, Friedlander  M,  et al.  Psychological impact of genetic testing in women from high-risk breast cancer families.  Eur J Cancer. 2002;38(15):2025-2031. doi:10.1016/S0959-8049(02)00264-2PubMedGoogle ScholarCrossref
98.
Metcalfe  KA, Mian  N, Enmore  M,  et al.  Long-term follow-up of Jewish women with a BRCA1 and BRCA2 mutation who underwent population genetic screening.  Breast Cancer Res Treat. 2012;133(2):735-740. doi:10.1007/s10549-011-1941-0PubMedGoogle ScholarCrossref
99.
Reichelt  JG, Heimdal  K, Møller  P, Dahl  AA.  BRCA1 testing with definitive results: a prospective study of psychological distress in a large clinic-based sample.  Fam Cancer. 2004;3(1):21-28. doi:10.1023/B:FAME.0000026820.32469.4aPubMedGoogle ScholarCrossref
100.
Reichelt  JG, Møller  P, Heimdal  K, Dahl  AA.  Psychological and cancer-specific distress at 18 months post-testing in women with demonstrated BRCA1 mutations for hereditary breast/ovarian cancer.  Fam Cancer. 2008;7(3):245-254. doi:10.1007/s10689-008-9182-zPubMedGoogle ScholarCrossref
101.
Shochat  T, Dagan  E.  Sleep disturbances in asymptomatic BRCA1/2 mutation carriers: women at high risk for breast-ovarian cancer.  J Sleep Res. 2010;19(2):333-340. doi:10.1111/j.1365-2869.2009.00805.xPubMedGoogle ScholarCrossref
102.
Smith  KR, West  JA, Croyle  RT,  et al.  Familial context of genetic testing for cancer susceptibility: moderating effect of siblings’ test results on psychological distress one to two weeks after BRCA1 mutation testing.  Cancer Epidemiol Biomarkers Prev. 1999;8(4, pt 2):385-392. PubMedGoogle Scholar
103.
van Dijk  S, Timmermans  DRM, Meijers-Heijboer  H, Tibben  A, van Asperen  CJ, Otten  W.  Clinical characteristics affect the impact of an uninformative DNA test result: the course of worry and distress experienced by women who apply for genetic testing for breast cancer.  J Clin Oncol. 2006;24(22):3672-3677. doi:10.1200/JCO.2005.03.7259PubMedGoogle ScholarCrossref
104.
van Oostrom  I, Meijers-Heijboer  H, Lodder  LN,  et al.  Long-term psychological impact of carrying a BRCA1/2 mutation and prophylactic surgery: a 5-year follow-up study.  J Clin Oncol. 2003;21(20):3867-3874. doi:10.1200/JCO.2003.10.100PubMedGoogle ScholarCrossref
105.
Domchek  SM, Friebel  TM, Singer  CF,  et al.  Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality.  JAMA. 2010;304(9):967-975. doi:10.1001/jama.2010.1237PubMedGoogle ScholarCrossref
106.
Evans  DGR, Baildam  AD, Anderson  E,  et al.  Risk reducing mastectomy: outcomes in 10 European centres.  J Med Genet. 2009;46(4):254-258. doi:10.1136/jmg.2008.062232PubMedGoogle ScholarCrossref
107.
Flippo-Morton  T, Walsh  K, Chambers  K,  et al.  Surgical decision making in the BRCA-positive population: institutional experience and comparison with recent literature.  Breast J. 2016;22(1):35-44. doi:10.1111/tbj.12521PubMedGoogle ScholarCrossref
108.
Hartmann  LC, Schaid  DJ, Woods  JE,  et al.  Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer.  N Engl J Med. 1999;340(2):77-84. doi:10.1056/NEJM199901143400201PubMedGoogle ScholarCrossref
109.
Hartmann  LC, Sellers  TA, Schaid  DJ,  et al.  Efficacy of bilateral prophylactic mastectomy in BRCA1 and BRCA2 gene mutation carriers.  J Natl Cancer Inst. 2001;93(21):1633-1637. doi:10.1093/jnci/93.21.1633PubMedGoogle ScholarCrossref
110.
Heemskerk-Gerritsen  BA, Menke-Pluijmers  MB, Jager  A,  et al.  Substantial breast cancer risk reduction and potential survival benefit after bilateral mastectomy when compared with surveillance in healthy BRCA1 and BRCA2 mutation carriers: a prospective analysis.  Ann Oncol. 2013;24(8):2029-2035. doi:10.1093/annonc/mdt134PubMedGoogle ScholarCrossref
111.
Heemskerk-Gerritsen  BA, Seynaeve  C, van Asperen  CJ,  et al; Hereditary Breast and Ovarian Cancer Research Group Netherlands.  Breast cancer risk after salpingo-oophorectomy in healthy BRCA1/2 mutation carriers: revisiting the evidence for risk reduction.  J Natl Cancer Inst. 2015;107(5):djv033. doi:10.1093/jnci/djv033PubMedGoogle Scholar
112.
Kotsopoulos  J, Huzarski  T, Gronwald  J,  et al; Hereditary Breast Cancer Clinical Study Group.  Bilateral oophorectomy and breast cancer risk in BRCA1 and BRCA2 mutation carriers.  J Natl Cancer Inst. 2016;109(1). doi:10.1093/jnci/djw177PubMedGoogle Scholar
113.
Kramer  JL, Velazquez  IA, Chen  BE, Rosenberg  PS, Struewing  JP, Greene  MH.  Prophylactic oophorectomy reduces breast cancer penetrance during prospective, long-term follow-up of BRCA1 mutation carriers.  J Clin Oncol. 2005;23(34):8629-8635. doi:10.1200/JCO.2005.02.9199PubMedGoogle ScholarCrossref
114.
Mavaddat  N, Peock  S, Frost  D,  et al; EMBRACE.  Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE.  J Natl Cancer Inst. 2013;105(11):812-822. doi:10.1093/jnci/djt095PubMedGoogle ScholarCrossref
115.
Olson  JE, Sellers  TA, Iturria  SJ, Hartmann  LC.  Bilateral oophorectomy and breast cancer risk reduction among women with a family history.  Cancer Detect Prev. 2004;28(5):357-360. doi:10.1016/j.cdp.2004.03.003PubMedGoogle ScholarCrossref
116.
Rebbeck  TR, Lynch  HT, Neuhausen  SL,  et al; Prevention and Observation of Surgical End Points Study Group.  Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations.  N Engl J Med. 2002;346(21):1616-1622. doi:10.1056/NEJMoa012158PubMedGoogle ScholarCrossref
117.
Shah  P, Rosen  M, Stopfer  J,  et al.  Prospective study of breast MRI in BRCA1 and BRCA2 mutation carriers: effect of mutation status on cancer incidence.  Breast Cancer Res Treat. 2009;118(3):539-546. doi:10.1007/s10549-009-0475-1PubMedGoogle ScholarCrossref
118.
Skytte  AB, Crüger  D, Gerster  M,  et al.  Breast cancer after bilateral risk-reducing mastectomy.  Clin Genet. 2011;79(5):431-437. doi:10.1111/j.1399-0004.2010.01604.xPubMedGoogle ScholarCrossref
119.
Struewing  JP, Watson  P, Easton  DF, Ponder  BA, Lynch  HT, Tucker  MA.  Prophylactic oophorectomy in inherited breast/ovarian cancer families.  J Natl Cancer Inst Monogr. 1995;(17):33-35.PubMedGoogle Scholar
120.
Alamouti  R, Hachach-Haram  N, Farhadi  J.  Multidisciplinary management of risk-reducing mastectomy and immediate reconstruction: treatment algorithm and patient satisfaction.  Eur J Plast Surg. 2015;38(5):385-390. doi:10.1007/s00238-015-1086-1Google ScholarCrossref
121.
Arver  B, Isaksson  K, Atterhem  H,  et al.  Bilateral prophylactic mastectomy in Swedish women at high risk of breast cancer: a national survey.  Ann Surg. 2011;253(6):1147-1154. doi:10.1097/SLA.0b013e318214b55aPubMedGoogle ScholarCrossref
122.
Borreani  C, Manoukian  S, Bianchi  E,  et al.  The psychological impact of breast and ovarian cancer preventive options in BRCA1 and BRCA2 mutation carriers.  Clin Genet. 2014;85(1):7-15. doi:10.1111/cge.12298PubMedGoogle ScholarCrossref
123.
Bourne  TH, Campbell  S, Reynolds  KM,  et al.  Screening for early familial ovarian cancer with transvaginal ultrasonography and colour blood flow imaging.  BMJ. 1993;306(6884):1025-1029. doi:10.1136/bmj.306.6884.1025PubMedGoogle ScholarCrossref
124.
Brandberg  Y, Arver  B, Johansson  H, Wickman  M, Sandelin  K, Liljegren  A.  Less correspondence between expectations before and cosmetic results after risk-reducing mastectomy in women who are mutation carriers: a prospective study.  Eur J Surg Oncol. 2012;38(1):38-43. doi:10.1016/j.ejso.2011.10.010PubMedGoogle ScholarCrossref
125.
Brandberg  Y, Sandelin  K, Erikson  S,  et al.  Psychological reactions, quality of life, and body image after bilateral prophylactic mastectomy in women at high risk for breast cancer: a prospective 1-year follow-up study.  J Clin Oncol. 2008;26(24):3943-3949. doi:10.1200/JCO.2007.13.9568PubMedGoogle ScholarCrossref
126.
Bresser  PJC, Seynaeve  C, Van Gool  AR,  et al.  The course of distress in women at increased risk of breast and ovarian cancer due to an (identified) genetic susceptibility who opt for prophylactic mastectomy and/or salpingo-oophorectomy.  Eur J Cancer. 2007;43(1):95-103. doi:10.1016/j.ejca.2006.09.009PubMedGoogle ScholarCrossref
127.
den Heijer  M, Seynaeve  C, Timman  R,  et al.  Body image and psychological distress after prophylactic mastectomy and breast reconstruction in genetically predisposed women: a prospective long-term follow-up study.  Eur J Cancer. 2012;48(9):1263-1268. doi:10.1016/j.ejca.2011.10.020PubMedGoogle ScholarCrossref
128.
den Heijer  M, Seynaeve  C, Vanheusden  K,  et al.  Long-term psychological distress in women at risk for hereditary breast cancer adhering to regular surveillance: a risk profile.  Psychooncology. 2013;22(3):598-604. doi:10.1002/pon.3039PubMedGoogle ScholarCrossref
129.
Finch  A, Metcalfe  KA, Chiang  JK,  et al.  The impact of prophylactic salpingo-oophorectomy on menopausal symptoms and sexual function in women who carry a BRCA mutation.  Gynecol Oncol. 2011;121(1):163-168. doi:10.1016/j.ygyno.2010.12.326PubMedGoogle ScholarCrossref
130.
Gahm  J, Wickman  M, Brandberg  Y.  Bilateral prophylactic mastectomy in women with inherited risk of breast cancer—prevalence of pain and discomfort, impact on sexuality, quality of life and feelings of regret two years after surgery.  Breast. 2010;19(6):462-469. doi:10.1016/j.breast.2010.05.003PubMedGoogle ScholarCrossref
131.
Gopie  JP, Mureau  MA, Seynaeve  C,  et al.  Body image issues after bilateral prophylactic mastectomy with breast reconstruction in healthy women at risk for hereditary breast cancer.  Fam Cancer. 2013;12(3):479-487. doi:10.1007/s10689-012-9588-5PubMedGoogle ScholarCrossref
132.
Heemskerk-Gerritsen  BAM, Brekelmans  CTM, Menke-Pluymers  MBE,  et al.  Prophylactic mastectomy in BRCA1/2 mutation carriers and women at risk of hereditary breast cancer: long-term experiences at the Rotterdam Family Cancer Clinic.  Ann Surg Oncol. 2007;14(12):3335-3344. doi:10.1245/s10434-007-9449-xPubMedGoogle ScholarCrossref
133.
Hermsen  BBJ, Olivier  RI, Verheijen  RHM,  et al.  No efficacy of annual gynaecological screening in BRCA1/2 mutation carriers; an observational follow-up study.  Br J Cancer. 2007;96(9):1335-1342. doi:10.1038/sj.bjc.6603725PubMedGoogle ScholarCrossref
134.
Isern  AE, Tengrup  I, Loman  N, Olsson  H, Ringberg  A.  Aesthetic outcome, patient satisfaction, and health-related quality of life in women at high risk undergoing prophylactic mastectomy and immediate breast reconstruction.  J Plast Reconstr Aesthet Surg. 2008;61(10):1177-1187. doi:10.1016/j.bjps.2007.08.006PubMedGoogle ScholarCrossref
135.
Kenkhuis  MJA, de Bock  GH, Elferink  PO,  et al.  Short-term surgical outcome and safety of risk reducing salpingo-oophorectomy in BRCA1/2 mutation carriers.  Maturitas. 2010;66(3):310-314. doi:10.1016/j.maturitas.2010.03.018PubMedGoogle ScholarCrossref
136.
Kriege  M, Brekelmans  CTM, Boetes  C,  et al.  Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition.  N Engl J Med. 2004;351(5):427-437. doi:10.1056/NEJMoa031759PubMedGoogle ScholarCrossref
137.
Kriege  M, Brekelmans  CTM, Boetes  C,  et al; Dutch MRI Screening (MRISC) Study Group.  Differences between first and subsequent rounds of the MRISC breast cancer screening program for women with a familial or genetic predisposition.  Cancer. 2006;106(11):2318-2326. doi:10.1002/cncr.21863PubMedGoogle ScholarCrossref
138.
Leach  MO, Boggis  CR, Dixon  AK,  et al; MARIBS Study Group.  Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS).  Lancet. 2005;365(9473):1769-1778. doi:10.1016/S0140-6736(05)66481-1PubMedGoogle ScholarCrossref
139.
Le-Petross  HT, Whitman  GJ, Atchley  DP,  et al.  Effectiveness of alternating mammography and magnetic resonance imaging for screening women with deleterious BRCA mutations at high risk of breast cancer.  Cancer. 2011;117(17):3900-3907. doi:10.1002/cncr.25971PubMedGoogle ScholarCrossref
140.
Metcalfe  KA, Esplen  MJ, Goel  V, Narod  SA.  Psychosocial functioning in women who have undergone bilateral prophylactic mastectomy.  Psychooncology. 2004;13(1):14-25. doi:10.1002/pon.726PubMedGoogle ScholarCrossref
141.
Michelsen  TM, Dørum  A, Tropé  CG, Fosså  SD, Dahl  AA.  Fatigue and quality of life after risk-reducing salpingo-oophorectomy in women at increased risk for hereditary breast-ovarian cancer.  Int J Gynecol Cancer. 2009;19(6):1029-1036. doi:10.1111/IGC.0b013e3181a83cd5PubMedGoogle ScholarCrossref
142.
Nurudeen  S, Guo  H, Chun  Y,  et al.  Patient experience with breast reconstruction process following bilateral mastectomy in BRCA mutation carriers.  Am J Surg. 2017;214(4):687-694. doi:10.1016/j.amjsurg.2017.06.017PubMedGoogle ScholarCrossref
143.
Portnoy  DB, Loud  JT, Han  PK, Mai  PL, Greene  MH.  Effects of false-positive cancer screenings and cancer worry on risk-reducing surgery among BRCA1/2 carriers.  Health Psychol. 2015;34(7):709-717. doi:10.1037/hea0000156PubMedGoogle ScholarCrossref
144.
Rijnsburger  AJ, Essink-Bot  ML, van Dooren  S,  et al.  Impact of screening for breast cancer in high-risk women on health-related quality of life.  Br J Cancer. 2004;91(1):69-76. doi:10.1038/sj.bjc.6601912PubMedGoogle ScholarCrossref
145.
Spiegel  TN, Esplen  MJ, Hill  KA, Wong  J, Causer  PA, Warner  E.  Psychological impact of recall on women with BRCA mutations undergoing MRI surveillance.  Breast. 2011;20(5):424-430. doi:10.1016/j.breast.2011.04.004PubMedGoogle ScholarCrossref
146.
Stefanek  ME, Helzlsouer  KJ, Wilcox  PM, Houn  F.  Predictors of and satisfaction with bilateral prophylactic mastectomy.  Prev Med. 1995;24(4):412-419. doi:10.1006/pmed.1995.1066PubMedGoogle ScholarCrossref
147.
Wasteson  E, Sandelin  K, Brandberg  Y, Wickman  M, Arver  B.  High satisfaction rate ten years after bilateral prophylactic mastectomy—a longitudinal study.  Eur J Cancer Care (Engl). 2011;20(4):508-513. doi:10.1111/j.1365-2354.2010.01204.xPubMedGoogle ScholarCrossref
148.
Vreemann  S, Gubern-Merida  A, Schlooz-Vries  MS,  et al.  Influence of risk category and screening round on the performance of an MR imaging and mammography screening program in carriers of the BRCA mutation and other women at increased risk.  Radiology. 2018;286(2):443-451. doi:10.1148/radiol.2017170458PubMedGoogle ScholarCrossref
149.
Rijnsburger  AJ, Obdeijn  IM, Kaas  R,  et al.  BRCA1-associated breast cancers present differently from BRCA2-associated and familial cases: long-term follow-up of the Dutch MRISC Screening Study.  J Clin Oncol. 2010;28(36):5265-5273. doi:10.1200/JCO.2009.27.2294PubMedGoogle ScholarCrossref
150.
Nelson  HD, Fu  R, McDonagh  M,  et al.  Medication Use for the Risk Reduction of Primary Breast Cancer in Women: A Systematic Review for the U.S. Preventive Services Task Force. Rockville, MD: Agency for Healthcare Research and Quality; 2019.
151.
Fisher  B, Costantino  JP, Wickerham  DL,  et al.  Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study.  J Natl Cancer Inst. 2005;97(22):1652-1662. doi:10.1093/jnci/dji372PubMedGoogle ScholarCrossref
152.
Powles  TJ, Ashley  S, Tidy  A, Smith  IE, Dowsett  M.  Twenty-year follow-up of the Royal Marsden randomized, double-blinded tamoxifen breast cancer prevention trial.  J Natl Cancer Inst. 2007;99(4):283-290. doi:10.1093/jnci/djk050PubMedGoogle ScholarCrossref
153.
Veronesi  U, Maisonneuve  P, Rotmensz  N,  et al; Italian Tamoxifen Study Group.  Tamoxifen for the prevention of breast cancer: late results of the Italian Randomized Tamoxifen Prevention Trial among women with hysterectomy.  J Natl Cancer Inst. 2007;99(9):727-737. doi:10.1093/jnci/djk154PubMedGoogle ScholarCrossref
154.
Cuzick  J, Forbes  JF, Sestak  I,  et al; International Breast Cancer Intervention Study I Investigators.  Long-term results of tamoxifen prophylaxis for breast cancer—96-month follow-up of the randomized IBIS-I trial.  J Natl Cancer Inst. 2007;99(4):272-282. doi:10.1093/jnci/djk049PubMedGoogle ScholarCrossref
155.
Grady  D, Cauley  JA, Geiger  MJ,  et al; Raloxifene Use for The Heart Trial Investigators.  Reduced incidence of invasive breast cancer with raloxifene among women at increased coronary risk.  J Natl Cancer Inst. 2008;100(12):854-861. doi:10.1093/jnci/djn153PubMedGoogle ScholarCrossref
156.
Lippman  ME, Cummings  SR, Disch  DP,  et al.  Effect of raloxifene on the incidence of invasive breast cancer in postmenopausal women with osteoporosis categorized by breast cancer risk.  Clin Cancer Res. 2006;12(17):5242-5247. doi:10.1158/1078-0432.CCR-06-0688PubMedGoogle ScholarCrossref
157.
Cuzick  J, Sestak  I, Forbes  JF,  et al; IBIS-II Investigators.  Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): an international, double-blind, randomised placebo-controlled trial.  Lancet. 2014;383(9922):1041-1048. doi:10.1016/S0140-6736(13)62292-8PubMedGoogle ScholarCrossref
158.
Sestak  I, Singh  S, Cuzick  J,  et al.  Changes in bone mineral density at 3 years in postmenopausal women receiving anastrozole and risedronate in the IBIS-II bone substudy: an international, double-blind, randomised, placebo-controlled trial  [published correction appears in Lancet Oncol. 2014;15(13):e587].  Lancet Oncol. 2014;15(13):1460-1468. doi:10.1016/S1470-2045(14)71035-6PubMedGoogle ScholarCrossref
159.
Spagnolo  F, Sestak  I, Howell  A, Forbes  JF, Cuzick  J.  Anastrozole-induced carpal tunnel syndrome: results from the International Breast Cancer Intervention Study II prevention trial.  J Clin Oncol. 2016;34(2):139-143. doi:10.1200/JCO.2015.63.4972PubMedGoogle ScholarCrossref
160.
Goss  PE, Ingle  JN, Alés-Martínez  JE,  et al; NCIC CTG MAP.3 Study Investigators.  Exemestane for breast-cancer prevention in postmenopausal women.  N Engl J Med. 2011;364(25):2381-2391. doi:10.1056/NEJMoa1103507PubMedGoogle ScholarCrossref
161.
Maunsell  E, Goss  PE, Chlebowski  RT,  et al.  Quality of life in MAP.3 (Mammary Prevention 3): a randomized, placebo-controlled trial evaluating exemestane for prevention of breast cancer.  J Clin Oncol. 2014;32(14):1427-1436. doi:10.1200/JCO.2013.51.2483PubMedGoogle ScholarCrossref
162.
Vogel  VG, Costantino  JP, Wickerham  DL,  et al; National Surgical Adjuvant Breast and Bowel Project.  Update of the National Surgical Adjuvant Breast and Bowel Project Study of Tamoxifen and Raloxifene (STAR) P-2 Trial: preventing breast cancer.  Cancer Prev Res (Phila). 2010;3(6):696-706. doi:10.1158/1940-6207.CAPR-10-0076PubMedGoogle ScholarCrossref
US Preventive Services Task Force
Evidence Report
August 20, 2019

Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer in Women: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force

Author Affiliations
  • 1Pacific Northwest Evidence-based Practice Center, Oregon Health & Science University, Portland
JAMA. 2019;322(7):666-685. doi:10.1001/jama.2019.8430
Abstract

Importance  Pathogenic mutations in breast cancer susceptibility genes BRCA1 and BRCA2 increase risks for breast, ovarian, fallopian tube, and peritoneal cancer in women; interventions reduce risk in mutation carriers.

Objective  To update the 2013 US Preventive Services Task Force review on benefits and harms of risk assessment, genetic counseling, and genetic testing for BRCA1/2-related cancer in women.

Data Sources  Cochrane libraries; MEDLINE, PsycINFO, EMBASE (January 1, 2013, to March 6, 2019, for updates; January 1, 1994, to March 6, 2019, for new key questions and populations); reference lists.

Study Selection  Discriminatory accuracy studies, randomized clinical trials (RCTs), and observational studies of women without recently diagnosed BRCA1/2-related cancer.

Data Extraction and Synthesis  Data on study methods, setting, population characteristics, eligibility criteria, interventions, numbers enrolled and lost to follow-up, outcome ascertainment, and results were abstracted. Two reviewers independently assessed study quality.

Main Outcomes and Measures  Cancer incidence and mortality; discriminatory accuracy of risk assessment tools for BRCA1/2 mutations; benefits and harms of risk assessment, genetic counseling, genetic testing, and risk-reducing interventions.

Results  For this review, 103 studies (110 articles; N = 92 712) were included. No studies evaluated the effectiveness of risk assessment, genetic counseling, and genetic testing in reducing incidence and mortality of BRCA1/2-related cancer. Fourteen studies (n = 43 813) of 8 risk assessment tools to guide referrals to genetic counseling demonstrated moderate to high accuracy (area under the receiver operating characteristic curve, 0.68-0.96). Twenty-eight studies (n = 8060) indicated that genetic counseling was associated with reduced breast cancer worry, anxiety, and depression; increased understanding of risk; and decreased intention for testing. Twenty studies (n = 4322) showed that breast cancer worry and anxiety were higher after testing for women with positive results and lower for others; understanding of risk was higher after testing. In 8 RCTs (n = 54 651), tamoxifen (relative risk [RR], 0.69 [95% CI, 0.59-0.84]; 4 trials), raloxifene (RR, 0.44 [95% CI, 0.24-0.80]; 2 trials), and aromatase inhibitors (RR, 0.45 [95% CI, 0.26-0.70]; 2 trials) were associated with lower risks of invasive breast cancer compared with placebo; results were not specific to mutation carriers. Mastectomy was associated with 90% to 100% reduction in breast cancer incidence (6 studies; n = 2546) and 81% to 100% reduction in breast cancer mortality (1 study; n = 639); oophorectomy was associated with 69% to 100% reduction in ovarian cancer (2 studies; n = 2108); complications were common with mastectomy.

Conclusions and Relevance  Among women without recently diagnosed BRCA1/2-related cancer, the benefits and harms of risk assessment, genetic counseling, and genetic testing to reduce cancer incidence and mortality have not been directly evaluated by current research.

Introduction

Pathogenic mutations in the breast cancer susceptibility genes BRCA1 and BRCA2 are associated with increased risks for breast, ovarian, fallopian tube, and peritoneal cancer in women, breast cancer in men, and, to a lesser degree, pancreatic and early-onset prostate cancer1-6; BRCA2 is also associated with melanoma.3,4BRCA1/2 mutations cluster in families, exhibiting an autosomal dominant pattern of transmission in either the maternal or paternal lineage. Penetrance, the probability of developing cancer in BRCA1/2 mutation carriers, is variable, and many carriers never develop cancer.

BRCA1/2 mutations occur in 1 in 300 to 500 individuals in the general population7-10 and account for 5% to 10% of breast and 15% of ovarian cancer.7,11 Specific BRCA1/2 mutations, known as founder mutations, are clustered among certain groups, such as Ashkenazi Jews,12-14 among others. In general, breast cancer risk increases to 45% to 65% by age 70 years for pathogenic mutations in either the BRCA1 or the BRCA2 gene15,16; ovarian, fallopian tube, or peritoneal cancer risk increases to 39% for mutations in BRCA1 and 10% to 17% in BRCA2.15-23 Genetic counseling involves identifying and advising individuals at risk for inherited cancer susceptibility and is recommended before and after BRCA1/2 mutation testing.24-26 Accreditation standards outline essential training and skills for genetics professionals.27 Interventions to reduce risk for cancer in mutation carriers include earlier, more frequent, or intensive cancer screening; risk-reducing medications; and risk-reducing surgery, including mastectomy and salpingo-oophorectomy.

This report was used by the US Preventive Services Task Force (USPSTF) to update the 2013 recommendation on risk assessment, genetic counseling, and genetic testing for BRCA1/2-related cancer in women with clinically relevant family cancer histories (B recommendation) but not for women without family histories (D recommendation).28,29 This report focuses on BRCA1/2 mutations because they are more prevalent and penetrant than other types,4,30-32 estimates of associated cancer risk are available, and interventions to reduce risk for carriers have been studied.32-34

Methods
Scope of Review

Detailed methods are available in the full evidence report at https://www.uspreventiveservicestaskforce.org/Page/Document/RecommendationStatementFinal/brca-related-cancer-risk-assessment-genetic-counseling-and-genetic-testing1.35Figure 1 shows the analytic framework and key questions (KQs) that guided this review. Studies of male breast cancer, pancreatic cancer, prostate cancer, and melanoma are outside the scope of this review, although all types of cancer are considered during familial risk assessment. Ovarian, fallopian tube, and peritoneal carcinomas are overlapping epithelial malignancies in which the designation of the 3 primary sites is often arbitrary. For the purpose of this review, the 3 disease sites are collectively referred to as ovarian carcinoma. The screening population was expanded for this update to include women with unknown mutation status and either no previous diagnosis of BRCA1/2-related cancer or previous diagnosis but completion of cancer treatment.

Data Sources and Searches

The Cochrane Central Register of Controlled Trials and Database of Systematic Reviews, Ovid EMBASE, and MEDLINE (January 1, 2013, to March 6, 2019, for updates; January 1, 1994, to March 6, 2019, for new KQs and populations) were searched for relevant English-language articles (eMethods 1 in the Supplement); reference lists were manually reviewed. Studies published before 2013 were identified from prior systematic reviews for the USPSTF.29,37

Study Selection

Investigators reviewed abstracts and full-text articles using prespecified eligibility criteria (eTable 1 in the Supplement).35,36 A second reviewer independently confirmed results of the initial review, and discrepancies were resolved by consensus with a third reviewer if needed.

Randomized clinical trials (RCTs), systematic reviews, prospective and retrospective cohort studies, case-control studies, and diagnostic accuracy evaluations that addressed KQs were eligible. These included studies of the accuracy of risk assessment tools (KQ2a), outcomes of genetic counseling and testing (KQ1, KQ2b, KQ2c, KQ2d), and effectiveness studies of interventions to reduce risk of BRCA1/2-related cancer among mutation carriers (KQ4). Interventions included intensive screening (earlier and more frequent mammography, breast magnetic resonance imaging [MRI], transvaginal ultrasound [TVUS], cancer antigen 125 [CA-125] levels), risk-reducing medications (tamoxifen, raloxifene, aromatase inhibitors), and risk-reducing surgery (mastectomy, salpingo-oophorectomy). Risk assessment tools were included only if they were intended for use by nonspecialists in genetics to guide referrals, such as the Pedigree Assessment Tool (PAT), and were applicable to US clinical settings. Evaluation of complex models used in genetic counseling was outside the scope of this review. Studies of any design were included to describe potential harms of risk assessment, genetic counseling, genetic testing, and risk-reducing interventions (KQ3, KQ5).

Studies that included women with histories of breast or ovarian cancer were excluded from the 2013 review. For this update, studies that included women who were diagnosed with breast or ovarian cancer at least 5 years before enrollment and completed cancer treatment were included to ensure that genetic testing was intended for risk reduction rather than treatment purposes. Studies that did not report the time since breast or ovarian cancer diagnosis were excluded.

Data Extraction and Quality Assessment

For the included RCTs and observational studies, investigators abstracted data on study design; setting; population characteristics (including age, ethnicity, and diagnosis); eligibility criteria; interventions; numbers enrolled and lost to follow-up; method of outcome ascertainment; and results for each outcome. For studies of risk assessment tools, investigators abstracted data on study design; population characteristics; eligibility criteria; reference standards; risk factors included in the models; and performance measures of the models. A second investigator reviewed accuracy of abstracted data.

Two investigators independently applied criteria developed by the USPSTF36 to rate the quality of each study as good, fair, or poor (eMethods 2 and eTables in the Supplement). Discrepancies were resolved through a consensus process.

Data Synthesis and Analysis

For all KQs, the overall quality of evidence was rated good, fair, or poor based on study quality, consistency of results, precision of estimates, study limitations, risk of reporting bias, and applicability, and summarized in a table.36 No statistical meta-analysis was performed.

Results

For this review, 103 studies (110 articles; N = 92 712) were included (Figure 2)38-147: 14 discriminatory accuracy studies (n = 43 813), 15 RCTs (n = 4132), 59 cohort studies (n = 41 300), 2 case-control studies (n = 481), 12 before-and-after studies (n = 1372), and 1 systematic review (n = 1614).

Effectiveness of Risk Assessment, Genetic Counseling, and Genetic Testing in Reducing Incidence and Mortality of BRCA1/2-Related Cancer

Key Question 1. In women with unknown BRCA1/2 mutation status, does risk assessment, genetic counseling, and genetic testing result in reduced incidence of BRCA1/2-related cancer and cause-specific and all-cause mortality?

No studies were identified for KQ1.

Accuracy of Risk Assessment and Pretest Genetic Counseling

Key Question 2a. What is the accuracy of familial risk assessment for BRCA1/2-related cancer when performed by a nonspecialist in genetics in a clinical setting? What are the optimal ages and intervals for risk assessment?

Fourteen discriminatory accuracy studies (n = 43 813) of 8 risk assessment tools met inclusion criteria (Table 1),38-51 including 4 new studies that evaluated existing tools.42,44,47,51 No studies evaluated optimal ages and intervals for risk assessment. Most studies used results of BRCA1/2 mutation testing as the reference standard, although 2 studies used clinical criteria that involved risk estimates from more complex risk assessment models.39,41

Risk assessment tools were developed to predict the likelihood of BRCA1/2 mutations in individuals and generally include variations of familial risk factors. These include BRCA1/2 mutations previously detected in relatives; Ashkenazi Jewish ancestry; numbers, ages, and types of relatives affected with breast or ovarian cancer; and presentations of cancer that are highly suggestive of BRCA1/2 mutations, such as male or bilateral breast cancer, breast and ovarian cancer in the same person, and young age (<50 years) at cancer onset. Risk assessment tools included initial and revised versions of the Ontario Family History Assessment Tool (FHAT), 7-question Family History Screening (FHS-7), Manchester Scoring System (MSS), PAT, Referral Screening Tool (RST), International Breast Cancer Intervention Study (IBIS) risk model, and brief versions of BRCAPRO, a complex statistical model typically used by genetic counselors.

Results of the 4 new studies42,44,47,51 were consistent with the 10 previous studies38-41,43,45,46,48-50 indicating moderate to high diagnostic accuracy of risk assessment tools in predicting BRCA1/2 mutations in individuals (area under the receiver operating characteristic curve [AUC], 0.68-0.96). A new study of a revised version of the MSS that integrated pathology data of the family member diagnosed with cancer47 reported a higher AUC than the previous version43,45,50,51 (0.80 [95% CI, 0.78-0.82] for revised MSS vs 0.77 [95% CI, 0.75-0.79] for previous MSS). In new validation studies, the discriminatory accuracy of referral tools was comparable to that of more complex tools for the PAT (AUC, 0.71 for PAT; 0.68 for Myriad II; 0.72 for Penn II)51 and IBIS (AUC, 0.75 [95% CI, 0.74-0.76] for IBIS; 0.79 [95% CI, 0.78-0.80] for the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm [BOADICEA]; 0.80 [95% CI, 0.78-0.81] for BRCAPRO; 0.75 [95% CI, 0.73-0.76] for eClaus).44 In another new study, the accuracy of 3 brief versions of BRCAPRO followed by the full BRCAPRO if indicated was similar to using BRCAPRO alone (AUC, 0.78-0.79 for brief versions followed by full BRCAPRO; AUC, 0.78 [95% CI, 0.76-0.81] for full BRCAPRO alone).42

Key Question 2b. What are the benefits of pretest genetic counseling in determining eligibility for genetic testing for BRCA1/2-related cancer?

Twenty-eight studies (30 articles; n = 8060) were included (Table 2),52-81 including 1 new before-and-after study.52 The new study showed that agreement between a woman’s understanding of her breast cancer risk and her genetic counselor’s appraisal decreased 1 year after counseling compared with immediately after (49% agreement vs 35%) among 89 women in the Netherlands.52

Studies included in the previous review reported additional outcomes. Of 17 studies evaluating breast cancer worry, 1 reported increased measures after genetic counseling but only in women at high risk60; 8 reported decreases54,57,61,62,65,67,69,76; and 8 reported no associations.56,58,63,68,71,72,80,81 Some studies showed mixed results that varied by subgroup or type of counseling.55,60,61,71

Thirteen studies evaluated anxiety associated with genetic counseling; none reported increases, 5 reported decreases,58,60,62,77,78 and 8 reported no associations.54,64,68,69,73,76,80,81 Seven studies of depression also showed no increases in measures of depression, while 1 study indicated decreases78 and 6 reported no associations.54,58,64,73,76,80

Of 22 studies evaluating the association of genetic counseling with women’s understanding of their cancer risk, 14 reported increased understanding,57,58,60,62,63,65-68,72,74,77,78,80 1 reported decreased understanding,70 6 (including the new study) reported no associations,52,56,69,73,75,81 and 1 reported mixed results.64 Five studies evaluated the association of genetic counseling with intention for genetic testing; 1 study reported increased intention,71 4 reported decreased intention,57,60,63,67 and none reported no associations.

BRCA1/2 Mutation Testing and Posttest Genetic Counseling

Key Question 2c. What are optimal testing approaches to determine the presence of pathogenic BRCA1/2 mutations in women at increased risk for BRCA1/2-related cancer?

A new good-quality RCT randomized 691 women and 343 men of Ashkenazi Jewish ancestry (4 grandparents) to population-based BRCA1/2 mutation testing vs family history–based testing in the United Kingdom.96 The detected prevalence of BRCA1/2 mutations among participants was 2.45% overall, with 13 BRCA1/2 carriers identified by population testing and 9 by family history. Over 3 years of follow-up, 210 of the 438 family history–negative participants opted to complete testing that identified an additional 5 carriers among family history–negative participants.96 Health outcomes related to increased detection, such as cancer incidence, mortality, and potential harms, were not determined. Short-term measures of anxiety, health anxiety, depression, distress, uncertainty, and quality of life were similar between testing groups.

Key Question 2d. What are optimal posttest counseling approaches to interpret results and determine eligibility for interventions to reduce risk of BRCA1/2-related cancer?

No studies were identified that specifically addressed posttest counseling.

Harms of Risk Assessment and Pretest Genetic Counseling

Key Question 3a. What are adverse effects of risk assessment?

No studies were identified for KQ3a.

Key Question 3b. What are adverse effects of pretest genetic counseling?

Twenty-eight studies (30 articles; n = 8060) of pretest genetic counseling included for KQ2b (Table 2)52-81 were also included for KQ3b because the outcome measures were designed to indicate benefits or harms. Results indicated that counseling was not associated with increased breast cancer worry, anxiety, or depression as described above. Two studies indicated women have less understanding of their risks after genetic counseling,64,70 while 14 studies indicated increased understanding.57,58,60,62,63,65-68,72,74,77,78,80

Key Question 3c. What are adverse effects of genetic testing?

Twenty observational studies (22 articles; n = 4322), including 6 new studies82,89,93,95,96,102 and 14 (in 16 articles) from the 2013 review,83-88,90-92,94,97-101,103 met inclusion criteria (eTable 2 in the Supplement).82-95,97-104 Studies determined psychological effects of genetic testing for BRCA1/2-related cancer, measured as changes in worry, anxiety, depression, and understanding of risk. Two studies were not included in the 2013 review because they enrolled women previously treated for breast or ovarian cancer.82,102

Studies included cohort, case-control, and before-and-after designs that were small; lacked comparison groups; varied in methodology, enrollment criteria, and outcomes; and had high loss to follow-up. Results indicate that breast cancer worry and anxiety generally increased for women with positive results and decreased for others, although measures varied across studies. Understanding of risk improved after receiving test results.

Key Question 3d. What are adverse effects of posttest genetic counseling?

No studies were identified that specifically addressed posttest counseling.

Effectiveness and Harms of Interventions to Reduce BRCA1/2-Related Cancer and Mortality in BRCA1/2 Mutation Carriers

Key Question 4. Do interventions reduce the incidence of BRCA1/2-related cancer and mortality in women at increased risk?

No effectiveness trials of intensive screening for breast or ovarian cancer in BRCA1/2 mutation carriers that report cancer or mortality outcomes have been published. Studies of performance characteristics of intensive screening may be useful in clinical decision-making, but these studies do not directly address this key question. In 2 studies including 1364 BRCA1/2 mutation carriers, sensitivity of screening for breast cancer was 63% to 69% for MRI, 25% to 62% for mammography, and 66% to 70% for combined modalities; specificity was 91% or higher for either modality alone or combined (eTable 3 in the Supplement).148,149 In a study of 459 BRCA1/2 mutation carriers, sensitivity of screening for ovarian cancer was 43% for TVUS, 71% for CA-125, and 71% for combined modalities; specificity was 99% for either modality alone or combined.132

No trials of risk-reducing medications reported results specifically for BRCA1/2 mutation carriers. A systematic review and meta-analysis150 of 8 placebo-controlled RCTs (n = 54 651) of tamoxifen,151-154 raloxifene,155,156 and the aromatase inhibitors anastrozole157-159 and exemestane160,161 and a head-to-head trial of tamoxifen vs raloxifene (n = 19 747)162 provide efficacy outcomes for women at various risk levels. Trials were clinically heterogeneous and data were not available to compare doses, duration, and timing of use. Tamoxifen (risk ratio [RR], 0.69 [95% CI, 0.59-0.84]; 4 trials; n = 28 421), raloxifene (RR, 0.44 [95% CI, 0.24-0.80]; 2 trials; n = 17 806), and aromatase inhibitors (RR, 0.45 [95% CI, 0.26- 0.70]; 2 trials; n = 8424) were associated with lower risk of invasive breast cancer after 3 to 5 years of use compared with placebo (eTable 4 in the Supplement); tamoxifen had a greater effect than raloxifene in the head-to-head trial (RR, 1.24 [95% CI, 1.05-1.47]; n = 19 747).162 Risks for invasive breast cancer were lower in all subgroups evaluated based on family history of breast cancer. Reduction was significant for estrogen receptor (ER)–positive, but not ER-negative, breast cancer, noninvasive breast cancer, and mortality.

Six observational studies (7 articles; n = 2546) of risk-reducing mastectomy,105-110,118 2 of risk-reducing salpingo-oophorectomy (n = 2379),105,111 and 7 of oophorectomy alone (n = 6807)112-117,119 were included (Table 3). Risk-reducing bilateral mastectomy was associated with 90% to 100% reduction in breast cancer incidence for high-risk women and BRCA1/2 mutation carriers.105-110 Breast cancer–specific mortality was lower by 81% to 100% after risk-reducing mastectomy in 1 study of 639 women.108

Newer studies of oophorectomy or salpingo-oophorectomy that control for biases did not show associations between surgery and breast cancer risk,111,112,114 although some studies showed reduced risk specifically among younger women after surgery.112-115 Oophorectomy was associated with 69% to 100% reduction in ovarian cancer risk among 2108 women in 2 studies105,113,116 but with no differences in cancer-specific mortality.105

Key Question 5. What are adverse effects of interventions to reduce risk for BRCA1/2-related cancer?

For breast cancer screening, 3 studies (4 articles; n = 2631) of false-positive and false-negative results, recall rates, and diagnostic procedures136-139 and 3 studies (4 articles; n = 513) of discomfort, pain, breast cancer worry, anxiety, and depression128,143-145 were included (eTable 5 in the Supplement). In these studies, false-positive rates,137 recall,138 additional imaging,136and benign biopsy results136 were higher with MRI than with mammography. In most studies, women experienced no anxiety or depression after screening with MRI, mammography, or clinical breast examination, and breast cancer worry decreased over time.128,143-145 For ovarian cancer screening, studies indicated a false-positive rate of 3.4% (55/1595) for TVUS123 and a diagnostic surgery rate of 55% (6/11), with benign results for combined TVUS and CA-125.133

No studies evaluated the adverse effects of risk-reducing medications specifically in BRCA1/2 mutation carriers, although adverse effects were reported in 9 RCTs of women at various levels of risk,150 including placebo-controlled trials of tamoxifen,151-154 raloxifene,155,156 and the aromatase inhibitors anastrozole157-159 and exemestane160,161 and a head-to-head RCT of tamoxifen vs raloxifene.162 Data on long-term effects were incomplete, particularly for aromatase inhibitors. Tamoxifen (RR, 1.93 [95% CI, 1.33-2.68]; 4 trials; n = 28 421) and raloxifene (RR, 1.56 [95% CI, 1.11-2.60]; 2 trials; n = 17 806) were associated with increased thromboembolic events compared with placebo (eTable 6 in the Supplement),150 and numbers of events were higher for tamoxifen than for raloxifene in the head-to-head trial (RR, 0.75 [95% CI, 0.60-0.93]; n = 19 747).162 Tamoxifen was also associated with increased endometrial cancer (RR, 2.25 [95% CI, 1.17-4.41]; 3 trials; n = 11 721)150 and cataracts.151 All medications were associated with undesirable adverse effects for some women, such as vasomotor and musculoskeletal symptoms.

Twelve observational studies (13 articles; n = 2684), including 8 new studies (n = 750), of surgical complications, physical symptoms, or psychological outcomes related to risk-reducing mastectomy120,121,124,125,127,130-132,134,140,142,146,147 and 5 studies (n = 530), including 4 new studies (n = 449), related to risk-reducing salpingo-oophorectomy or oophorectomy122,126,129,135,141 were included (eTable 7 in the Supplement). In studies of mastectomy, 50% or more of women experienced surgical complications including necrosis, pain, infection, hematoma, and implant problems.121,130-132,140,142 While body image and psychological symptoms worsened after surgery for some women, most measures returned to baseline later.127,131,134,146 Rates of surgical complications with salpingo-oophorectomy were approximately 4% (7/159) in a single study,135 although women had worsening of vasomotor symptoms, sexual functioning, and fatigue.129,141

Discussion

This evidence report reviewed current research on benefits and harms of risk assessment, genetic counseling, and genetic testing for BRCA1/2-related cancer in women. Table 4 summarizes the evidence reviewed.

This review expands the scope of previous reports for the USPSTF29,37 by including studies of untested women with previous diagnoses of BRCA1/2-related cancer who completed treatment and are considered cancer-free. These women may have missed earlier opportunities for risk assessment, genetic counseling, genetic testing, and risk-reducing interventions because these services may not have been available previously. Despite a comprehensive literature search, only 2 relevant studies that included this population were identified for this review, and they provided very limited information addressing key questions.

Four new studies evaluated the discriminatory accuracy of existing risk-assessment tools intended to guide referrals from primary care settings to genetic counseling. Studies indicated moderate to high predictive accuracy of revised versions of the MSS and brief versions of BRCAPRO and additional validation of the PAT and IBIS.

An RCT was the only study addressing a new KQ (KQ2c) regarding optimal testing approaches to determine the presence of pathogenic BRCA1/2 mutations in women at increased risk for BRCA1/2-related cancer. Results indicated that population-based testing of Ashkenazi Jews detected more BRCA1/2 mutations than family history–based testing. The study also found that potential harms, such as anxiety, depression, distress, uncertainty, and quality of life, were similar between groups. However, that study did not evaluate clinical outcomes central to decisions about screening, such as reduction in cancer incidence and mortality.

Only 1 new small study evaluated the benefits and harms of genetic counseling and indicated no association between a woman’s understanding of her breast cancer risk and the genetic counselor’s assessment, contrary to most studies that show improved understanding. Six new studies of benefits and harms of genetic testing were generally consistent with previous studies showing that breast cancer worry and anxiety increased after testing for those with positive results and decreased for others.

Two new RCTs of aromatase inhibitors indicated reductions in invasive breast cancer compared with placebo, although results were not specifically reported in BRCA1/2 mutation carriers. Similar to tamoxifen and raloxifene, aromatase inhibitors were associated with reduced ER-positive but not ER-negative breast cancer, noninvasive breast cancer, or breast cancer–specific or all-cause mortality. Unlike tamoxifen and raloxifene, adverse effects of aromatase inhibitors in risk reduction trials are unclear because of short follow-up times. All medications were associated with symptomatic adverse effects, such as vasomotor and musculoskeletal symptoms.

New observational studies are consistent with previous studies showing that risk-reducing mastectomy was associated with reduced breast cancer and breast cancer mortality. Risk-reducing salpingo-oophorectomy was associated with reduced ovarian cancer incidence.

Despite the inclusion of 103 studies in this report, current research is limited or lacking for most KQs. Risk assessment, genetic counseling, and genetic testing to reduce BRCA1/2-related cancer incidence and mortality as a prevention service for women has not been directly addressed by current research that focuses on specific issues in highly selected populations. To determine the appropriateness of risk assessment and genetic testing for BRCA1/2 mutations as a preventive service in primary care, more information is needed about mutation prevalence and the effect of testing in the general population. Research has focused on highly selected women in referral centers and generally reported short-term outcomes. Issues such as access to genetic testing and follow-up, effectiveness of screening approaches including risk stratification and multigene panels, effects of direct-to-consumer marketing, use of system supports, and patient acceptance and education require additional study.

Identification of appropriate candidates for genetic testing is essential to effective BRCA1/2 mutation testing. Who should perform risk assessment and genetic counseling services, necessary skills, how it should be done, effectiveness of different methods to deliver services, and its effect on patient choices and outcomes are unresolved questions. Trials comparing types of clinicians and protocols could address these issues. What happens after patients are identified as high-risk in clinical settings is also not known. The consequences of genetic testing on individuals and their relatives need to be further understood. Well-designed investigations using standardized measures and enrolling participants that reflect the general population, including minority women, are needed. Additional research on effective interventions is also needed. Without effectiveness trials of intensive screening, practice standards have preceded supporting evidence. This information could improve patient decision-making and lead to better health outcomes.

Current research to identify women with pathogenic BRCA1/2 mutations indicates that familial risk tools for primary care settings that evaluate individual risks can accurately guide referrals for genetic counseling. Comprehensive evaluations by genetic counselors provide estimates of individual risks for BRCA1/2 mutations and identify candidates for genetic testing. Genetic counseling reduces breast cancer worry, anxiety, and depression; increases women’s understanding of risk; and reduces intention for inappropriate mutation testing. Results of genetic testing improve a woman’s understanding of her risk of developing BRCA1/2-related cancer depending on the type of mutation and specific test results.

Once a pathogenic mutation is identified, how to choose the best options for clinical management is currently unclear. Subjecting otherwise healthy women to clinical interventions requires careful consideration of benefits and harms. Although intensive screening for breast and ovarian cancer in BRCA1/2 mutation carriers using MRI, TVUS, and CA-125 is supported by experts, its effectiveness in reducing cancer incidence and mortality has not been evaluated. Use of risk-reducing medications in mutation carriers has also not been studied. Tamoxifen and raloxifene increase thromboembolic events, tamoxifen increases endometrial cancer and cataracts, and all medications cause symptomatic adverse effects. While risk-reducing mastectomy and salpingo-oophorectomy are associated with reduced breast and ovarian cancer in BRCA1/2 mutation carriers, they are invasive procedures with potential complications.

The process of familial risk assessment in primary care, referral and evaluation by genetic counselors, genetic testing, and use of intensive screening and risk-reducing medications and surgical procedures is complex. Each step of the pathway requires careful interpretation of information, consideration of future risks, and shared decision-making before moving on to the next step. Services must be well integrated and highly individualized to optimize benefits and minimize harms for patients as well as their families. Several evidence gaps relevant to prevention remain, and additional studies are necessary to fill them.

Limitations

This review has several limitations. First, it included only English-language articles and studies applicable to the United States, although this focus improves its relevance to the USPSTF recommendation. Second, the number, quality, and applicability of studies evaluated in the evidence review varied widely. Third, most studies in this review included highly selected samples of women, some with preexisting breast or ovarian cancer or from high-risk groups that were defined in various ways, or from previously identified cancer kindreds. It is not known how the results of studies based on highly selected women in research settings, particularly in non-US settings, translate to general screening populations in US clinical practice.

Conclusions

Among women without recently diagnosed BRCA1/2-related cancer, the benefits and harms of risk assessment, genetic counseling, and genetic testing to reduce cancer incidence and mortality have not been directly evaluated by current research.

Back to top
Article Information

Corresponding Author: Heidi D. Nelson, MD, MPH, MACP, FRCP, Pacific Northwest Evidence-based Practice Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code BICC, Portland, OR 97239 (nelsonh@ohsu.edu).

Accepted for Publication: May 29, 2019.

Author Contributions: Dr Nelson had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Nelson, Cantor, Haney.

Acquisition, analysis, or interpretation of data: Nelson, Pappas, Cantor, Haney, Holmes.

Drafting of the manuscript: Nelson, Pappas, Haney, Holmes.

Critical revision of the manuscript for important intellectual content: Nelson, Cantor, Holmes.

Obtained funding: Nelson.

Administrative, technical, or material support: Pappas, Cantor, Holmes.

Supervision: Nelson.

Conflict of Interest Disclosures: None reported.

Funding/Support: This research was funded under contract HHSA290201500009I, Task Order 7, from the Agency for Healthcare Research and Quality (AHRQ), US Department of Health and Human Services, under a contract to support the US Preventive Services Task Force (USPSTF).

Role of the Funder/Sponsor: Investigators worked with the USPSTF members and AHRQ staff to develop the scope, analytic framework, and key questions for this review. AHRQ had no role in study selection, quality assessment, or synthesis. AHRQ staff provided project oversight, reviewed the report to ensure that the analysis met methodological standards, and distributed the draft for peer review. Otherwise, AHRQ had no role in the conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript findings. The opinions expressed in this document are those of the authors and do not reflect the official position of AHRQ or the US Department of Health and Human Services.

Additional Contributions: We gratefully acknowledge the following individuals for their contributions to this project: AHRQ Medical Officer Justin Mills, MD, and Pacific Northwest Evidence-based Practice Center expert consultant Elizabeth Swisher, MD, research librarian Andrew Hamilton, MLS, MS, and research assistant Lucy Stillman, BS. We also acknowledge past and current USPSTF members who contributed to topic deliberations. USPSTF members, external reviewers, and federal partner reviewers did not receive financial compensation for their contributions.

Additional Information: A draft version of this evidence report underwent external peer review from 5 federal partners at the Centers for Disease Control and Prevention, National Institutes of Health, and National Cancer Institute and 3 content experts (Mary Daly, MD, Risk Assessment Program, Department of Clinical Genetics, Fox Chase Cancer Center, Temple University; Kelly Metcalfe, PhD, University of Toronto and Familial Breast Cancer Research Institute at the Women’s College Research Institute, Toronto, Onatario, Canada; and Robert Pilarski, MS, Clinical Cancer Genetics Program, Division of Human Genetics, The Ohio State University). Comments from reviewers were presented to the USPSTF during its deliberation of the evidence and were considered in preparing the final evidence review.

Editorial Disclaimer: This evidence report is presented as a document in support of the accompanying the USPSTF Recommendation Statement. It did not undergo additional peer review after submission to JAMA.

References
1.
Brody  LC, Biesecker  BB.  Breast cancer susceptibility genes: BRCA1 and BRCA2 Medicine (Baltimore). 1998;77(3):208-226. doi:10.1097/00005792-199805000-00006PubMedGoogle ScholarCrossref
2.
Mersch  J, Jackson  MA, Park  M,  et al.  Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian.  Cancer. 2015;121(2):269-275. doi:10.1002/cncr.29041PubMedGoogle ScholarCrossref
3.
Miki  Y, Swensen  J, Shattuck-Eidens  D,  et al.  A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1 Science. 1994;266(5182):66-71. doi:10.1126/science.7545954PubMedGoogle ScholarCrossref
4.
Wooster  R, Weber  BL.  Breast and ovarian cancer.  N Engl J Med. 2003;348(23):2339-2347. doi:10.1056/NEJMra012284PubMedGoogle ScholarCrossref
5.
Sherman  ME, Piedmonte  M, Mai  PL,  et al.  Pathologic findings at risk-reducing salpingo-oophorectomy: primary results from Gynecologic Oncology Group Trial GOG-0199.  J Clin Oncol. 2014;32(29):3275-3283. doi:10.1200/JCO.2013.54.1987PubMedGoogle ScholarCrossref
6.
Norquist  BM, Garcia  RL, Allison  KH,  et al.  The molecular pathogenesis of hereditary ovarian carcinoma: alterations in the tubal epithelium of women with BRCA1 and BRCA2 mutations.  Cancer. 2010;116(22):5261-5271. doi:10.1002/cncr.25439PubMedGoogle ScholarCrossref
7.
Anglian Breast Cancer Study Group.  Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases.  Br J Cancer. 2000;83(10):1301-1308. doi:10.1054/bjoc.2000.1407PubMedGoogle ScholarCrossref
8.
Antoniou  AC, Gayther  SA, Stratton  JF, Ponder  BA, Easton  DF.  Risk models for familial ovarian and breast cancer.  Genet Epidemiol. 2000;18(2):173-190. doi:10.1002/(SICI)1098-2272(200002)18:2<173::AID-GEPI6>3.0.CO;2-RPubMedGoogle ScholarCrossref
9.
Antoniou  AC, Pharoah  PD, McMullan  G,  et al.  A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes.  Br J Cancer. 2002;86(1):76-83. doi:10.1038/sj.bjc.6600008PubMedGoogle ScholarCrossref
10.
Peto  J, Collins  N, Barfoot  R,  et al.  Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer.  J Natl Cancer Inst. 1999;91(11):943-949. doi:10.1093/jnci/91.11.943PubMedGoogle ScholarCrossref
11.
Whittemore  AS, Gong  G, John  EM,  et al.  Prevalence of BRCA1 mutation carriers among U.S. non-Hispanic whites.  Cancer Epidemiol Biomarkers Prev. 2004;13(12):2078-2083.PubMedGoogle Scholar
12.
Neuhausen  S, Gilewski  T, Norton  L,  et al.  Recurrent BRCA2 6174delT mutations in Ashkenazi Jewish women affected by breast cancer.  Nat Genet. 1996;13(1):126-128. doi:10.1038/ng0596-126PubMedGoogle ScholarCrossref
13.
Struewing  JP, Hartge  P, Wacholder  S,  et al.  The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews.  N Engl J Med. 1997;336(20):1401-1408. doi:10.1056/NEJM199705153362001PubMedGoogle ScholarCrossref
14.
Roa  BB, Boyd  AA, Volcik  K, Richards  CS.  Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2 Nat Genet. 1996;14(2):185-187. doi:10.1038/ng1096-185PubMedGoogle ScholarCrossref
15.
Antoniou  A, Pharoah  PD, Narod  S,  et al.  Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies.  Am J Hum Genet. 2003;72(5):1117-1130. doi:10.1086/375033PubMedGoogle ScholarCrossref
16.
Chen  S, Parmigiani  G.  Meta-analysis of BRCA1 and BRCA2 penetrance.  J Clin Oncol. 2007;25(11):1329-1333. doi:10.1200/JCO.2006.09.1066PubMedGoogle ScholarCrossref
17.
Lakhani  SR, Manek  S, Penault-Llorca  F,  et al.  Pathology of ovarian cancers in BRCA1 and BRCA2 carriers.  Clin Cancer Res. 2004;10(7):2473-2481. doi:10.1158/1078-0432.CCR-1029-3PubMedGoogle ScholarCrossref
18.
Evans  DG, Young  K, Bulman  M, Shenton  A, Wallace  A, Lalloo  F.  Probability of BRCA1/2 mutation varies with ovarian histology: results from screening 442 ovarian cancer families.  Clin Genet. 2008;73(4):338-345. doi:10.1111/j.1399-0004.2008.00974.xPubMedGoogle ScholarCrossref
19.
Tonin  PN, Maugard  CM, Perret  C, Mes-Masson  AM, Provencher  DM.  A review of histopathological subtypes of ovarian cancer in BRCA-related French Canadian cancer families.  Fam Cancer. 2007;6(4):491-497. doi:10.1007/s10689-007-9152-xPubMedGoogle ScholarCrossref
20.
Crum  CP, Drapkin  R, Kindelberger  D, Medeiros  F, Miron  A, Lee  Y.  Lessons from BRCA: the tubal fimbria emerges as an origin for pelvic serous cancer.  Clin Med Res. 2007;5(1):35-44. doi:10.3121/cmr.2007.702PubMedGoogle ScholarCrossref
21.
Bolton  KL, Chenevix-Trench  G, Goh  C,  et al; EMBRACE; kConFab Investigators; Cancer Genome Atlas Research Network.  Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer.  JAMA. 2012;307(4):382-390. doi:10.1001/jama.2012.20PubMedGoogle ScholarCrossref
22.
Levine  DA, Argenta  PA, Yee  CJ,  et al.  Fallopian tube and primary peritoneal carcinomas associated with BRCA mutations.  J Clin Oncol. 2003;21(22):4222-4227. doi:10.1200/JCO.2003.04.131PubMedGoogle ScholarCrossref
23.
Mavaddat  N, Barrowdale  D, Andrulis  IL,  et al; HEBON; EMBRACE; GEMO Study Collaborators; kConFab Investigators; SWE-BRCA Collaborators; Consortium of Investigators of Modifiers of BRCA1/2.  Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA).  Cancer Epidemiol Biomarkers Prev. 2012;21(1):134-147. doi:10.1158/1055-9965.EPI-11-0775PubMedGoogle ScholarCrossref
24.
National Comprehensive Cancer Network (NCCN). Genetic/familial high-risk assessment: breast and ovarian. NCCN website. https://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf. Published 2019. Accessed April 16, 2019.
25.
Hampel  H, Bennett  RL, Buchanan  A, Pearlman  R, Wiesner  GL; Guideline Development Group, American College of Medical Genetics and Genomics Professional Practice and Guidelines Committee and National Society of Genetic Counselors Practice Guidelines Committee.  A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment.  Genet Med. 2015;17(1):70-87. doi:10.1038/gim.2014.147PubMedGoogle ScholarCrossref
26.
National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: breast cancer screening and diagnosis. NCCN website. https://www.nccn.org. Published 2018. Accessed May 1, 2019.
27.
American College of Surgeons (ACS). Cancer Program Standards 2016. ACS website. https://www.facs.org/cancer/coc/programstandards2012.html. Published 2016. Accessed May 1, 2019.
28.
Moyer  V; U.S. Preventive Services Task Force.  Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: U.S. Preventive Services Task Force recommendation statement.  Ann Intern Med. 2014;160(4):271-281. doi:10.7326/M13-2747PubMedGoogle ScholarCrossref
29.
Nelson  HD, Fu  R, Goddard  K,  et al.  Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer: Systematic Review to update the U.S. Preventive Services Task Force Recommendation. Rockville, MD: Agency for Healthcare Research and Quality; 2013.
30.
Lindor  NM, Greene  MH. The concise handbook of family cancer syndromes: Mayo Familial Cancer Program.  J Natl Cancer Inst. 1998;90(14):1039-1071. doi:10.1093/jnci/90.14.1039PubMedCrossref
31.
National Cancer Institute. PDQ® Breast Cancer Treatment. 2013. https://www.cancer.gov/cancertopics/pdq/treatment/breast/healthprofessional. Accessed May 1, 2019.
32.
Daly  MB, Pilarski  R, Berry  M,  et al.  NCCN guidelines insights: genetic/familial high-risk assessment: breast and ovarian, version 2.2017.  J Natl Compr Canc Netw. 2017;15(1):9-20. doi:10.6004/jnccn.2017.0003PubMedGoogle ScholarCrossref
33.
Stuckey  AR, Onstad  MA.  Hereditary breast cancer: an update on risk assessment and genetic testing in 2015.  Am J Obstet Gynecol. 2015;213(2):161-165. doi:10.1016/j.ajog.2015.03.003PubMedGoogle ScholarCrossref
34.
Easton  DF, Pharoah  PD, Antoniou  AC,  et al.  Gene-panel sequencing and the prediction of breast-cancer risk.  N Engl J Med. 2015;372(23):2243-2257. doi:10.1056/NEJMsr1501341PubMedGoogle ScholarCrossref
35.
Nelson  HD, Cantor  A, Holmes  R,  et al.  Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer: Systematic Review to Update the U.S. Preventive Services Task Force Recommendation. Rockville, MD: Agency for Healthcare Research and Quality; 2019.
36.
US Preventive Services Task Force (USPSTF). Methods and Processes. USPSTF website. https://www.uspreventiveservicestaskforce.org/Page/Name/methods-and-processes. Published 2018. Accessed May 1, 2019.
37.
Nelson  HD, Pappas  M, Zakher  B, Priest Mitchell  J, Kinaka-Hu  L, Fu  R.  Risk assessment, gentic counseling, and genetic testing for BRCA-related cancer in women: a systematic review to update the U.S.Preventive Services Task Force recommendation.  Ann Intern Med. 2014;160(4):255-266. doi:10.7326/M13-1684PubMedGoogle ScholarCrossref
38.
Antoniou  AC, Hardy  R, Walker  L,  et al.  Predicting the likelihood of carrying a BRCA1 or BRCA2 mutation: validation of BOADICEA, BRCAPRO, IBIS, Myriad and the Manchester scoring system using data from UK genetics clinics.  J Med Genet. 2008;45(7):425-431. doi:10.1136/jmg.2007.056556PubMedGoogle ScholarCrossref
39.
Ashton-Prolla  P, Giacomazzi  J, Schmidt  AV,  et al.  Development and validation of a simple questionnaire for the identification of hereditary breast cancer in primary care.  BMC Cancer. 2009;9:283. doi:10.1186/1471-2407-9-283PubMedGoogle ScholarCrossref
40.
Barcenas  CH, Hosain  GMM, Arun  B,  et al.  Assessing BRCA carrier probabilities in extended families.  J Clin Oncol. 2006;24(3):354-360. doi:10.1200/JCO.2005.02.2368PubMedGoogle ScholarCrossref
41.
Bellcross  CA, Lemke  AA, Pape  LS, Tess  AL, Meisner  LT.  Evaluation of a breast/ovarian cancer genetics referral screening tool in a mammography population.  Genet Med. 2009;11(11):783-789. doi:10.1097/GIM.0b013e3181b9b04aPubMedGoogle ScholarCrossref
42.
Biswas  S, Atienza  P, Chipman  J,  et al.  A two-stage approach to genetic risk assessment in primary care.  Breast Cancer Res Treat. 2016;155(2):375-383. doi:10.1007/s10549-016-3686-2PubMedGoogle ScholarCrossref
43.
Evans  DG, Eccles  DM, Rahman  N,  et al.  A new scoring system for the chances of identifying a BRCA1/2 mutation outperforms existing models including BRCAPRO.  J Med Genet. 2004;41(6):474-480. doi:10.1136/jmg.2003.017996PubMedGoogle ScholarCrossref
44.
Fischer  C, Kuchenbäcker  K, Engel  C,  et al; German Consortium for Hereditary Breast and Ovarian Cancer.  Evaluating the performance of the breast cancer genetic risk models BOADICEA, IBIS, BRCAPRO and Claus for predicting BRCA1/2 mutation carrier probabilities: a study based on 7352 families from the German Hereditary Breast and Ovarian Cancer Consortium.  J Med Genet. 2013;50(6):360-367. doi:10.1136/jmedgenet-2012-101415PubMedGoogle ScholarCrossref
45.
Gilpin  CA, Carson  N, Hunter  AG.  A preliminary validation of a family history assessment form to select women at risk for breast or ovarian cancer for referral to a genetics center.  Clin Genet. 2000;58(4):299-308. doi:10.1034/j.1399-0004.2000.580408.xPubMedGoogle ScholarCrossref
46.
Hoskins  KF, Zwaagstra  A, Ranz  M.  Validation of a tool for identifying women at high risk for hereditary breast cancer in population-based screening.  Cancer. 2006;107(8):1769-1776. doi:10.1002/cncr.22202PubMedGoogle ScholarCrossref
47.
Kast  K, Schmutzler  RK, Rhiem  K,  et al.  Validation of the Manchester scoring system for predicting BRCA1/2 mutations in 9,390 families suspected of having hereditary breast and ovarian cancer.  Int J Cancer. 2014;135(10):2352-2361. doi:10.1002/ijc.28875PubMedGoogle ScholarCrossref
48.
Oros  KK, Ghadirian  P, Maugard  CM,  et al.  Application of BRCA1 and BRCA2 mutation carrier prediction models in breast and/or ovarian cancer families of French Canadian descent.  Clin Genet. 2006;70(4):320-329. doi:10.1111/j.1399-0004.2006.00673.xPubMedGoogle ScholarCrossref
49.
Panchal  SM, Ennis  M, Canon  S, Bordeleau  LJ.  Selecting a BRCA risk assessment model for use in a familial cancer clinic.  BMC Med Genet. 2008;9:116. doi:10.1186/1471-2350-9-116PubMedGoogle ScholarCrossref
50.
Parmigiani  G, Chen  S, Iversen  ES  Jr,  et al.  Validity of models for predicting BRCA1 and BRCA2 mutations.  Ann Intern Med. 2007;147(7):441-450. doi:10.7326/0003-4819-147-7-200710020-00002PubMedGoogle ScholarCrossref
51.
Teller  P, Hoskins  KF, Zwaagstra  A,  et al.  Validation of the pedigree assessment tool (PAT) in families with BRCA1 and BRCA2 mutations.  Ann Surg Oncol. 2010;17(1):240-246. doi:10.1245/s10434-009-0697-9PubMedGoogle ScholarCrossref
52.
Albada  A, van Dulmen  S, Dijkstra  H, Wieffer  I, Witkamp  A, Ausems  MG.  Counselees’ expressed level of understanding of the risk estimate and surveillance recommendation are not associated with breast cancer surveillance adherence.  J Genet Couns. 2016;25(2):279-289. doi:10.1007/s10897-015-9869-xPubMedGoogle ScholarCrossref
53.
Armstrong  K, Micco  E, Carney  A, Stopfer  J, Putt  M.  Racial differences in the use of BRCA1/2 testing among women with a family history of breast or ovarian cancer.  JAMA. 2005;293(14):1729-1736. doi:10.1001/jama.293.14.1729PubMedGoogle ScholarCrossref
54.
Bennett  P, Wilkinson  C, Turner  J,  et al.  Psychological factors associated with emotional responses to receiving genetic risk information.  J Genet Couns. 2008;17(3):234-241. doi:10.1007/s10897-007-9136-xPubMedGoogle ScholarCrossref
55.
Bennett  P, Wilkinson  C, Turner  J,  et al.  Factors associated with intrusive cancer-related worries in women undergoing cancer genetic risk assessment  [published correction appears in Fam Cancer. 2009;8(3):263].  Fam Cancer. 2009;8(2):159-165. doi:10.1007/s10689-008-9221-9PubMedGoogle ScholarCrossref
56.
Bloom  JR, Stewart  SL, Chang  S, You  M.  Effects of a telephone counseling intervention on sisters of young women with breast cancer.  Prev Med. 2006;43(5):379-384. doi:10.1016/j.ypmed.2006.07.002PubMedGoogle ScholarCrossref
57.
Bowen  DJ, Burke  W, Culver  JO, Press  N, Crystal  S.  Effects of counseling Ashkenazi Jewish women about breast cancer risk.  Cultur Divers Ethnic Minor Psychol. 2006;12(1):45-56. doi:10.1037/1099-9809.12.1.45PubMedGoogle ScholarCrossref
58.
Bowen  DJ, Burke  W, McTiernan  A, Yasui  Y, Andersen  MR.  Breast cancer risk counseling improves women’s functioning.  Patient Educ Couns. 2004;53(1):79-86. doi:10.1016/S0738-3991(03)00122-8PubMedGoogle ScholarCrossref
59.
Bowen  DJ, Burke  W, Yasui  Y,  et al.  Effects of risk counseling on interest in breast cancer genetic testing for lower risk women.  Genet Med. 2002;4(5):359-365. PubMedGoogle ScholarCrossref
60.
Brain  K, Norman  P, Gray  J,  et al.  A randomized trial of specialist genetic assessment: psychological impact on women at different levels of familial breast cancer risk.  Br J Cancer. 2002;86(2):233-238. doi:10.1038/sj.bjc.6600051PubMedGoogle ScholarCrossref
61.
Brain  K, Parsons  E, Bennett  P, Cannings-John  R, Hood  K.  The evolution of worry after breast cancer risk assessment: 6-year follow-up of the TRACE study cohort.  Psychooncology. 2011;20(9):984-991.PubMedGoogle Scholar
62.
Braithwaite  D, Sutton  S, Mackay  J, Stein  J, Emery  J.  Development of a risk assessment tool for women with a family history of breast cancer.  Cancer Detect Prev. 2005;29(5):433-439. doi:10.1016/j.cdp.2005.06.001PubMedGoogle ScholarCrossref
63.
Burke  W, Culver  JO, Bowen  D,  et al.  Genetic counseling for women with an intermediate family history of breast cancer.  Am J Med Genet. 2000;90(5):361-368. doi:10.1002/(SICI)1096-8628(20000228)90:5<361::AID-AJMG4>3.0.CO;2-8PubMedGoogle ScholarCrossref
64.
Cull  A, Miller  H, Porterfield  T,  et al.  The use of videotaped information in cancer genetic counselling: a randomized evaluation study.  Br J Cancer. 1998;77(5):830-837. doi:10.1038/bjc.1998.135PubMedGoogle ScholarCrossref
65.
Fry  A, Cull  A, Appleton  S,  et al.  A randomised controlled trial of breast cancer genetics services in South East Scotland: psychological impact.  Br J Cancer. 2003;89(4):653-659. doi:10.1038/sj.bjc.6601170PubMedGoogle ScholarCrossref
66.
Gurmankin  AD, Domchek  S, Stopfer  J, Fels  C, Armstrong  K.  Patients’ resistance to risk information in genetic counseling for BRCA1/2 Arch Intern Med. 2005;165(5):523-529. doi:10.1001/archinte.165.5.523PubMedGoogle ScholarCrossref
67.
Helmes  AW, Culver  JO, Bowen  DJ.  Results of a randomized study of telephone versus in-person breast cancer risk counseling.  Patient Educ Couns. 2006;64(1-3):96-103. doi:10.1016/j.pec.2005.12.002PubMedGoogle ScholarCrossref
68.
Hopwood  P, Keeling  F, Long  A,  et al.  Psychological support needs for women at high genetic risk of breast cancer: some preliminary indicators.  Psychooncology. 1998;7(5):402-412. doi:10.1002/(SICI)1099-1611(1998090)7:5<402::AID-PON317>3.0.CO;2-XPubMedGoogle ScholarCrossref
69.
Hopwood  P, Wonderling  D, Watson  M,  et al.  A randomised comparison of UK genetic risk counselling services for familial cancer: psychosocial outcomes.  Br J Cancer. 2004;91(5):884-892. doi:10.1038/sj.bjc.6602081PubMedGoogle ScholarCrossref
70.
Kelly  KM, Senter  L, Leventhal  H, Ozakinci  G, Porter  K.  Subjective and objective risk of ovarian cancer in Ashkenazi Jewish women testing for BRCA1/2 mutations.  Patient Educ Couns. 2008;70(1):135-142. doi:10.1016/j.pec.2007.09.007PubMedGoogle ScholarCrossref
71.
Lerman  C, Hughes  C, Benkendorf  JL,  et al.  Racial differences in testing motivation and psychological distress following pretest education for BRCA1 gene testing.  Cancer Epidemiol Biomarkers Prev. 1999;8(4, pt 2):361-367.PubMedGoogle Scholar
72.
Lerman  C, Schwartz  MD, Miller  SM, Daly  M, Sands  C, Rimer  BK.  A randomized trial of breast cancer risk counseling: interacting effects of counseling, educational level, and coping style.  Health Psychol. 1996;15(2):75-83. doi:10.1037/0278-6133.15.2.75PubMedGoogle ScholarCrossref
73.
Lobb  EA, Butow  PN, Barratt  A,  et al.  Communication and information-giving in high-risk breast cancer consultations: influence on patient outcomes.  Br J Cancer. 2004;90(2):321-327. doi:10.1038/sj.bjc.6601502PubMedGoogle ScholarCrossref
74.
Matloff  ET, Moyer  A, Shannon  KM, Niendorf  KB, Col  NF.  Healthy women with a family history of breast cancer: impact of a tailored genetic counseling intervention on risk perception, knowledge, and menopausal therapy decision making.  J Womens Health (Larchmt). 2006;15(7):843-856. doi:10.1089/jwh.2006.15.843PubMedGoogle ScholarCrossref
75.
Mikkelsen  EM, Sunde  L, Johansen  C, Johnsen  SP.  Risk perception among women receiving genetic counseling: a population-based follow-up study.  Cancer Detect Prev. 2007;31(6):457-464. doi:10.1016/j.cdp.2007.10.013PubMedGoogle ScholarCrossref
76.
Mikkelsen  EM, Sunde  L, Johansen  C, Johnsen  SP.  Psychosocial consequences of genetic counseling: a population-based follow-up study.  Breast J. 2009;15(1):61-68. doi:10.1111/j.1524-4741.2008.00672.xPubMedGoogle ScholarCrossref
77.
Pieterse  AH, Ausems  MG, Spreeuwenberg  P, van Dulmen  S.  Longer-term influence of breast cancer genetic counseling on cognitions and distress: smaller benefits for affected versus unaffected women.  Patient Educ Couns. 2011;85(3):425-431. doi:10.1016/j.pec.2011.01.017PubMedGoogle ScholarCrossref
78.
Roshanai  AH, Rosenquist  R, Lampic  C, Nordin  K.  Does enhanced information at cancer genetic counseling improve counselees’ knowledge, risk perception, satisfaction and negotiation of information to at-risk relatives?—a randomized study.  Acta Oncol. 2009;48(7):999-1009. doi:10.1080/02841860903104137PubMedGoogle ScholarCrossref
79.
Smerecnik  CMR, Mesters  I, Verweij  E, de Vries  NK, de Vries  H.  A systematic review of the impact of genetic counseling on risk perception accuracy.  J Genet Couns. 2009;18(3):217-228. doi:10.1007/s10897-008-9210-zPubMedGoogle ScholarCrossref
80.
Watson  M, Duvivier  V, Wade Walsh  M,  et al.  Family history of breast cancer: what do women understand and recall about their genetic risk?  J Med Genet. 1998;35(9):731-738. doi:10.1136/jmg.35.9.731PubMedGoogle ScholarCrossref
81.
Watson  M, Lloyd  S, Davidson  J,  et al.  The impact of genetic counselling on risk perception and mental health in women with a family history of breast cancer.  Br J Cancer. 1999;79(5-6):868-874. doi:10.1038/sj.bjc.6690139PubMedGoogle ScholarCrossref
82.
Andrews  L, Meiser  B, Apicella  C, Tucker  K.  Psychological impact of genetic testing for breast cancer susceptibility in women of Ashkenazi Jewish background: a prospective study.  Genet Test. 2004;8(3):240-247. doi:10.1089/gte.2004.8.240PubMedGoogle ScholarCrossref
83.
Arver  B, Haegermark  A, Platten  U, Lindblom  A, Brandberg  Y.  Evaluation of psychosocial effects of pre-symptomatic testing for breast/ovarian and colon cancer pre-disposing genes: a 12-month follow-up.  Fam Cancer. 2004;3(2):109-116. doi:10.1023/B:FAME.0000039863.89137.f9PubMedGoogle ScholarCrossref
84.
Dagan  E, Shochat  T.  Quality of life in asymptomatic BRCA1/2 mutation carriers.  Prev Med. 2009;48(2):193-196. doi:10.1016/j.ypmed.2008.11.007PubMedGoogle ScholarCrossref
85.
Ertmański  S, Metcalfe  K, Trempała  J,  et al.  Identification of patients at high risk of psychological distress after BRCA1 genetic testing.  Genet Test Mol Biomarkers. 2009;13(3):325-330. doi:10.1089/gtmb.2008.0126PubMedGoogle ScholarCrossref
86.
Foster  C, Watson  M, Eeles  R,  et al; Psychosocial Study Collaborators.  Predictive genetic testing for BRCA1/2 in a UK clinical cohort: three-year follow-up.  Br J Cancer. 2007;96(5):718-724. doi:10.1038/sj.bjc.6603610PubMedGoogle ScholarCrossref
87.
Geirdal  AO, Dahl  AA.  The relationship between coping strategies and anxiety in women from families with familial breast-ovarian cancer in the absence of demonstrated mutations.  Psychooncology. 2008;17(1):49-57. doi:10.1002/pon.1198PubMedGoogle ScholarCrossref
88.
Geirdal  AO, Reichelt  JG, Dahl  AA,  et al.  Psychological distress in women at risk of hereditary breast/ovarian or HNPCC cancers in the absence of demonstrated mutations.  Fam Cancer. 2005;4(2):121-126. doi:10.1007/s10689-004-7995-yPubMedGoogle ScholarCrossref
89.
Godard  B, Pratte  A, Dumont  M, Simard-Lebrun  A, Simard  J.  Factors associated with an individual’s decision to withdraw from genetic testing for breast and ovarian cancer susceptibility: implications for counseling.  Genet Test. 2007;11(1):45-54. doi:10.1089/gte.2006.9998PubMedGoogle ScholarCrossref
90.
Graves  KD, Vegella  P, Poggi  EA,  et al.  Long-term psychosocial outcomes of BRCA1/BRCA2 testing: differences across affected status and risk-reducing surgery choice.  Cancer Epidemiol Biomarkers Prev. 2012;21(3):445-455. doi:10.1158/1055-9965.EPI-11-0991PubMedGoogle ScholarCrossref
91.
Julian-Reynier  C, Mancini  J, Mouret-Fourme  E,  et al.  Cancer risk management strategies and perceptions of unaffected women 5 years after predictive genetic testing for BRCA1/2 mutations.  Eur J Hum Genet. 2011;19(5):500-506. doi:10.1038/ejhg.2010.241PubMedGoogle ScholarCrossref
92.
Kinney  AY, Bloor  LE, Mandal  D,  et al.  The impact of receiving genetic test results on general and cancer-specific psychologic distress among members of an African-American kindred with a BRCA1 mutation.  Cancer. 2005;104(11):2508-2516. doi:10.1002/cncr.21479PubMedGoogle ScholarCrossref
93.
Lieberman  S, Tomer  A, Ben-Chetrit  A,  et al.  Population screening for BRCA1/BRCA2 founder mutations in Ashkenazi Jews: proactive recruitment compared with self-referral.  Genet Med. 2017;19(7):754-762. doi:10.1038/gim.2016.182PubMedGoogle ScholarCrossref
94.
Low  CA, Bower  JE, Kwan  L, Seldon  J.  Benefit finding in response to BRCA1/2 testing.  Ann Behav Med. 2008;35(1):61-69. doi:10.1007/s12160-007-9004-9PubMedGoogle ScholarCrossref
95.
Lumish  HS, Steinfeld  H, Koval  C,  et al.  Impact of panel gene testing for hereditary breast and ovarian cancer on patients.  J Genet Couns. 2017;26(5):1116-1129. doi:10.1007/s10897-017-0090-yPubMedGoogle ScholarCrossref
96.
Manchanda  R, Loggenberg  K, Sanderson  S,  et al.  Population testing for cancer predisposing BRCA1/BRCA2 mutations in the Ashkenazi-Jewish community: a randomized controlled trial.  J Natl Cancer Inst. 2014;107(1):379. doi:10.1093/jnci/dju379PubMedGoogle Scholar
97.
Meiser  B, Butow  P, Friedlander  M,  et al.  Psychological impact of genetic testing in women from high-risk breast cancer families.  Eur J Cancer. 2002;38(15):2025-2031. doi:10.1016/S0959-8049(02)00264-2PubMedGoogle ScholarCrossref
98.
Metcalfe  KA, Mian  N, Enmore  M,  et al.  Long-term follow-up of Jewish women with a BRCA1 and BRCA2 mutation who underwent population genetic screening.  Breast Cancer Res Treat. 2012;133(2):735-740. doi:10.1007/s10549-011-1941-0PubMedGoogle ScholarCrossref
99.
Reichelt  JG, Heimdal  K, Møller  P, Dahl  AA.  BRCA1 testing with definitive results: a prospective study of psychological distress in a large clinic-based sample.  Fam Cancer. 2004;3(1):21-28. doi:10.1023/B:FAME.0000026820.32469.4aPubMedGoogle ScholarCrossref
100.
Reichelt  JG, Møller  P, Heimdal  K, Dahl  AA.  Psychological and cancer-specific distress at 18 months post-testing in women with demonstrated BRCA1 mutations for hereditary breast/ovarian cancer.  Fam Cancer. 2008;7(3):245-254. doi:10.1007/s10689-008-9182-zPubMedGoogle ScholarCrossref
101.
Shochat  T, Dagan  E.  Sleep disturbances in asymptomatic BRCA1/2 mutation carriers: women at high risk for breast-ovarian cancer.  J Sleep Res. 2010;19(2):333-340. doi:10.1111/j.1365-2869.2009.00805.xPubMedGoogle ScholarCrossref
102.
Smith  KR, West  JA, Croyle  RT,  et al.  Familial context of genetic testing for cancer susceptibility: moderating effect of siblings’ test results on psychological distress one to two weeks after BRCA1 mutation testing.  Cancer Epidemiol Biomarkers Prev. 1999;8(4, pt 2):385-392. PubMedGoogle Scholar
103.
van Dijk  S, Timmermans  DRM, Meijers-Heijboer  H, Tibben  A, van Asperen  CJ, Otten  W.  Clinical characteristics affect the impact of an uninformative DNA test result: the course of worry and distress experienced by women who apply for genetic testing for breast cancer.  J Clin Oncol. 2006;24(22):3672-3677. doi:10.1200/JCO.2005.03.7259PubMedGoogle ScholarCrossref
104.
van Oostrom  I, Meijers-Heijboer  H, Lodder  LN,  et al.  Long-term psychological impact of carrying a BRCA1/2 mutation and prophylactic surgery: a 5-year follow-up study.  J Clin Oncol. 2003;21(20):3867-3874. doi:10.1200/JCO.2003.10.100PubMedGoogle ScholarCrossref
105.
Domchek  SM, Friebel  TM, Singer  CF,  et al.  Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality.  JAMA. 2010;304(9):967-975. doi:10.1001/jama.2010.1237PubMedGoogle ScholarCrossref
106.
Evans  DGR, Baildam  AD, Anderson  E,  et al.  Risk reducing mastectomy: outcomes in 10 European centres.  J Med Genet. 2009;46(4):254-258. doi:10.1136/jmg.2008.062232PubMedGoogle ScholarCrossref
107.
Flippo-Morton  T, Walsh  K, Chambers  K,  et al.  Surgical decision making in the BRCA-positive population: institutional experience and comparison with recent literature.  Breast J. 2016;22(1):35-44. doi:10.1111/tbj.12521PubMedGoogle ScholarCrossref
108.
Hartmann  LC, Schaid  DJ, Woods  JE,  et al.  Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer.  N Engl J Med. 1999;340(2):77-84. doi:10.1056/NEJM199901143400201PubMedGoogle ScholarCrossref
109.
Hartmann  LC, Sellers  TA, Schaid  DJ,  et al.  Efficacy of bilateral prophylactic mastectomy in BRCA1 and BRCA2 gene mutation carriers.  J Natl Cancer Inst. 2001;93(21):1633-1637. doi:10.1093/jnci/93.21.1633PubMedGoogle ScholarCrossref
110.
Heemskerk-Gerritsen  BA, Menke-Pluijmers  MB, Jager  A,  et al.  Substantial breast cancer risk reduction and potential survival benefit after bilateral mastectomy when compared with surveillance in healthy BRCA1 and BRCA2 mutation carriers: a prospective analysis.  Ann Oncol. 2013;24(8):2029-2035. doi:10.1093/annonc/mdt134PubMedGoogle ScholarCrossref
111.
Heemskerk-Gerritsen  BA, Seynaeve  C, van Asperen  CJ,  et al; Hereditary Breast and Ovarian Cancer Research Group Netherlands.  Breast cancer risk after salpingo-oophorectomy in healthy BRCA1/2 mutation carriers: revisiting the evidence for risk reduction.  J Natl Cancer Inst. 2015;107(5):djv033. doi:10.1093/jnci/djv033PubMedGoogle Scholar
112.
Kotsopoulos  J, Huzarski  T, Gronwald  J,  et al; Hereditary Breast Cancer Clinical Study Group.  Bilateral oophorectomy and breast cancer risk in BRCA1 and BRCA2 mutation carriers.  J Natl Cancer Inst. 2016;109(1). doi:10.1093/jnci/djw177PubMedGoogle Scholar
113.
Kramer  JL, Velazquez  IA, Chen  BE, Rosenberg  PS, Struewing  JP, Greene  MH.  Prophylactic oophorectomy reduces breast cancer penetrance during prospective, long-term follow-up of BRCA1 mutation carriers.  J Clin Oncol. 2005;23(34):8629-8635. doi:10.1200/JCO.2005.02.9199PubMedGoogle ScholarCrossref
114.
Mavaddat  N, Peock  S, Frost  D,  et al; EMBRACE.  Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE.  J Natl Cancer Inst. 2013;105(11):812-822. doi:10.1093/jnci/djt095PubMedGoogle ScholarCrossref
115.
Olson  JE, Sellers  TA, Iturria  SJ, Hartmann  LC.  Bilateral oophorectomy and breast cancer risk reduction among women with a family history.  Cancer Detect Prev. 2004;28(5):357-360. doi:10.1016/j.cdp.2004.03.003PubMedGoogle ScholarCrossref
116.
Rebbeck  TR, Lynch  HT, Neuhausen  SL,  et al; Prevention and Observation of Surgical End Points Study Group.  Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations.  N Engl J Med. 2002;346(21):1616-1622. doi:10.1056/NEJMoa012158PubMedGoogle ScholarCrossref
117.
Shah  P, Rosen  M, Stopfer  J,  et al.  Prospective study of breast MRI in BRCA1 and BRCA2 mutation carriers: effect of mutation status on cancer incidence.  Breast Cancer Res Treat. 2009;118(3):539-546. doi:10.1007/s10549-009-0475-1PubMedGoogle ScholarCrossref
118.
Skytte  AB, Crüger  D, Gerster  M,  et al.  Breast cancer after bilateral risk-reducing mastectomy.  Clin Genet. 2011;79(5):431-437. doi:10.1111/j.1399-0004.2010.01604.xPubMedGoogle ScholarCrossref
119.
Struewing  JP, Watson  P, Easton  DF, Ponder  BA, Lynch  HT, Tucker  MA.  Prophylactic oophorectomy in inherited breast/ovarian cancer families.  J Natl Cancer Inst Monogr. 1995;(17):33-35.PubMedGoogle Scholar
120.
Alamouti  R, Hachach-Haram  N, Farhadi  J.  Multidisciplinary management of risk-reducing mastectomy and immediate reconstruction: treatment algorithm and patient satisfaction.  Eur J Plast Surg. 2015;38(5):385-390. doi:10.1007/s00238-015-1086-1Google ScholarCrossref
121.
Arver  B, Isaksson  K, Atterhem  H,  et al.  Bilateral prophylactic mastectomy in Swedish women at high risk of breast cancer: a national survey.  Ann Surg. 2011;253(6):1147-1154. doi:10.1097/SLA.0b013e318214b55aPubMedGoogle ScholarCrossref
122.
Borreani  C, Manoukian  S, Bianchi  E,  et al.  The psychological impact of breast and ovarian cancer preventive options in BRCA1 and BRCA2 mutation carriers.  Clin Genet. 2014;85(1):7-15. doi:10.1111/cge.12298PubMedGoogle ScholarCrossref
123.
Bourne  TH, Campbell  S, Reynolds  KM,  et al.  Screening for early familial ovarian cancer with transvaginal ultrasonography and colour blood flow imaging.  BMJ. 1993;306(6884):1025-1029. doi:10.1136/bmj.306.6884.1025PubMedGoogle ScholarCrossref
124.
Brandberg  Y, Arver  B, Johansson  H, Wickman  M, Sandelin  K, Liljegren  A.  Less correspondence between expectations before and cosmetic results after risk-reducing mastectomy in women who are mutation carriers: a prospective study.  Eur J Surg Oncol. 2012;38(1):38-43. doi:10.1016/j.ejso.2011.10.010PubMedGoogle ScholarCrossref
125.
Brandberg  Y, Sandelin  K, Erikson  S,  et al.  Psychological reactions, quality of life, and body image after bilateral prophylactic mastectomy in women at high risk for breast cancer: a prospective 1-year follow-up study.  J Clin Oncol. 2008;26(24):3943-3949. doi:10.1200/JCO.2007.13.9568PubMedGoogle ScholarCrossref
126.
Bresser  PJC, Seynaeve  C, Van Gool  AR,  et al.  The course of distress in women at increased risk of breast and ovarian cancer due to an (identified) genetic susceptibility who opt for prophylactic mastectomy and/or salpingo-oophorectomy.  Eur J Cancer. 2007;43(1):95-103. doi:10.1016/j.ejca.2006.09.009PubMedGoogle ScholarCrossref
127.
den Heijer  M, Seynaeve  C, Timman  R,  et al.  Body image and psychological distress after prophylactic mastectomy and breast reconstruction in genetically predisposed women: a prospective long-term follow-up study.  Eur J Cancer. 2012;48(9):1263-1268. doi:10.1016/j.ejca.2011.10.020PubMedGoogle ScholarCrossref
128.
den Heijer  M, Seynaeve  C, Vanheusden  K,  et al.  Long-term psychological distress in women at risk for hereditary breast cancer adhering to regular surveillance: a risk profile.  Psychooncology. 2013;22(3):598-604. doi:10.1002/pon.3039PubMedGoogle ScholarCrossref
129.
Finch  A, Metcalfe  KA, Chiang  JK,  et al.  The impact of prophylactic salpingo-oophorectomy on menopausal symptoms and sexual function in women who carry a BRCA mutation.  Gynecol Oncol. 2011;121(1):163-168. doi:10.1016/j.ygyno.2010.12.326PubMedGoogle ScholarCrossref
130.
Gahm  J, Wickman  M, Brandberg  Y.  Bilateral prophylactic mastectomy in women with inherited risk of breast cancer—prevalence of pain and discomfort, impact on sexuality, quality of life and feelings of regret two years after surgery.  Breast. 2010;19(6):462-469. doi:10.1016/j.breast.2010.05.003PubMedGoogle ScholarCrossref
131.
Gopie  JP, Mureau  MA, Seynaeve  C,  et al.  Body image issues after bilateral prophylactic mastectomy with breast reconstruction in healthy women at risk for hereditary breast cancer.  Fam Cancer. 2013;12(3):479-487. doi:10.1007/s10689-012-9588-5PubMedGoogle ScholarCrossref
132.
Heemskerk-Gerritsen  BAM, Brekelmans  CTM, Menke-Pluymers  MBE,  et al.  Prophylactic mastectomy in BRCA1/2 mutation carriers and women at risk of hereditary breast cancer: long-term experiences at the Rotterdam Family Cancer Clinic.  Ann Surg Oncol. 2007;14(12):3335-3344. doi:10.1245/s10434-007-9449-xPubMedGoogle ScholarCrossref
133.
Hermsen  BBJ, Olivier  RI, Verheijen  RHM,  et al.  No efficacy of annual gynaecological screening in BRCA1/2 mutation carriers; an observational follow-up study.  Br J Cancer. 2007;96(9):1335-1342. doi:10.1038/sj.bjc.6603725PubMedGoogle ScholarCrossref
134.
Isern  AE, Tengrup  I, Loman  N, Olsson  H, Ringberg  A.  Aesthetic outcome, patient satisfaction, and health-related quality of life in women at high risk undergoing prophylactic mastectomy and immediate breast reconstruction.  J Plast Reconstr Aesthet Surg. 2008;61(10):1177-1187. doi:10.1016/j.bjps.2007.08.006PubMedGoogle ScholarCrossref
135.
Kenkhuis  MJA, de Bock  GH, Elferink  PO,  et al.  Short-term surgical outcome and safety of risk reducing salpingo-oophorectomy in BRCA1/2 mutation carriers.  Maturitas. 2010;66(3):310-314. doi:10.1016/j.maturitas.2010.03.018PubMedGoogle ScholarCrossref
136.
Kriege  M, Brekelmans  CTM, Boetes  C,  et al.  Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition.  N Engl J Med. 2004;351(5):427-437. doi:10.1056/NEJMoa031759PubMedGoogle ScholarCrossref
137.
Kriege  M, Brekelmans  CTM, Boetes  C,  et al; Dutch MRI Screening (MRISC) Study Group.  Differences between first and subsequent rounds of the MRISC breast cancer screening program for women with a familial or genetic predisposition.  Cancer. 2006;106(11):2318-2326. doi:10.1002/cncr.21863PubMedGoogle ScholarCrossref
138.
Leach  MO, Boggis  CR, Dixon  AK,  et al; MARIBS Study Group.  Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS).  Lancet. 2005;365(9473):1769-1778. doi:10.1016/S0140-6736(05)66481-1PubMedGoogle ScholarCrossref
139.
Le-Petross  HT, Whitman  GJ, Atchley  DP,  et al.  Effectiveness of alternating mammography and magnetic resonance imaging for screening women with deleterious BRCA mutations at high risk of breast cancer.  Cancer. 2011;117(17):3900-3907. doi:10.1002/cncr.25971PubMedGoogle ScholarCrossref
140.
Metcalfe  KA, Esplen  MJ, Goel  V, Narod  SA.  Psychosocial functioning in women who have undergone bilateral prophylactic mastectomy.  Psychooncology. 2004;13(1):14-25. doi:10.1002/pon.726PubMedGoogle ScholarCrossref
141.
Michelsen  TM, Dørum  A, Tropé  CG, Fosså  SD, Dahl  AA.  Fatigue and quality of life after risk-reducing salpingo-oophorectomy in women at increased risk for hereditary breast-ovarian cancer.  Int J Gynecol Cancer. 2009;19(6):1029-1036. doi:10.1111/IGC.0b013e3181a83cd5PubMedGoogle ScholarCrossref
142.
Nurudeen  S, Guo  H, Chun  Y,  et al.  Patient experience with breast reconstruction process following bilateral mastectomy in BRCA mutation carriers.  Am J Surg. 2017;214(4):687-694. doi:10.1016/j.amjsurg.2017.06.017PubMedGoogle ScholarCrossref
143.
Portnoy  DB, Loud  JT, Han  PK, Mai  PL, Greene  MH.  Effects of false-positive cancer screenings and cancer worry on risk-reducing surgery among BRCA1/2 carriers.  Health Psychol. 2015;34(7):709-717. doi:10.1037/hea0000156PubMedGoogle ScholarCrossref
144.
Rijnsburger  AJ, Essink-Bot  ML, van Dooren  S,  et al.  Impact of screening for breast cancer in high-risk women on health-related quality of life.  Br J Cancer. 2004;91(1):69-76. doi:10.1038/sj.bjc.6601912PubMedGoogle ScholarCrossref
145.
Spiegel  TN, Esplen  MJ, Hill  KA, Wong  J, Causer  PA, Warner  E.  Psychological impact of recall on women with BRCA mutations undergoing MRI surveillance.  Breast. 2011;20(5):424-430. doi:10.1016/j.breast.2011.04.004PubMedGoogle ScholarCrossref
146.
Stefanek  ME, Helzlsouer  KJ, Wilcox  PM, Houn  F.  Predictors of and satisfaction with bilateral prophylactic mastectomy.  Prev Med. 1995;24(4):412-419. doi:10.1006/pmed.1995.1066PubMedGoogle ScholarCrossref
147.
Wasteson  E, Sandelin  K, Brandberg  Y, Wickman  M, Arver  B.  High satisfaction rate ten years after bilateral prophylactic mastectomy—a longitudinal study.  Eur J Cancer Care (Engl). 2011;20(4):508-513. doi:10.1111/j.1365-2354.2010.01204.xPubMedGoogle ScholarCrossref
148.
Vreemann  S, Gubern-Merida  A, Schlooz-Vries  MS,  et al.  Influence of risk category and screening round on the performance of an MR imaging and mammography screening program in carriers of the BRCA mutation and other women at increased risk.  Radiology. 2018;286(2):443-451. doi:10.1148/radiol.2017170458PubMedGoogle ScholarCrossref
149.
Rijnsburger  AJ, Obdeijn  IM, Kaas  R,  et al.  BRCA1-associated breast cancers present differently from BRCA2-associated and familial cases: long-term follow-up of the Dutch MRISC Screening Study.  J Clin Oncol. 2010;28(36):5265-5273. doi:10.1200/JCO.2009.27.2294PubMedGoogle ScholarCrossref
150.
Nelson  HD, Fu  R, McDonagh  M,  et al.  Medication Use for the Risk Reduction of Primary Breast Cancer in Women: A Systematic Review for the U.S. Preventive Services Task Force. Rockville, MD: Agency for Healthcare Research and Quality; 2019.
151.
Fisher  B, Costantino  JP, Wickerham  DL,  et al.  Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study.  J Natl Cancer Inst. 2005;97(22):1652-1662. doi:10.1093/jnci/dji372PubMedGoogle ScholarCrossref
152.
Powles  TJ, Ashley  S, Tidy  A, Smith  IE, Dowsett  M.  Twenty-year follow-up of the Royal Marsden randomized, double-blinded tamoxifen breast cancer prevention trial.  J Natl Cancer Inst. 2007;99(4):283-290. doi:10.1093/jnci/djk050PubMedGoogle ScholarCrossref
153.
Veronesi  U, Maisonneuve  P, Rotmensz  N,  et al; Italian Tamoxifen Study Group.  Tamoxifen for the prevention of breast cancer: late results of the Italian Randomized Tamoxifen Prevention Trial among women with hysterectomy.  J Natl Cancer Inst. 2007;99(9):727-737. doi:10.1093/jnci/djk154PubMedGoogle ScholarCrossref
154.
Cuzick  J, Forbes  JF, Sestak  I,  et al; International Breast Cancer Intervention Study I Investigators.  Long-term results of tamoxifen prophylaxis for breast cancer—96-month follow-up of the randomized IBIS-I trial.  J Natl Cancer Inst. 2007;99(4):272-282. doi:10.1093/jnci/djk049PubMedGoogle ScholarCrossref
155.
Grady  D, Cauley  JA, Geiger  MJ,  et al; Raloxifene Use for The Heart Trial Investigators.  Reduced incidence of invasive breast cancer with raloxifene among women at increased coronary risk.  J Natl Cancer Inst. 2008;100(12):854-861. doi:10.1093/jnci/djn153PubMedGoogle ScholarCrossref
156.
Lippman  ME, Cummings  SR, Disch  DP,  et al.  Effect of raloxifene on the incidence of invasive breast cancer in postmenopausal women with osteoporosis categorized by breast cancer risk.  Clin Cancer Res. 2006;12(17):5242-5247. doi:10.1158/1078-0432.CCR-06-0688PubMedGoogle ScholarCrossref
157.
Cuzick  J, Sestak  I, Forbes  JF,  et al; IBIS-II Investigators.  Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): an international, double-blind, randomised placebo-controlled trial.  Lancet. 2014;383(9922):1041-1048. doi:10.1016/S0140-6736(13)62292-8PubMedGoogle ScholarCrossref
158.
Sestak  I, Singh  S, Cuzick  J,  et al.  Changes in bone mineral density at 3 years in postmenopausal women receiving anastrozole and risedronate in the IBIS-II bone substudy: an international, double-blind, randomised, placebo-controlled trial  [published correction appears in Lancet Oncol. 2014;15(13):e587].  Lancet Oncol. 2014;15(13):1460-1468. doi:10.1016/S1470-2045(14)71035-6PubMedGoogle ScholarCrossref
159.
Spagnolo  F, Sestak  I, Howell  A, Forbes  JF, Cuzick  J.  Anastrozole-induced carpal tunnel syndrome: results from the International Breast Cancer Intervention Study II prevention trial.  J Clin Oncol. 2016;34(2):139-143. doi:10.1200/JCO.2015.63.4972PubMedGoogle ScholarCrossref
160.
Goss  PE, Ingle  JN, Alés-Martínez  JE,  et al; NCIC CTG MAP.3 Study Investigators.  Exemestane for breast-cancer prevention in postmenopausal women.  N Engl J Med. 2011;364(25):2381-2391. doi:10.1056/NEJMoa1103507PubMedGoogle ScholarCrossref
161.
Maunsell  E, Goss  PE, Chlebowski  RT,  et al.  Quality of life in MAP.3 (Mammary Prevention 3): a randomized, placebo-controlled trial evaluating exemestane for prevention of breast cancer.  J Clin Oncol. 2014;32(14):1427-1436. doi:10.1200/JCO.2013.51.2483PubMedGoogle ScholarCrossref
162.
Vogel  VG, Costantino  JP, Wickerham  DL,  et al; National Surgical Adjuvant Breast and Bowel Project.  Update of the National Surgical Adjuvant Breast and Bowel Project Study of Tamoxifen and Raloxifene (STAR) P-2 Trial: preventing breast cancer.  Cancer Prev Res (Phila). 2010;3(6):696-706. doi:10.1158/1940-6207.CAPR-10-0076PubMedGoogle ScholarCrossref
×