Effect of High Add Power, Medium Add Power, or Single-Vision Contact Lenses on Myopia Progression in Children: The BLINK Randomized Clinical Trial | Ophthalmology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.207.129.82. Please contact the publisher to request reinstatement.
1.
Holden  BA, Fricke  TR, Wilson  DA,  et al.  Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050.   Ophthalmology. 2016;123(5):1036-1042. doi:10.1016/j.ophtha.2016.01.006PubMedGoogle ScholarCrossref
2.
Jones  LA, Sinnott  LT, Mutti  DO, Mitchell  GL, Moeschberger  ML, Zadnik  K.  Parental history of myopia, sports and outdoor activities, and future myopia.   Invest Ophthalmol Vis Sci. 2007;48(8):3524-3532. doi:10.1167/iovs.06-1118PubMedGoogle ScholarCrossref
3.
Hayashi  K, Ohno-Matsui  K, Shimada  N,  et al.  Long-term pattern of progression of myopic maculopathy: a natural history study.   Ophthalmology. 2010;117(8):1595-1611, 1611.e1-1611.e4. doi:10.1016/j.ophtha.2009.11.003PubMedGoogle ScholarCrossref
4.
Verkicharla  PK, Ohno-Matsui  K, Saw  SM.  Current and predicted demographics of high myopia and an update of its associated pathological changes.   Ophthalmic Physiol Opt. 2015;35(5):465-475. doi:10.1111/opo.12238PubMedGoogle ScholarCrossref
5.
Thorn  F, Gwiazda  J, Held  R.  Myopia progression is specified by a double exponential growth function.   Optom Vis Sci. 2005;82(4):286-297. doi:10.1097/01.OPX.0000159370.66540.34PubMedGoogle ScholarCrossref
6.
Cho  P, Cheung  SW.  Retardation of Myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial.   Invest Ophthalmol Vis Sci. 2012;53(11):7077-7085. doi:10.1167/iovs.12-10565PubMedGoogle ScholarCrossref
7.
Chamberlain  P, Peixoto-de-Matos  SC, Logan  NS, Ngo  C, Jones  D, Young  G.  A 3-year randomized clinical trial of MiSight lenses for myopia control.   Optom Vis Sci. 2019;96(8):556-567. doi:10.1097/OPX.0000000000001410PubMedGoogle ScholarCrossref
8.
Yam  JC, Jiang  Y, Tang  SM,  et al.  Low-Concentration Atropine for Myopia Progression (LAMP) study: a randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% atropine eye drops in myopia control.   Ophthalmology. 2019;126(1):113-124. doi:10.1016/j.ophtha.2018.05.029PubMedGoogle ScholarCrossref
9.
Sankaridurg  P, Holden  B, Smith  E  III,  et al.  Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results.   Invest Ophthalmol Vis Sci. 2011;52(13):9362-9367. doi:10.1167/iovs.11-7260PubMedGoogle ScholarCrossref
10.
Berntsen  DA, Barr  CD, Mutti  DO, Zadnik  K.  Peripheral defocus and myopia progression in myopic children randomly assigned to wear single vision and progressive addition lenses.   Invest Ophthalmol Vis Sci. 2013;54(8):5761-5770. doi:10.1167/iovs.13-11904PubMedGoogle ScholarCrossref
11.
Berntsen  DA, Kramer  CE.  Peripheral defocus with spherical and multifocal soft contact lenses.   Optom Vis Sci. 2013;90(11):1215-1224. doi:10.1097/OPX.0000000000000066PubMedGoogle ScholarCrossref
12.
Kang  P, Fan  Y, Oh  K, Trac  K, Zhang  F, Swarbrick  HA.  The effect of multifocal soft contact lenses on peripheral refraction.   Optom Vis Sci. 2013;90(7):658-666. doi:10.1097/OPX.0b013e3182990878PubMedGoogle ScholarCrossref
13.
Ticak  A, Walline  JJ.  Peripheral optics with bifocal soft and corneal reshaping contact lenses.   Optom Vis Sci. 2013;90(1):3-8. doi:10.1097/OPX.0b013e3182781868PubMedGoogle ScholarCrossref
14.
Rosén  R, Jaeken  B, Lindskoog Petterson  A, Artal  P, Unsbo  P, Lundström  L.  Evaluating the peripheral optical effect of multifocal contact lenses.   Ophthalmic Physiol Opt. 2012;32(6):527-534. doi:10.1111/j.1475-1313.2012.00937.xPubMedGoogle ScholarCrossref
15.
Walline  JJ, Gaume Giannoni  A, Sinnott  LT,  et al; BLINK Study Group.  A randomized trial of soft multifocal contact lenses for myopia control: baseline data and methods.   Optom Vis Sci. 2017;94(9):856-866. doi:10.1097/OPX.0000000000001106PubMedGoogle ScholarCrossref
16.
Harris  PA, Taylor  R, Thielke  R, Payne  J, Gonzalez  N, Conde  JG.  Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support.   J Biomed Inform. 2009;42(2):377-381. doi:10.1016/j.jbi.2008.08.010PubMedGoogle ScholarCrossref
17.
French  AN, Morgan  IG, Burlutsky  G, Mitchell  P, Rose  KA.  Prevalence and 5- to 6-year incidence and progression of myopia and hyperopia in Australian schoolchildren.   Ophthalmology. 2013;120(7):1482-1491. doi:10.1016/j.ophtha.2012.12.018PubMedGoogle ScholarCrossref
18.
Walline  JJ, Jones  LA, Sinnott  L,  et al; ACHIEVE Study Group.  A randomized trial of the effect of soft contact lenses on myopia progression in children.   Invest Ophthalmol Vis Sci. 2008;49(11):4702-4706. doi:10.1167/iovs.08-2067PubMedGoogle ScholarCrossref
19.
Thibos  LN, Wheeler  W, Horner  D.  Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error.   Optom Vis Sci. 1997;74(6):367-375. doi:10.1097/00006324-199706000-00019PubMedGoogle ScholarCrossref
20.
Zadnik  K, Mutti  DO, Friedman  NE, Adams  AJ.  Initial cross-sectional results from the Orinda Longitudinal Study of Myopia.   Optom Vis Sci. 1993;70(9):750-758. doi:10.1097/00006324-199309000-00012PubMedGoogle ScholarCrossref
21.
Walline  JJ, Robboy  MW, Hilmantel  G,  et al.  Food and Drug Administration, American Academy of Ophthalmology, American Academy of Optometry, American Association for Pediatric Ophthalmology and Strabismus, American Optometric Association, American Society of Cataract and Refractive Surgery, and Contact Lens Association of Ophthalmologists co-sponsored workshop: controlling the progression of myopia: contact lenses and future medical devices.   Eye Contact Lens. 2018;44(4):205-211. doi:10.1097/ICL.0000000000000511PubMedGoogle ScholarCrossref
22.
Walline  JJ, Jones  LA, Sinnott  L,  et al; ACHIEVE Study Group.  Randomized trial of the effect of contact lens wear on self-perception in children.   Optom Vis Sci. 2009;86(3):222-232. doi:10.1097/OPX.0b013e3181971985PubMedGoogle ScholarCrossref
23.
Walline  JJ, Jones  LA, Mutti  DO, Zadnik  K.  A randomized trial of the effects of rigid contact lenses on myopia progression.   Arch Ophthalmol. 2004;122(12):1760-1766. doi:10.1001/archopht.122.12.1760PubMedGoogle ScholarCrossref
24.
Glynn  RJ, Rosner  B.  Regression methods when the eye is the unit of analysis.   Ophthalmic Epidemiol. 2012;19(3):159-165. doi:10.3109/09286586.2012.674614PubMedGoogle ScholarCrossref
25.
Holm  S.  A simple sequentially rejective multiple test procedure.   Scand J Statist. 1979;6:65-70.Google Scholar
26.
Gwiazda  J, Marsh-Tootle  WL, Hyman  L, Hussein  M, Norton  TT; COMET Study Group.  Baseline refractive and ocular component measures of children enrolled in the correction of myopia evaluation trial (COMET).   Invest Ophthalmol Vis Sci. 2002;43(2):314-321.PubMedGoogle Scholar
27.
Sankaridurg  P, Bakaraju  RC, Naduvilath  T,  et al.  Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial.   Ophthalmic Physiol Opt. 2019;39(4):294-307. doi:10.1111/opo.12621PubMedGoogle ScholarCrossref
28.
Ruiz-Pomeda  A, Pérez-Sánchez  B, Valls  I, Prieto-Garrido  FL, Gutiérrez-Ortega  R, Villa-Collar  C.  MiSight Assessment Study Spain (MASS): a 2-year randomized clinical trial.   Graefes Arch Clin Exp Ophthalmol. 2018;256(5):1011-1021. doi:10.1007/s00417-018-3906-zPubMedGoogle ScholarCrossref
29.
Allen  PM, Radhakrishnan  H, Price  H,  et al.  A randomised clinical trial to assess the effect of a dual treatment on myopia progression: the Cambridge Anti-Myopia Study.   Ophthalmic Physiol Opt. 2013;33(3):267-276. doi:10.1111/opo.12035PubMedGoogle ScholarCrossref
30.
Fujikado  T, Ninomiya  S, Kobayashi  T, Suzaki  A, Nakada  M, Nishida  K.  Effect of low-addition soft contact lenses with decentered optical design on myopia progression in children: a pilot study.   Clin Ophthalmol. 2014;8:1947-1956. doi:10.2147/OPTH.S66884PubMedGoogle ScholarCrossref
31.
Pauné  J, Morales  H, Armengol  J, Quevedo  L, Faria-Ribeiro  M, González-Méijome  JM.  Myopia control with a novel peripheral gradient soft lens and orthokeratology: a 2-year clinical trial.   Biomed Res Int. 2015;2015:507572. doi:10.1155/2015/507572PubMedGoogle Scholar
32.
Anstice  NS, Phillips  JR.  Effect of dual-focus soft contact lens wear on axial myopia progression in children.   Ophthalmology. 2011;118(6):1152-1161. doi:10.1016/j.ophtha.2010.10.035PubMedGoogle ScholarCrossref
33.
Walline  JJ, Greiner  KL, McVey  ME, Jones-Jordan  LA.  Multifocal contact lens myopia control.   Optom Vis Sci. 2013;90(11):1207-1214. doi:10.1097/OPX.0000000000000036PubMedGoogle ScholarCrossref
34.
Cheng  X, Xu  J, Chehab  K, Exford  J, Brennan  N.  Soft contact lenses with positive spherical aberration for myopia control.   Optom Vis Sci. 2016;93(4):353-366. doi:10.1097/OPX.0000000000000773PubMedGoogle ScholarCrossref
35.
Aller  TA, Liu  M, Wildsoet  CF.  Myopia control with bifocal contact lenses: a randomized clinical trial.   Optom Vis Sci. 2016;93(4):344-352. doi:10.1097/OPX.0000000000000808PubMedGoogle ScholarCrossref
36.
Lam  CS, Tang  WC, Tse  DY, Tang  YY, To  CH.  Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial.   Br J Ophthalmol. 2014;98(1):40-45. doi:10.1136/bjophthalmol-2013-303914PubMedGoogle ScholarCrossref
37.
Gwiazda  J, Hyman  L, Hussein  M,  et al.  A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children.   Invest Ophthalmol Vis Sci. 2003;44(4):1492-1500. doi:10.1167/iovs.02-0816PubMedGoogle ScholarCrossref
38.
Correction of Myopia Evaluation Trial 2 Study Group for the Pediatric Eye Disease Investigator Group.  Progressive-addition lenses versus single-vision lenses for slowing progression of myopia in children with high accommodative lag and near esophoria.   Invest Ophthalmol Vis Sci. 2011;52(5):2749-2757. doi:10.1167/iovs.10-6631PubMedGoogle ScholarCrossref
39.
Hyman  L, Gwiazda  J, Hussein  M,  et al.  Relationship of age, sex, and ethnicity with myopia progression and axial elongation in the correction of myopia evaluation trial.   Arch Ophthalmol. 2005;123(7):977-987. doi:10.1001/archopht.123.7.977PubMedGoogle ScholarCrossref
40.
Wolffsohn  JS, Kollbaum  PS, Berntsen  DA,  et al.  IMI: clinical myopia control trials and instrumentation report.   Invest Ophthalmol Vis Sci. 2019;60(3):M132-M160. doi:10.1167/iovs.18-25955PubMedGoogle ScholarCrossref
Original Investigation
August 11, 2020

Effect of High Add Power, Medium Add Power, or Single-Vision Contact Lenses on Myopia Progression in Children: The BLINK Randomized Clinical Trial

Author Affiliations
  • 1The Ohio State University College of Optometry; Columbus
  • 2University of Houston College of Optometry; Houston, Texas
  • 3Private Practice, Houston, Texas
  • 4Johnson & Johnson Vision Care, Inc, Jacksonville, Florida
JAMA. 2020;324(6):571-580. doi:10.1001/jama.2020.10834
Key Points

Question  Can soft multifocal contact lenses with a high add power slow myopia progression in children more than medium add power or single-vision contact lenses?

Findings  In this randomized clinical trial that included 294 children aged 7 to 11 years with myopia (−0.75 D to −5.00 D), after 3 years, the use of high add power (+2.50 D) contact lenses resulted in myopia progression of −0.60 D, the use of medium add power (+1.50 D) contact lenses resulted in myopia progression of −0.89 D, and the use of single-vision contact lenses resulted in myopia progression of −1.05 D. The pairwise comparisons were statistically significant between high add power and single-vision contact lenses as well as between high add and medium add power contact lenses.

Meaning  Among children with myopia, treatment with high add power multifocal contact lenses compared with medium add power multifocal and single-vision contact lenses reduced the rate of myopia progression over 3 years, but further research is needed to understand the clinical importance of the observed differences as well as long-term outcomes.

Abstract

Importance  Slowing myopia progression could decrease the risk of sight-threatening complications.

Objective  To determine whether soft multifocal contact lenses slow myopia progression in children, and whether high add power (+2.50 D) slows myopia progression more than medium (+1.50 D) add power lenses.

Design, Setting, and Participants  A double-masked randomized clinical trial that took place at 2 optometry schools located in Columbus, Ohio, and Houston, Texas. A total of 294 consecutive eligible children aged 7 to 11 years with −0.75 D to −5.00 D of spherical component myopia and less than 1.00 D astigmatism were enrolled between September 22, 2014, and June 20, 2016. Follow-up was completed June 24, 2019.

Interventions  Participants were randomly assigned to wear high add power (n = 98), medium add power (n = 98), or single-vision (n = 98) contact lenses.

Main Outcomes and Measures  The primary outcome was the 3-year change in cycloplegic spherical equivalent autorefraction, as measured by the mean of 10 autorefraction readings. There were 11 secondary end points, 4 of which were analyzed for this study, including 3-year eye growth.

Results  Among 294 randomized participants, 292 (99%) were included in the analyses (mean [SD] age, 10.3 [1.2] years; 177 [60.2%] were female; mean [SD] spherical equivalent refractive error, −2.39 [1.00] D). Adjusted 3-year myopia progression was −0.60 D for high add power, −0.89 D for medium add power, and −1.05 D for single-vision contact lenses. The difference in progression was 0.46 D (95% CI, 0.29-0.63) for high add power vs single vision, 0.30 D (95% CI, 0.13-0.47) for high add vs medium add power, and 0.16 D (95% CI, −0.01 to 0.33) for medium add power vs single vision. Of the 4 secondary end points, there were no statistically significant differences between the groups for 3 of the end points. Adjusted mean eye growth was 0.42 mm for high add power, 0.58 mm for medium add power, and 0.66 mm for single vision. The difference in eye growth was −0.23 mm (95% CI, −0.30 to −0.17) for high add power vs single vision, −0.16 mm (95% CI, −0.23 to −0.09) for high add vs medium add power, and −0.07 mm (95% CI, −0.14 to −0.01) for medium add power vs single vision.

Conclusions and Relevance  Among children with myopia, treatment with high add power multifocal contact lenses significantly reduced the rate of myopia progression over 3 years compared with medium add power multifocal and single-vision contact lenses. However, further research is needed to understand the clinical importance of the observed differences.

Trial Registration  ClinicalTrials.gov Identifier: NCT02255474

×