Screening for Hypertension in Children and Adolescents: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force | Adolescent Medicine | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.207.129.82. Please contact the publisher to request reinstatement.
1.
Flynn  JT, Kaelber  DC, Baker-Smith  CM,  et al; Subcommittee on Screening and Management of High Blood Pressure in Children.  Clinical practice guideline for screening and management of high blood pressure in children and adolescents.   Pediatrics. 2017;140(3):e20171904. doi:10.1542/peds.2017-1904PubMedGoogle Scholar
2.
Flynn  JT, Pierce  CB, Miller  ER  III,  et al; Chronic Kidney Disease in Children Study Group.  Reliability of resting blood pressure measurement and classification using an oscillometric device in children with chronic kidney disease.   J Pediatr. 2012;160(3):434-440. doi:10.1016/j.jpeds.2011.08.071PubMedGoogle ScholarCrossref
3.
Kaelber  DC, Liu  W, Ross  M,  et al; Comparative Effectiveness Research Through Collaborative Electronic Reporting (CER2) Consortium.  Diagnosis and medication treatment of pediatric hypertension: a retrospective cohort study.   Pediatrics. 2016;138(6):e20162195. doi:10.1542/peds.2016-2195PubMedGoogle Scholar
4.
Dobson  CP, Eide  M, Nylund  CM.  Hypertension prevalence, cardiac complications, and antihypertensive medication use in children.   J Pediatr. 2015;167(1):92-97. doi:10.1016/j.jpeds.2015.04.016PubMedGoogle ScholarCrossref
5.
McNiece  KL, Poffenbarger  TS, Turner  JL, Franco  KD, Sorof  JM, Portman  RJ.  Prevalence of hypertension and pre-hypertension among adolescents.   J Pediatr. 2007;150(6):640-644. doi:10.1016/j.jpeds.2007.01.052PubMedGoogle Scholar
6.
Xi  Y, Jiang  X, Li  R, Chen  M, Song  W, Li  X.  The levels of human milk microRNAs and their association with maternal weight characteristics.   Eur J Clin Nutr. 2016;70(4):445-449. doi:10.1038/ejcn.2015.168PubMedGoogle ScholarCrossref
7.
Chen  X, Wang  Y.  Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis.   Circulation. 2008;117(25):3171-3180. doi:10.1161/CIRCULATIONAHA.107.730366PubMedGoogle ScholarCrossref
8.
Thompson  M, Dana  T, Bougatsos  C, Blazina  I, Norris  SL.  Screening for hypertension in children and adolescents to prevent cardiovascular disease.   Pediatrics. 2013;131(3):490-525. doi:10.1542/peds.2012-3523PubMedGoogle ScholarCrossref
9.
Moyer  VA; US Preventive Services Task Force.  Screening for primary hypertension in children and adolescents: U.S. Preventive Services Task Force recommendation statement.   Pediatrics. 2013;132(5):907-914. doi:10.1542/peds.2013-2864PubMedGoogle ScholarCrossref
10.
US Preventive Services Task Force. Procedure Manual. Published 2015. Accessed February 4, 2020. https://www.uspreventiveservicestaskforce.org/uspstf/procedure-manual
11.
Gartlehner  G, Vander Schaaf  EB, Orr  C, Kennedy  SM, Clark  R, Viswanathan  M.  Screening for High Blood Pressure in Children and Adolescents: Systematic Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 193. Agency for Healthcare Research and Quality; 2020. AHRQ publication 20-05261-EF-1.
12.
Harris  RP, Helfand  M, Woolf  SH,  et al; Methods Work Group, Third US Preventive Services Task Force.  Current methods of the US Preventive Services Task Force: a review of the process.   Am J Prev Med. 2001;20(3)(suppl):21-35. doi:10.1016/S0749-3797(01)00261-6PubMedGoogle ScholarCrossref
13.
Agency for Healthcare Research and Quality.  Methods Guide for Effectiveness and Comparative Effectiveness Reviews. Agency for Healthcare Research and Quality; 2014. AHRQ publication 10(14)-EHC063-EF.
14.
Hansen  HS, Froberg  K, Hyldebrandt  N, Nielsen  JR.  A controlled study of eight months of physical training and reduction of blood pressure in children: the Odense schoolchild study.   BMJ. 1991;303(6804):682-685. doi:10.1136/bmj.303.6804.682PubMedGoogle ScholarCrossref
15.
Ewart  CK, Harris  WL, Iwata  MM, Coates  TJ, Bullock  R, Simon  B.  Feasibility and effectiveness of school-based relaxation in lowering blood pressure.   Health Psychol. 1987;6(5):399-416. doi:10.1037/0278-6133.6.5.399PubMedGoogle ScholarCrossref
16.
Son  WM, Sung  KD, Bharath  LP, Choi  KJ, Park  SY.  Combined exercise training reduces blood pressure, arterial stiffness, and insulin resistance in obese prehypertensive adolescent girls.   Clin Exp Hypertens. 2017;39(6):546-552. doi:10.1080/10641963.2017.1288742PubMedGoogle ScholarCrossref
17.
Lauer  RM, Clarke  WR, Mahoney  LT, Witt  J.  Childhood predictors for high adult blood pressure: the Muscatine Study.   Pediatr Clin North Am. 1993;40(1):23-40. doi:10.1016/S0031-3955(16)38478-4PubMedGoogle ScholarCrossref
18.
Lauer  RM, Clarke  WR.  Childhood risk factors for high adult blood pressure: the Muscatine Study.   Pediatrics. 1989;84(4):633-641.PubMedGoogle Scholar
19.
Fixler  DE, Laird  WP.  Validity of mass blood pressure screening in children.   Pediatrics. 1983;72(4):459-463.PubMedGoogle Scholar
20.
Stergiou  GS, Nasothimiou  E, Giovas  P, Kapoyiannis  A, Vazeou  A.  Diagnosis of hypertension in children and adolescents based on home versus ambulatory blood pressure monitoring.   J Hypertens. 2008;26(8):1556-1562. doi:10.1097/HJH.0b013e328301c411PubMedGoogle ScholarCrossref
21.
Stenn  PG, Noce  A, Buck  C.  A study of the labelling phenomenon in school children with elevated blood pressure.   Clin Invest Med. 1981;4(3-4):179-181.PubMedGoogle Scholar
22.
Gregoski  MJ, Barnes  VA, Tingen  MS, Harshfield  GA, Treiber  FA.  Breathing awareness meditation and LifeSkills Training programs influence upon ambulatory blood pressure and sodium excretion among African American adolescents.   J Adolesc Health. 2011;48(1):59-64. doi:10.1016/j.jadohealth.2010.05.019PubMedGoogle ScholarCrossref
23.
Hamdani  G, Flynn  JT, Becker  RC,  et al.  Prediction of ambulatory hypertension based on clinic blood pressure percentile in adolescents.   Hypertension. 2018;72(4):955-961. doi:10.1161/HYPERTENSIONAHA.118.11530PubMedGoogle ScholarCrossref
24.
Gillman  MW, Cook  NR, Rosner  B,  et al.  Identifying children at high risk for the development of essential hypertension.   J Pediatr. 1993;122(6):837-846. doi:10.1016/S0022-3476(09)90005-1PubMedGoogle ScholarCrossref
25.
Beckett  LA, Rosner  B, Roche  AF, Guo  S.  Serial changes in blood pressure from adolescence into adulthood.   Am J Epidemiol. 1992;135(10):1166-1177. doi:10.1093/oxfordjournals.aje.a116217PubMedGoogle ScholarCrossref
26.
Sun  SS, Grave  GD, Siervogel  RM, Pickoff  AA, Arslanian  SS, Daniels  SR.  Systolic blood pressure in childhood predicts hypertension and metabolic syndrome later in life.   Pediatrics. 2007;119(2):237-246. doi:10.1542/peds.2006-2543PubMedGoogle ScholarCrossref
27.
Bao  W, Threefoot  SA, Srinivasan  SR, Berenson  GS.  Essential hypertension predicted by tracking of elevated blood pressure from childhood to adulthood: the Bogalusa Heart Study.   Am J Hypertens. 1995;8(7):657-665. doi:10.1016/0895-7061(95)00116-7PubMedGoogle ScholarCrossref
28.
Hoq  S, Chen  W, Srinivasan  SR, Berenson  GS.  Childhood blood pressure predicts adult microalbuminuria in African Americans, but not in whites: the Bogalusa Heart Study.   Am J Hypertens. 2002;15(12):1036-1041. doi:10.1016/S0895-7061(02)03066-2PubMedGoogle ScholarCrossref
29.
Li  S, Chen  W, Srinivasan  SR,  et al.  Childhood cardiovascular risk factors and carotid vascular changes in adulthood: the Bogalusa Heart Study.   JAMA. 2003;290(17):2271-2276. doi:10.1001/jama.290.17.2271PubMedGoogle ScholarCrossref
30.
Shear  CL, Burke  GL, Freedman  DS, Webber  LS, Berenson  GS.  Designation of children with high blood pressure—considerations on percentile cut points and subsequent high blood pressure: the Bogalusa Heart Study.   Am J Epidemiol. 1987;125(1):73-84. doi:10.1093/oxfordjournals.aje.a114513PubMedGoogle ScholarCrossref
31.
Xi  B, Zhang  T, Li  S,  et al.  Can pediatric hypertension criteria be simplified? a prediction analysis of subclinical cardiovascular outcomes from the Bogalusa Heart Study.   Hypertension. 2017;69(4):691-696. doi:10.1161/HYPERTENSIONAHA.116.08782PubMedGoogle ScholarCrossref
32.
Raitakari  OT, Juonala  M, Kähönen  M,  et al.  Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study.   JAMA. 2003;290(17):2277-2283. doi:10.1001/jama.290.17.2277PubMedGoogle ScholarCrossref
33.
Juhola  J, Magnussen  CG, Viikari  JSA,  et al.  Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the Cardiovascular Risk in Young Finns Study.   J Pediatr. 2011;159(4):584-590. doi:10.1016/j.jpeds.2011.03.021PubMedGoogle ScholarCrossref
34.
Juonala  M, Viikari  JSA, Hutri-Kähönen  N,  et al.  The 21-year follow-up of the Cardiovascular Risk in Young Finns Study: risk factor levels, secular trends and east-west difference.   J Intern Med. 2004;255(4):457-468. doi:10.1111/j.1365-2796.2004.01308.xPubMedGoogle ScholarCrossref
35.
Juhola  J, Oikonen  M, Magnussen  CG,  et al.  Childhood physical, environmental, and genetic predictors of adult hypertension: the Cardiovascular Risk in Young Finns Study.   Circulation. 2012;126(4):402-409. doi:10.1161/CIRCULATIONAHA.111.085977PubMedGoogle ScholarCrossref
36.
Oikonen  M, Nuotio  J, Magnussen  CG,  et al.  Repeated blood pressure measurements in childhood in prediction of hypertension in adulthood.   Hypertension. 2016;67(1):41-47. doi:10.1161/HYPERTENSIONAHA.115.06395PubMedGoogle ScholarCrossref
37.
Aatola  H, Koivistoinen  T, Tuominen  H,  et al.  Influence of child and adult elevated blood pressure on adult arterial stiffness: the Cardiovascular Risk in Young Finns Study.   Hypertension. 2017;70(3):531-536. doi:10.1161/HYPERTENSIONAHA.117.09444PubMedGoogle ScholarCrossref
38.
Theodore  RF, Broadbent  J, Nagin  D,  et al.  Childhood to early-midlife systolic blood pressure trajectories: early-life predictors, effect modifiers, and adult cardiovascular outcomes.   Hypertension. 2015;66(6):1108-1115. doi:10.1161/HYPERTENSIONAHA.115.05831PubMedGoogle ScholarCrossref
39.
Juhola  J, Magnussen  CG, Berenson  GS,  et al.  Combined effects of child and adult elevated blood pressure on subclinical atherosclerosis: the International Childhood Cardiovascular Cohort Consortium.   Circulation. 2013;128(3):217-224. doi:10.1161/CIRCULATIONAHA.113.001614PubMedGoogle ScholarCrossref
40.
Du  T, Fernandez  C, Barshop  R, Chen  W, Urbina  EM, Bazzano  LA.  2017 pediatric hypertension guidelines improve prediction of adult cardiovascular outcomes.   Hypertension. 2019;73(6):1217-1223. doi:10.1161/HYPERTENSIONAHA.118.12469PubMedGoogle ScholarCrossref
41.
Koskinen  J, Juonala  M, Dwyer  T,  et al.  Utility of different blood pressure measurement components in childhood to predict adult carotid intima-media thickness.   Hypertension. 2019;73(2):335-341. doi:10.1161/HYPERTENSIONAHA.118.12225PubMedGoogle ScholarCrossref
42.
Batisky  DL, Sorof  JM, Sugg  J,  et al; Toprol-XL Pediatric Hypertension Investigators.  Efficacy and safety of extended release metoprolol succinate in hypertensive children 6 to 16 years of age: a clinical trial experience.   J Pediatr. 2007;150(2):134-139. doi:10.1016/j.jpeds.2006.09.034PubMedGoogle ScholarCrossref
43.
Trachtman  H, Hainer  JW, Sugg  J, Teng  R, Sorof  JM, Radcliffe  J; Candesartan in Children With Hypertension (CINCH) Investigators.  Efficacy, safety, and pharmacokinetics of candesartan cilexetil in hypertensive children aged 6 to 17 years.   J Clin Hypertens (Greenwich). 2008;10(10):743-750. doi:10.1111/j.1751-7176.2008.00022.xPubMedGoogle ScholarCrossref
44.
Trachtman  H, Frank  R, Mahan  JD,  et al.  Clinical trial of extended-release felodipine in pediatric essential hypertension.   Pediatr Nephrol. 2003;18(6):548-553. doi:10.1007/s00467-003-1134-0PubMedGoogle ScholarCrossref
45.
Wells  TG, Portman  R, Norman  P, Haertter  S, Davidai  G, Fei Wang.  Safety, efficacy, and pharmacokinetics of telmisartan in pediatric patients with hypertension.   Clin Pediatr (Phila). 2010;49(10):938-946. doi:10.1177/0009922810363609PubMedGoogle ScholarCrossref
46.
Sorof  JM, Cargo  P, Graepel  J,  et al.  β-blocker/thiazide combination for treatment of hypertensive children: a randomized double-blind, placebo-controlled trial.   Pediatr Nephrol. 2002;17(5):345-350. doi:10.1007/s00467-002-0851-0PubMedGoogle ScholarCrossref
47.
Li  JS, Berezny  K, Kilaru  R,  et al.  Is the extrapolated adult dose of fosinopril safe and effective in treating hypertensive children?   Hypertension. 2004;44(3):289-293. doi:10.1161/01.HYP.0000138069.68413.f0PubMedGoogle ScholarCrossref
48.
Wells  T, Frame  V, Soffer  B,  et al; Enalapril Pediatric Hypertension Collaborative Study Group.  A double-blind, placebo-controlled, dose-response study of the effectiveness and safety of enalapril for children with hypertension.   J Clin Pharmacol. 2002;42(8):870-880. doi:10.1177/009127002401102786PubMedGoogle ScholarCrossref
49.
Soffer  B, Zhang  Z, Miller  K, Vogt  BA, Shahinfar  S.  A double-blind, placebo-controlled, dose-response study of the effectiveness and safety of lisinopril for children with hypertension.   Am J Hypertens. 2003;16(10):795-800. doi:10.1016/S0895-7061(03)00900-2PubMedGoogle ScholarCrossref
50.
Shahinfar  S, Cano  F, Soffer  BA,  et al.  A double-blind, dose-response study of losartan in hypertensive children.   Am J Hypertens. 2005;18(2, pt 1):183-190. doi:10.1016/j.amjhyper.2004.09.009PubMedGoogle ScholarCrossref
51.
Hazan  L, Hernández Rodriguez  OA, Bhorat  AE, Miyazaki  K, Tao  B, Heyrman  R; Assessment of Efficacy and Safety of Olmesartan in Pediatric Hypertension Study Group.  A double-blind, dose-response study of the efficacy and safety of olmesartan medoxomil in children and adolescents with hypertension.   Hypertension. 2010;55(6):1323-1330. doi:10.1161/HYPERTENSIONAHA.109.147702PubMedGoogle ScholarCrossref
52.
Li  JS, Flynn  JT, Portman  R,  et al.  The efficacy and safety of the novel aldosterone antagonist eplerenone in children with hypertension: a randomized, double-blind, dose-response study.   J Pediatr. 2010;157(2):282-287. doi:10.1016/j.jpeds.2010.02.042PubMedGoogle ScholarCrossref
53.
Wells  T, Blumer  J, Meyers  KEC,  et al; Valsartan Pediatric Hypertension Study Group.  Effectiveness and safety of valsartan in children aged 6 to 16 years with hypertension.   J Clin Hypertens (Greenwich). 2011;13(5):357-365. doi:10.1111/j.1751-7176.2011.00432.xPubMedGoogle ScholarCrossref
54.
Flynn  JT, Newburger  JW, Daniels  SR,  et al; PATH-1 Investigators.  A randomized, placebo-controlled trial of amlodipine in children with hypertension.   J Pediatr. 2004;145(3):353-359. doi:10.1016/j.jpeds.2004.04.009PubMedGoogle ScholarCrossref
55.
Berenson  GS, Voors  AW, Webber  LS,  et al.  A model of intervention for prevention of early essential hypertension in the 1980s.   Hypertension. 1983;5(1):41-54. doi:10.1161/01.HYP.5.1.41PubMedGoogle ScholarCrossref
56.
Couch  SC, Saelens  BE, Levin  L, Dart  K, Falciglia  G, Daniels  SR.  The efficacy of a clinic-based behavioral nutrition intervention emphasizing a DASH-type diet for adolescents with elevated blood pressure.   J Pediatr. 2008;152(4):494-501. doi:10.1016/j.jpeds.2007.09.022PubMedGoogle ScholarCrossref
57.
Howe  PRC, Cobiac  L, Smith  RM.  Lack of effect of short-term changes in sodium intake on blood pressure in adolescent schoolchildren.   J Hypertens. 1991;9(2):181-186. doi:10.1097/00004872-199102000-00014PubMedGoogle ScholarCrossref
58.
Sinaiko  AR, Gomez-Marin  O, Prineas  RJ.  Effect of low sodium diet or potassium supplementation on adolescent blood pressure.   Hypertension. 1993;21(6, pt 2):989-994. doi:10.1161/01.hyp.21.6.989PubMedGoogle ScholarCrossref
59.
Burrello  J, Erhardt  EM, Saint-Hilary  G,  et al.  Pharmacological treatment of arterial hypertension in children and adolescents: a network meta-analysis.   Hypertension. 2018;72(2):306-313. doi:10.1161/HYPERTENSIONAHA.118.10862PubMedGoogle ScholarCrossref
60.
National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents.  The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents.   Pediatrics. 2004;114(2 suppl 4th report):555-576. PubMedGoogle ScholarCrossref
61.
Dwyer  T, Magnussen  CG, Schmidt  MD,  et al.  Decline in physical fitness from childhood to adulthood associated with increased obesity and insulin resistance in adults.   Diabetes Care. 2009;32(4):683-687. doi:10.2337/dc08-1638PubMedGoogle ScholarCrossref
62.
Ceponiene  I, Klumbiene  J, Tamuleviciute-Prasciene  E,  et al.  Associations between risk factors in childhood (12-13 years) and adulthood (48-49 years) and subclinical atherosclerosis: the Kaunas Cardiovascular Risk Cohort Study.   BMC Cardiovasc Disord. 2015;15(1):89. doi:10.1186/s12872-015-0087-0PubMedGoogle ScholarCrossref
63.
Whelton  PK, Carey  RM, Aronow  WS,  et al.  2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.   Circulation. 2018;138(17):e426-e483. doi:10.1161/cir.0000000000000597PubMedGoogle Scholar
64.
James  PA, Oparil  S, Carter  BL,  et al.  2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8).   JAMA. 2014;311(5):507-520. doi:10.1001/jama.2013.284427PubMedGoogle ScholarCrossref
65.
Berenson  GS, Shear  CL, Chiang  YK, Webber  LS, Voors  AW.  Combined low-dose medication and primary intervention over a 30-month period for sustained high blood pressure in childhood.   Am J Med Sci. 1990;299(2):79-86. doi:10.1097/00000441-199002000-00001PubMedGoogle ScholarCrossref
66.
Hanevold  C, Waller  J, Daniels  S, Portman  R, Sorof  J; International Pediatric Hypertension Association.  The effects of obesity, gender, and ethnic group on left ventricular hypertrophy and geometry in hypertensive children: a collaborative study of the International Pediatric Hypertension Association.   Pediatrics. 2004;113(2):328-333. doi:10.1542/peds.113.2.328PubMedGoogle ScholarCrossref
67.
Brady  TM, Fivush  B, Flynn  JT, Parekh  R.  Ability of blood pressure to predict left ventricular hypertrophy in children with primary hypertension.   J Pediatr. 2008;152(1):73-78. doi:10.1016/j.jpeds.2007.05.053PubMedGoogle ScholarCrossref
68.
Sinaiko  AR, Jacobs  DR  Jr, Woo  JG,  et al.  The International Childhood Cardiovascular Cohort (i3C) Consortium Outcomes Study of childhood cardiovascular risk factors and adult cardiovascular morbidity and mortality: design and recruitment.   Contemp Clin Trials. 2018;69:55-64. doi:10.1016/j.cct.2018.04.009PubMedGoogle ScholarCrossref
US Preventive Services Task Force
Evidence Report
November 10, 2020

Screening for Hypertension in Children and Adolescents: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force

Author Affiliations
  • 1Evidence-Based Practice Center, RTI International–University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
  • 2RTI International, Research Triangle Park, North Carolina
  • 3Department for Evidence-Based Medicine and Evaluation, Danube University, Krems, Austria
  • 4Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
JAMA. 2020;324(18):1884-1895. doi:10.1001/jama.2020.11119
Abstract

Importance  Childhood hypertension can result in adverse outcomes during adulthood; identifying and treating primary and secondary childhood hypertension may reduce such risks.

Objective  To update the evidence on screening and treatment of hypertension in childhood and adolescence for the US Preventive Services Task Force.

Data Sources  PubMed, Cochrane Library, International Pharmaceutical Abstracts, EMBASE, and trial registries through September 3, 2019; bibliographies from retrieved articles, experts, and surveillance of the literature through October 6, 2020.

Study Selection  Fair- or good-quality English-language studies evaluating diagnostic accuracy of blood pressure screening; cohort studies assessing the association of hypertension in childhood and adolescence with blood pressure or other intermediate outcomes in adulthood; randomized clinical trials (RCTs) or meta-analyses of pharmacological and lifestyle interventions.

Data Extraction and Synthesis  Two reviewers independently assessed titles/abstracts and full-text articles, extracted data, and assessed study quality; the evidence was synthesized qualitatively.

Main Outcomes and Measures  Sensitivity, specificity, and measures of association between childhood and adulthood blood pressure; reduction of childhood blood pressure; adverse effects of treatments.

Results  Forty-two studies from 43 publications were included (N>12 400). No studies evaluated the benefits or harms of screening and the effect of treating childhood hypertension on outcomes in adulthood. One study reported a sensitivity of 0.82 and a specificity of 0.70 for 2 office-based blood pressure measurements. Twenty observational studies suggested a significant association between childhood hypertension and abnormal blood pressure in adulthood (odds ratios, 1.1-4.5; risk ratios, 1.45-3.60; hazard ratios, 2.8-3.2). Thirteen placebo-controlled RCTs and 1 meta-analysis assessed reductions in systolic (SBP) and diastolic blood pressure from pharmacological treatments. Pooled reductions of SBP were −4.38 mm Hg (95% CI, −7.27 to −2.16) for angiotensin-converting enzyme inhibitors and −3.07 mm Hg (95% CI, −4.99 to −1.44) for angiotensin receptor blockers. Candesartan reduced SBP by −6.56 mm Hg (P < .001; n = 240). β-Blockers, calcium channel blockers, and mineralocorticoid receptor antagonists did not achieve significant reductions over 2 to 4 weeks. SBP was significantly reduced by exercise over 8 months (−4.9 mm Hg, P ≤ .05; n = 69), by dietary approaches to stop hypertension over 3 months (−2.2 mm Hg, P < .01; n = 57), and by a combination of drug treatment and lifestyle interventions over 6 months (−7.6 mm Hg; P < .001; n = 95). Low-salt diet did not achieve reductions of blood pressure.

Conclusions and Relevance  Observational studies indicate an association between hypertension in childhood and hypertension in adulthood. However, the evidence is inconclusive whether the diagnostic accuracy of blood pressure measurements is adequate for screening asymptomatic children and adolescents in primary care.

×