Effect of Intermediate-Dose vs Standard-Dose Prophylactic Anticoagulation on Thrombotic Events, Extracorporeal Membrane Oxygenation Treatment, or Mortality Among Patients With COVID-19 Admitted to the Intensive Care Unit: The INSPIRATION Randomized Clinical Trial | Critical Care Medicine | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.206.177.17. Please contact the publisher to request reinstatement.
1.
Ackermann  M, Verleden  SE, Kuehnel  M,  et al.  Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19.   N Engl J Med. 2020;383(2):120-128. doi:10.1056/NEJMoa2015432PubMedGoogle ScholarCrossref
2.
Wichmann  D, Sperhake  JP, Lütgehetmann  M,  et al.  Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study.   Ann Intern Med. 2020;173(4):268-277. doi:10.7326/M20-2003PubMedGoogle ScholarCrossref
3.
Libby  P, Lüscher  T.  COVID-19 is, in the end, an endothelial disease.   Eur Heart J. 2020;41(32):3038-3044. doi:10.1093/eurheartj/ehaa623PubMedGoogle ScholarCrossref
4.
Bikdeli  B, Madhavan  MV, Jimenez  D,  et al; Global COVID-19 Thrombosis Collaborative Group, Endorsed by the ISTH, NATF, ESVM, and the IUA, Supported by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function.  COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: jacc state-of-the-art review.   J Am Coll Cardiol. 2020;75(23):2950-2973. doi:10.1016/j.jacc.2020.04.031PubMedGoogle ScholarCrossref
5.
Bilaloglu  S, Aphinyanaphongs  Y, Jones  S, Iturrate  E, Hochman  J, Berger  JS.  Thrombosis in hospitalized patients with COVID-19 in a New York City health system.   JAMA. 2020;324(8):799-801. doi:10.1001/jama.2020.13372PubMedGoogle ScholarCrossref
6.
Jiménez  D, García-Sanchez  A, Rali  P,  et al.  Incidence of venous thromboembolism and bleeding among hospitalized patients with COVID-19: a systematic review and meta-analysis.   Chest. 2021;159(3):1182-1196. doi:10.1016/j.chest.2020.11.005PubMedGoogle ScholarCrossref
7.
Bikdeli  B, Madhavan  MV, Gupta  A,  et al; Global COVID-19 Thrombosis Collaborative Group.  Pharmacological agents targeting thromboinflammation in COVID-19: review and implications for future research.   Thromb Haemost. 2020;120(7):1004-1024. doi:10.1055/s-0040-1713152PubMedGoogle ScholarCrossref
8.
Paranjpe  I, Fuster  V, Lala  A,  et al.  Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19.   J Am Coll Cardiol. 2020;76(1):122-124. doi:10.1016/j.jacc.2020.05.001PubMedGoogle ScholarCrossref
9.
Al-Samkari  H, Gupta  S, Karp Leaf  R,  et al  Thrombosis, bleeding, and the effect of anticoagulation on survival in critically ill patients with COVID-19 in the United States.   Res Pract Thromb Haemost. 2020;4.Google Scholar
10.
Lemos  ACB, do Espírito Santo  DA, Salvetti  MC,  et al.  Therapeutic versus prophylactic anticoagulation for severe COVID-19: a randomized phase II clinical trial (HESACOVID).   Thromb Res. 2020;196:359-366. doi:10.1016/j.thromres.2020.09.026PubMedGoogle ScholarCrossref
11.
Bikdeli  B.  Anticoagulation in COVID-19: randomized trials should set the balance between excitement and evidence.   Thromb Res. 2020;196:638-640. doi:10.1016/j.thromres.2020.09.033PubMedGoogle ScholarCrossref
12.
Barnes  GD, Burnett  A, Allen  A,  et al.  Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum.   J Thromb Thrombolysis. 2020;50(1):72-81. doi:10.1007/s11239-020-02138-zPubMedGoogle ScholarCrossref
13.
Moores  LK, Tritschler  T, Brosnahan  S,  et al.  Prevention, diagnosis, and treatment of VTE in patients with coronavirus disease 2019: CHEST guideline and expert panel report.   Chest. 2020;158(3):1143-1163. doi:10.1016/j.chest.2020.05.559PubMedGoogle ScholarCrossref
14.
Ramacciotti  E, Macedo  AS, Biagioni  RB,  et al.  Evidence-based practical guidance for the antithrombotic management in patients with coronavirus disease (COVID-19) in 2020.   Clin Appl Thromb Hemost. 2020;26:1076029620936350. doi:10.1177/1076029620936350PubMedGoogle Scholar
15.
Cuker  A, Tseng  EK, Nieuwlaat  R,  et al.  American Society of Hematology 2021 guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19.   Blood Adv. 2021;5(3):872-888. doi:10.1182/bloodadvances.2020003763PubMedGoogle ScholarCrossref
16.
Bikdeli  B, Talasaz  AH, Rashidi  F,  et al.  Intermediate versus standard-dose prophylactic anticoagulation and statin therapy versus placebo in critically-ill patients with COVID-19: rationale and design of the INSPIRATION/INSPIRATION-S studies.   Thromb Res. 2020;196:382-394. doi:10.1016/j.thromres.2020.09.027PubMedGoogle ScholarCrossref
17.
Mehran  R, Rao  SV, Bhatt  DL,  et al.  Standardized bleeding definitions for cardiovascular clinical trials: a consensus report from the Bleeding Academic Research Consortium.   Circulation. 2011;123(23):2736-2747. doi:10.1161/CIRCULATIONAHA.110.009449PubMedGoogle ScholarCrossref
18.
Cook  D, Meade  M, Guyatt  G,  et al; PROTECT Investigators for the Canadian Critical Care Trials Group and the Australian and New Zealand Intensive Care Society Clinical Trials Group.  Dalteparin versus unfractionated heparin in critically ill patients.   N Engl J Med. 2011;364(14):1305-1314. doi:10.1056/NEJMoa1014475PubMedGoogle ScholarCrossref
19.
Eck  RJ, Bult  W, Wetterslev  J,  et al.  Intermediate dose low-molecular-weight heparin for thrombosis prophylaxis: systematic review with meta-analysis and trial sequential analysis.   Semin Thromb Hemost. 2019;45(8):810-824. doi:10.1055/s-0039-1696965PubMedGoogle ScholarCrossref
20.
Connors  JM, Levy  JH.  COVID-19 and its implications for thrombosis and anticoagulation.   Blood. 2020;135(23):2033-2040. doi:10.1182/blood.2020006000PubMedGoogle ScholarCrossref
21.
Levi  M, Thachil  J, Iba  T, Levy  JH.  Coagulation abnormalities and thrombosis in patients with COVID-19.   Lancet Haematol. 2020;7(6):e438-e440. doi:10.1016/S2352-3026(20)30145-9PubMedGoogle ScholarCrossref
22.
Piazza  G, Morrow  DA.  Diagnosis, management, and pathophysiology of arterial and venous thrombosis in COVID-19.   JAMA. 2020;324(24):2548-2549. doi:10.1001/jama.2020.23422PubMedGoogle ScholarCrossref
23.
Llitjos  JF, Leclerc  M, Chochois  C,  et al.  High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients.   J Thromb Haemost. 2020;18(7):1743-1746. doi:10.1111/jth.14869PubMedGoogle ScholarCrossref
24.
Al-Samkari  H, Karp Leaf  RS, Dzik  WH,  et al.  COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection.   Blood. 2020;136(4):489-500. doi:10.1182/blood.2020006520PubMedGoogle ScholarCrossref
25.
Klok  FA, Kruip  MJHA, van der Meer  NJM,  et al.  Incidence of thrombotic complications in critically ill ICU patients with COVID-19.   Thromb Res. 2020;191:145-147. doi:10.1016/j.thromres.2020.04.013PubMedGoogle ScholarCrossref
26.
Spyropoulos  AC.  The management of venous thromboembolism in hospitalized patients with COVID-19.   Blood Adv. 2020;4(16):4028. doi:10.1182/bloodadvances.2020002496PubMedGoogle ScholarCrossref
27.
NIH ACTIV trial of blood thinners pauses enrollment of critically ill COVID-19 patients. News release. National Institutes of Health. December 22, 2020. Accessed January 15, 2021. https://www.nih.gov/news-events/news-releases/nih-activ-trial-blood-thinners-pauses-enrollment-critically-ill-covid-19-patients
28.
Pannucci  CJ, Fleming  KI, Agarwal  J, Rockwell  WB, Prazak  AM, Momeni  A.  The impact of once- versus twice-daily enoxaparin prophylaxis on risk for venous thromboembolism and clinically relevant bleeding.   Plast Reconstr Surg. 2018;142(1):239-249. doi:10.1097/PRS.0000000000004517PubMedGoogle ScholarCrossref
29.
Yamakawa  K, Umemura  Y, Murao  S, Hayakawa  M, Fujimi  S.  Optimal timing and early intervention with anticoagulant therapy for sepsis-induced disseminated intravascular coagulation.   Clin Appl Thromb Hemost. 2019;25:1076029619835055. doi:10.1177/1076029619835055PubMedGoogle Scholar
30.
Cummings  MJ, Baldwin  MR, Abrams  D,  et al.  Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study.   Lancet. 2020;395(10239):1763-1770. doi:10.1016/S0140-6736(20)31189-2PubMedGoogle ScholarCrossref
31.
Grasselli  G, Zangrillo  A, Zanella  A,  et al; COVID-19 Lombardy ICU Network.  Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy.   JAMA. 2020;323(16):1574-1581. doi:10.1001/jama.2020.5394PubMedGoogle ScholarCrossref
32.
White  D, MacDonald  S, Bull  T,  et al.  Heparin resistance in COVID-19 patients in the intensive care unit.   J Thromb Thrombolysis. 2020;50(2):287-291. doi:10.1007/s11239-020-02145-0PubMedGoogle ScholarCrossref
33.
Talasaz AH, Sadeghipour P, Kakavand H, et al.  Antithrombotic therapy in COVID-19: systematic summary of ongoing or completed randomized trials.   J Am Coll Cardiol. Published online March 16, 2021. doi:10.1016/j.jacc.2021.02.035Google Scholar
34.
Piazza  G, Campia  U, Hurwitz  S,  et al.  Registry of arterial and venous thromboembolic complications in patients with COVID-19.   J Am Coll Cardiol. 2020;76(18):2060-2072. doi:10.1016/j.jacc.2020.08.070PubMedGoogle ScholarCrossref
35.
Hendren  NS, de Lemos  JA, Ayers  C,  et al.  Association of body mass index and age with morbidity and mortality in patients hospitalized with COVID-19: results from the American Heart Association COVID-19 Cardiovascular Disease Registry.   Circulation. 2021;143(2):135-144. doi:10.1161/CIRCULATIONAHA.120.051936PubMedGoogle ScholarCrossref
36.
Horby  P, Lim  WS, Emberson  JR,  et al; RECOVERY Collaborative Group.  Dexamethasone in hospitalized patients with Covid-19.   N Engl J Med. 2021;384(8):693-704. doi:10.1056/NEJMoa2021436PubMedGoogle ScholarCrossref
37.
Tomazini  BM, Maia  IS, Cavalcanti  AB,  et al; COALITION COVID-19 Brazil III Investigators.  Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: the CoDEX randomized clinical trial.   JAMA. 2020;324(13):1307-1316. doi:10.1001/jama.2020.17021PubMedGoogle ScholarCrossref
38.
Sterne  JAC, Murthy  S, Diaz  JV,  et al; WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group.  Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis.   JAMA. 2020;324(13):1330-1341. doi:10.1001/jama.2020.17023PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    March 18, 2021

    Effect of Intermediate-Dose vs Standard-Dose Prophylactic Anticoagulation on Thrombotic Events, Extracorporeal Membrane Oxygenation Treatment, or Mortality Among Patients With COVID-19 Admitted to the Intensive Care Unit: The INSPIRATION Randomized Clinical Trial

    INSPIRATION Investigators
    JAMA. Published online March 18, 2021. doi:10.1001/jama.2021.4152
    Key Points

    Question  What are the effects of intermediate-dose compared with standard-dose prophylactic anticoagulation in patients with COVID-19 admitted to the intensive care unit (ICU)?

    Findings  In this randomized clinical trial that included 562 patients with COVID-19 admitted to the ICU, the primary outcome (a composite of adjudicated venous or arterial thrombosis, treatment with extracorporeal membrane oxygenation, or mortality within 30 days) occurred in 45.7% of patients in the intermediate-dose prophylactic anticoagulation group and 44.1% of patients in the standard-dose prophylactic anticoagulation group, a difference that was not statistically significant (odds ratio, 1.06).

    Meaning  The results do not support routine empirical use of intermediate-dose prophylactic anticoagulation in unselected patients with COVID-19 admitted to the ICU.

    Abstract

    Importance  Thrombotic events are commonly reported in critically ill patients with COVID-19. Limited data exist to guide the intensity of antithrombotic prophylaxis.

    Objective  To evaluate the effects of intermediate-dose vs standard-dose prophylactic anticoagulation among patients with COVID-19 admitted to the intensive care unit (ICU).

    Design, Setting, and Participants  Multicenter randomized trial with a 2 × 2 factorial design performed in 10 academic centers in Iran comparing intermediate-dose vs standard-dose prophylactic anticoagulation (first hypothesis) and statin therapy vs matching placebo (second hypothesis; not reported in this article) among adult patients admitted to the ICU with COVID-19. Patients were recruited between July 29, 2020, and November 19, 2020. The final follow-up date for the 30-day primary outcome was December 19, 2020.

    Interventions  Intermediate-dose (enoxaparin, 1 mg/kg daily) (n = 276) vs standard prophylactic anticoagulation (enoxaparin, 40 mg daily) (n = 286), with modification according to body weight and creatinine clearance. The assigned treatments were planned to be continued until completion of 30-day follow-up.

    Main Outcomes and Measures  The primary efficacy outcome was a composite of venous or arterial thrombosis, treatment with extracorporeal membrane oxygenation, or mortality within 30 days, assessed in randomized patients who met the eligibility criteria and received at least 1 dose of the assigned treatment. Prespecified safety outcomes included major bleeding according to the Bleeding Academic Research Consortium (type 3 or 5 definition), powered for noninferiority (a noninferiority margin of 1.8 based on odds ratio), and severe thrombocytopenia (platelet count <20 ×103/µL). All outcomes were blindly adjudicated.

    Results  Among 600 randomized patients, 562 (93.7%) were included in the primary analysis (median [interquartile range] age, 62 [50-71] years; 237 [42.2%] women). The primary efficacy outcome occurred in 126 patients (45.7%) in the intermediate-dose group and 126 patients (44.1%) in the standard-dose prophylaxis group (absolute risk difference, 1.5% [95% CI, −6.6% to 9.8%]; odds ratio, 1.06 [95% CI, 0.76-1.48]; P = .70). Major bleeding occurred in 7 patients (2.5%) in the intermediate-dose group and 4 patients (1.4%) in the standard-dose prophylaxis group (risk difference, 1.1% [1-sided 97.5% CI, −∞ to 3.4%]; odds ratio, 1.83 [1-sided 97.5% CI, 0.00-5.93]), not meeting the noninferiority criteria (P for noninferiority >.99). Severe thrombocytopenia occurred only in patients assigned to the intermediate-dose group (6 vs 0 patients; risk difference, 2.2% [95% CI, 0.4%-3.8%]; P = .01).

    Conclusions and Relevance  Among patients admitted to the ICU with COVID-19, intermediate-dose prophylactic anticoagulation, compared with standard-dose prophylactic anticoagulation, did not result in a significant difference in the primary outcome of a composite of adjudicated venous or arterial thrombosis, treatment with extracorporeal membrane oxygenation, or mortality within 30 days. These results do not support the routine empirical use of intermediate-dose prophylactic anticoagulation in unselected patients admitted to the ICU with COVID-19.

    Trial Registration  ClinicalTrials.gov Identifier: NCT04486508

    ×