Screening for Hypertension in Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force | Cardiology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
National Center for Health Statistics.  Health, United States, 2017: With Special Feature on Mortality. Centers for Disease Control and Prevention; 2018.
2.
Benjamin  EJ, Muntner  P, Alonso  A,  et al; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee.  Heart disease and stroke statistics—2019 update: a report from the American Heart Association.   Circulation. 2019;139(10):e56-e528. doi:10.1161/CIR.0000000000000659PubMedGoogle ScholarCrossref
3.
Patel  SA, Winkel  M, Ali  MK, Narayan  KM, Mehta  NK.  Cardiovascular mortality associated with 5 leading risk factors: national and state preventable fractions estimated from survey data.   Ann Intern Med. 2015;163(4):245-253. doi:10.7326/M14-1753PubMedGoogle ScholarCrossref
4.
Patnode  CD, Evans  CV, Senger  CA, Redmond  N, Lin  JS.  Behavioral counseling to promote a healthful diet and physical activity for cardiovascular disease prevention in adults without known cardiovascular disease risk factors: updated evidence report and systematic review for the US Preventive Services Task Force.   JAMA. 2017;318(2):175-193. doi:10.1001/jama.2017.3303PubMedGoogle ScholarCrossref
5.
Graudal  NA, Hubeck-Graudal  T, Jurgens  G.  Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride.   Cochrane Database Syst Rev. 2017;4:CD004022. doi:10.1002/14651858.CD004022.pub4PubMedGoogle Scholar
6.
Rees  K, Dyakova  M, Wilson  N, Ward  K, Thorogood  M, Brunner  E.  Dietary advice for reducing cardiovascular risk.   Cochrane Database Syst Rev. 2013;(12):CD002128.PubMedGoogle Scholar
7.
Musini  VM, Gueyffier  F, Puil  L, Salzwedel  DM, Wright  JM.  Pharmacotherapy for hypertension in adults aged 18 to 59 years.   Cochrane Database Syst Rev. 2017;8:CD008276. doi:10.1002/14651858.CD008276.pub2PubMedGoogle Scholar
8.
Musini  VM, Tejani  AM, Bassett  K, Wright  JM.  Pharmacotherapy for hypertension in the elderly.   Cochrane Database Syst Rev. 2009;(4):CD000028.PubMedGoogle Scholar
9.
 Report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure: a cooperative study.   JAMA. 1977;237(3):255-261. doi:10.1001/jama.1977.03270300059008PubMedGoogle ScholarCrossref
10.
Siu  AL; US Preventive Services Task Force.  Screening for high blood pressure in adults: U.S. Preventive Services Task Force recommendation statement.   Ann Intern Med. 2015;163(10):778-786. doi:10.7326/M15-2223PubMedGoogle ScholarCrossref
11.
Guirguis-Blake  JM, Evans  CV, Webber  EM, Coppola  EL, Perdue  LA, Weyrich  MS.  Screening for Hypertension in Adults: A Systematic Evidence Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 197. Agency for Healthcare Research and Quality; 2021. AHRQ publication 20-05265-EF-1.
12.
Piper  MA, Evans  CV, Burda  BU, Margolis  KL, O’Connor  E, Whitlock  EP.  Diagnostic and predictive accuracy of blood pressure screening methods with consideration of rescreening intervals: a systematic review for the U.S. Preventive Services Task Force.   Ann Intern Med. 2015;162(3):192-204. doi:10.7326/M14-1539PubMedGoogle ScholarCrossref
13.
Roerecke  M, Kaczorowski  J, Myers  MG.  Comparing automated office blood pressure readings with other methods of blood pressure measurement for identifying patients with possible hypertension: a systematic review and meta-analysis.   JAMA Intern Med. 2019;179(3):351-362. doi:10.1001/jamainternmed.2018.6551PubMedGoogle ScholarCrossref
14.
Hodgkinson  J, Mant  J, Martin  U,  et al.  Relative effectiveness of clinic and home blood pressure monitoring compared with ambulatory blood pressure monitoring in diagnosis of hypertension: systematic review.   BMJ. 2011;342:d3621. doi:10.1136/bmj.d3621PubMedGoogle ScholarCrossref
15.
Melgarejo  JD, Maestre  GE, Thijs  L,  et al; International Database on Ambulatory Blood Pressure in Relation to Cardiovascular Outcomes (IDACO) Investigators.  Prevalence, treatment, and control rates of conventional and ambulatory hypertension across 10 populations in 3 continents.   Hypertension. 2017;70(1):50-58. doi:10.1161/HYPERTENSIONAHA.117.09188PubMedGoogle ScholarCrossref
16.
 Human Development Report 2016: Human Development Everyone. United Nations Development Programme; 2016.
17.
Yang  WY, Melgarejo  JD, Thijs  L,  et al; International Database on Ambulatory Blood Pressure in Relation to Cardiovascular Outcomes (IDACO) Investigators.  Association of office and ambulatory blood pressure with mortality and cardiovascular outcomes.   JAMA. 2019;322(5):409-420. doi:10.1001/jama.2019.9811PubMedGoogle ScholarCrossref
18.
Procedure Manual. US Preventive Services Task Force. Published 2018. Accessed March 10, 2021. https://uspreventiveservicestaskforce.org/uspstf/about-uspstf/methods-and-processes/procedure-manual
19.
Larkin  KT, Schauss  SL, Elnicki  DM.  Isolated clinic hypertension and normotension: false positives and false negatives in the assessment of hypertension.   Blood pressure monitoring. 1998;3:247-254.Google Scholar
20.
Hänninen  MR, Niiranen  TJ, Puukka  PJ, Jula  AM.  Comparison of home and ambulatory blood pressure measurement in the diagnosis of masked hypertension.   J Hypertens. 2010;28(4):709-714. doi:10.1097/HJH.0b013e3283369faaPubMedGoogle ScholarCrossref
21.
Berkman  N, Lohr  K, Ansari  M,  et al.  Grading the Strength of a Body of Evidence When Assessing Health Care Interventions for the Effective Health Care Program of the Agency for Healthcare Research and Quality: An Update: Methods Guide for Effectiveness and Comparative Effectiveness Reviews. Agency for Healthcare Research and Quality; 2014. AHRQ publication 10(14)-EHC063-EF.
22.
 Randomised controlled trial of treatment for mild hypertension: design and pilot trial: report of Medical Research Council Working Party on Mild to Moderate Hypertension.   BMJ. 1977;1(6074):1437-1440.Google ScholarCrossref
23.
Abdalla  M, Goldsmith  J, Muntner  P,  et al.  Is isolated nocturnal hypertension a reproducible phenotype?   Am J Hypertens. 2016;29(1):33-38. doi:10.1093/ajh/hpv058PubMedGoogle ScholarCrossref
24.
Ameling  EH, de Korte  DF, Man in ’t Veld  A.  Impact of diagnosis and treatment of hypertension on quality of life: a double-blind, randomized, placebo-controlled, cross-over study of betaxolol.   J Cardiovasc Pharmacol. 1991;18(5):752-760. doi:10.1097/00005344-199111000-00014PubMedGoogle ScholarCrossref
25.
Bayó  J, Cos  FX, Roca  C, Dalfó  A, Martín-Baranera  MM, Albert  B.  Home blood pressure self-monitoring: diagnostic performance in white-coat hypertension.   Blood Press Monit. 2006;11(2):47-52. doi:10.1097/01.mbp.0000200479.19046.94PubMedGoogle ScholarCrossref
26.
Cuspidi  C, Facchetti  R, Bombelli  M,  et al.  Risk of new-onset metabolic syndrome associated with white-coat and masked hypertension: data from a general population.   J Hypertens. 2018;36(9):1833-1839. doi:10.1097/HJH.0000000000001767PubMedGoogle ScholarCrossref
27.
de la Sierra  A, Vinyoles  E, Banegas  JR,  et al.  Short-term and long-term reproducibility of hypertension phenotypes obtained by office and ambulatory blood pressure measurements.   J Clin Hypertens (Greenwich). 2016;18(9):927-933. doi:10.1111/jch.12792PubMedGoogle ScholarCrossref
28.
de la Sierra  A, Vinyoles  E, Banegas  JR,  et al.  Prevalence and clinical characteristics of white-coat hypertension based on different definition criteria in untreated and treated patients.   J Hypertens. 2017;35(12):2388-2394. doi:10.1097/HJH.0000000000001493PubMedGoogle ScholarCrossref
29.
Diaz  KM, Veerabhadrappa  P, Brown  MD, Whited  MC, Dubbert  PM, Hickson  DA.  Prevalence, determinants, and clinical significance of masked hypertension in a population-based sample of African Americans: the Jackson Heart Study.   Am J Hypertens. 2015;28(7):900-908. doi:10.1093/ajh/hpu241PubMedGoogle ScholarCrossref
30.
Ernst  ME, Sezate  GS, Lin  W,  et al.  Indication-specific 6-h systolic blood pressure thresholds can approximate 24-h determination of blood pressure control.   J Hum Hypertens. 2011;25(4):250-255. doi:10.1038/jhh.2010.66PubMedGoogle ScholarCrossref
31.
Ernst  ME, Weber  CA, Dawson  JD,  et al.  How well does a shortened time interval characterize results of a full ambulatory blood pressure monitoring session?   J Clin Hypertens (Greenwich). 2008;10(6):431-435. doi:10.1111/j.1751-7176.2008.07784.xPubMedGoogle ScholarCrossref
32.
Fagard  RH, Van Den Broeke  C, De Cort  P.  Prognostic significance of blood pressure measured in the office, at home and during ambulatory monitoring in older patients in general practice.   J Hum Hypertens. 2005;19(10):801-807. doi:10.1038/sj.jhh.1001903PubMedGoogle ScholarCrossref
33.
Fogari  R, Corradi  L, Zoppi  A, Lusardi  P, Poletti  L.  Repeated office blood pressure controls reduce the prevalence of white-coat hypertension and detect a group of white-coat normotensive patients.   Blood Press Monit. 1996;1(1):51-54.PubMedGoogle Scholar
34.
Gerc  V, Favrat  B, Brunner  HR, Burnier  M.  Is nurse-measured blood pressure a valid substitute for ambulatory blood pressure monitoring?   Blood Press Monit. 2000;5(4):203-209. doi:10.1097/00126097-200008000-00002PubMedGoogle ScholarCrossref
35.
Gill  P, Haque  MS, Martin  U,  et al.  Measurement of blood pressure for the diagnosis and management of hypertension in different ethnic groups: one size fits all.   BMC Cardiovasc Disord. 2017;17(1):55. doi:10.1186/s12872-017-0491-8PubMedGoogle ScholarCrossref
36.
Gosse  P, Dauphinot  V, Roche  F, Pichot  V, Celle  S, Barthelemy  JC.  Prevalence of clinical and ambulatory hypertension in a population of 65-year-olds: the PROOF study.   J Clin Hypertens (Greenwich). 2010;12(3):160-165. doi:10.1111/j.1751-7176.2009.00235.xPubMedGoogle ScholarCrossref
37.
Gourlay  SG, McNeil  JJ, Marriner  T, Farish  SJ, Prijatmoko  D, McGrath  BP.  Discordance of mercury sphygmomanometer and ambulatory blood pressure measurements for the detection of untreated hypertension in a population study.   J Hum Hypertens. 1993;7(5):467-472.PubMedGoogle Scholar
38.
Hansen  TW, Jeppesen  J, Rasmussen  S, Ibsen  H, Torp-Pedersen  C.  Ambulatory blood pressure monitoring and risk of cardiovascular disease: a population based study.   Am J Hypertens. 2006;19(3):243-250. doi:10.1016/j.amjhyper.2005.09.018PubMedGoogle ScholarCrossref
39.
Haynes  RB, Sackett  DL, Taylor  DW, Gibson  ES, Johnson  AL.  Increased absenteeism from work after detection and labeling of hypertensive patients.   N Engl J Med. 1978;299(14):741-744. doi:10.1056/NEJM197810052991403PubMedGoogle ScholarCrossref
40.
Høegholm  A, Kristensen  KS, Madsen  NH, Svendsen  TL.  White coat hypertension diagnosed by 24-h ambulatory monitoring: examination of 159 newly diagnosed hypertensive patients.   Am J Hypertens. 1992;5(2):64-70. doi:10.1093/ajh/5.2.64PubMedGoogle ScholarCrossref
41.
Hoegholm  A, Kristensen  KS, Madsen  NH, Svendsen  TL.  The frequency of white coat hypertension among patients with newly diagnosed hypertension.   Cardiovasc Rev Rep. 1994;15:55-61.Google Scholar
42.
Hoshide  S, Ishikawa  J, Eguchi  K, Ojima  T, Shimada  K, Kario  K.  Masked nocturnal hypertension and target organ damage in hypertensives with well-controlled self-measured home blood pressure.   Hypertens Res. 2007;30(2):143-149.Google ScholarCrossref
43.
Hozawa  A, Ohkubo  T, Kikuya  M,  et al.  Blood pressure control assessed by home, ambulatory and conventional blood pressure measurements in the Japanese general population: the Ohasama study.   Hypertens Res. 2002;25(1):57-63. doi:10.1291/hypres.25.57PubMedGoogle ScholarCrossref
44.
Husain  A, Lin  FC, Tuttle  LA, Olsson  E, Viera  AJ.  The reproducibility of racial differences in ambulatory blood pressure phenotypes and measurements.   Am J Hypertens. 2017;30(10):961-967. doi:10.1093/ajh/hpx079PubMedGoogle ScholarCrossref
45.
Imai  Y, Tsuji  I, Nagai  K,  et al  Ambulatory blood pressure monitoring in evaluating the prevalence of hypertension in adults in Ohasama, a rural Japanese community.   Hypertens Res. 1996;19(3):207-212. doi:10.1291/hypres.19.207PubMedGoogle ScholarCrossref
46.
Ishikawa  J, Hoshide  S, Eguchi  K,  et al.  Masked hypertension defined by ambulatory blood pressure monitoring is associated with an increased serum glucose level and urinary albumin-creatinine ratio.   J Clin Hypertens (Greenwich). 2010;12(8):578-587. doi:10.1111/j.1751-7176.2010.00286.xPubMedGoogle ScholarCrossref
47.
Kaczorowski  J, Chambers  LW, Dolovich  L,  et al.  Improving cardiovascular health at population level: 39 community cluster randomised trial of Cardiovascular Health Awareness Program (CHAP).   BMJ. 2011;342:d442. doi:10.1136/bmj.d442PubMedGoogle ScholarCrossref
48.
Kaczorowski  J, Chambers  LW, Karwalajtys  T,  et al.  Cardiovascular Health Awareness Program (CHAP): a community cluster-randomised trial among elderly Canadians.   Prev Med. 2008;46(6):537-544. doi:10.1016/j.ypmed.2008.02.005PubMedGoogle ScholarCrossref
49.
Kanno  A, Metoki  H, Kikuya  M,  et al.  Usefulness of assessing masked and white-coat hypertension by ambulatory blood pressure monitoring for determining prevalent risk of chronic kidney disease: the Ohasama study.   Hypertens Res. 2010;33(11):1192-1198. doi:10.1038/hr.2010.139PubMedGoogle ScholarCrossref
50.
Karwalajtys  T, Kaczorowski  J, Chambers  LW,  et al.  Community mobilization, participation, and blood pressure status in a Cardiovascular Health Awareness Program in Ontario.   Am J Health Promot. 2013;27(4):252-261. doi:10.4278/ajhp.101221-QUAL-408PubMedGoogle ScholarCrossref
51.
Kim  S, Park  JJ, Lee  SA,  et al.  Diagnostic accuracy of manual office blood pressure measurement in ambulatory hypertensive patients in Korea.   Korean J Intern Med. 2018;33(1):113-120. doi:10.3904/kjim.2016.161PubMedGoogle ScholarCrossref
52.
Kotsis  V, Stabouli  S, Toumanidis  S,  et al.  Target organ damage in “white coat hypertension” and “masked hypertension.”   Am J Hypertens. 2008;21(4):393-399. doi:10.1038/ajh.2008.15PubMedGoogle ScholarCrossref
53.
Kuwajima  I, Nishinaga  M, Kanamaru  A.  The accuracy and clinical performance of a new compact ambulatory blood pressure monitoring device, the ES-H531.   Am J Hypertens. 1998;11(11, pt 1):1328-1333. doi:10.1016/S0895-7061(98)00155-1PubMedGoogle ScholarCrossref
54.
Lyamina  NP, Smith  ML, Lyamina  SV,  et al.  Pressor response to 30-s breathhold: a predictor of masked hypertension.   Blood Press. 2012;21(6):372-376. doi:10.3109/08037051.2012.694213PubMedGoogle ScholarCrossref
55.
Mancia  G, Facchetti  R, Bombelli  M, Grassi  G, Sega  R.  Long-term risk of mortality associated with selective and combined elevation in office, home, and ambulatory blood pressure.   Hypertension. 2006;47(5):846-853. doi:10.1161/01.HYP.0000215363.69793.bbPubMedGoogle ScholarCrossref
56.
Mancia  G, Sega  R, Bravi  C,  et al.  Ambulatory blood pressure normality: results from the PAMELA study.   J Hypertens. 1995;13(12, pt 1):1377-1390. doi:10.1097/00004872-199512000-00003PubMedGoogle ScholarCrossref
57.
Manios  ED, Koroboki  EA, Tsivgoulis  GK,  et al.  Factors influencing white-coat effect.   Am J Hypertens. 2008;21(2):153-158. doi:10.1038/ajh.2007.43PubMedGoogle ScholarCrossref
58.
Mann  AH.  The psychological effect of a screening programme and clinical trial for hypertension upon the participants.   Psychol Med. 1977;7(3):431-438. doi:10.1017/S0033291700004402PubMedGoogle ScholarCrossref
59.
Manning  G, Rushton  L, Donnelly  R, Millar-Craig  MW.  Variability of diurnal changes in ambulatory blood pressure and nocturnal dipping status in untreated hypertensive and normotensive subjects.   Am J Hypertens. 2000;13(9):1035-1038. doi:10.1016/S0895-7061(00)00261-2PubMedGoogle ScholarCrossref
60.
Manning  G, Vijan  SG, Millar-Craig  MW.  Does perception of sleep quality affect diurnal variation of blood pressure and heart rate during 24Hr blood pressure monitoring?   Clin Sci (Lond). 1992;83(suppl 27):22P-23P. doi:10.1042/cs083022PcGoogle ScholarCrossref
61.
Martin  U, Haque  MS, Wood  S,  et al.  Ethnicity and differences between clinic and ambulatory blood pressure measurements.   Am J Hypertens. 2015;28(6):729-738. doi:10.1093/ajh/hpu211PubMedGoogle ScholarCrossref
62.
McMullan  CJ, Hickson  DA, Taylor  HA, Forman  JP.  Prospective analysis of the association of ambulatory blood pressure characteristics with incident chronic kidney disease.   J Hypertens. 2015;33(9):1939-1946. doi:10.1097/HJH.0000000000000638PubMedGoogle ScholarCrossref
63.
Muntner  P, Lewis  CE, Diaz  KM,  et al.  Racial differences in abnormal ambulatory blood pressure monitoring measures: results from the Coronary Artery Risk Development in Young Adults (CARDIA) study.   Am J Hypertens. 2015;28(5):640-648. doi:10.1093/ajh/hpu193PubMedGoogle ScholarCrossref
64.
Nasothimiou  EG, Karpettas  N, Dafni  MG, Stergiou  GS.  Patients’ preference for ambulatory versus home blood pressure monitoring.   J Hum Hypertens. 2014;28(4):224-229. doi:10.1038/jhh.2013.104PubMedGoogle ScholarCrossref
65.
Nasothimiou  EG, Tzamouranis  D, Rarra  V, Roussias  LG, Stergiou  GS.  Diagnostic accuracy of home vs. ambulatory blood pressure monitoring in untreated and treated hypertension.   Hypertens Res. 2012;35(7):750-755. doi:10.1038/hr.2012.19PubMedGoogle ScholarCrossref
66.
Nunan  D, Thompson  M, Heneghan  CJ, Perera  R, McManus  RJ, Ward  A.  Accuracy of self-monitored blood pressure for diagnosing hypertension in primary care.   J Hypertens. 2015;33(4):755-762. doi:10.1097/HJH.0000000000000489PubMedGoogle ScholarCrossref
67.
O’Flynn  AM, Curtin  RJ, Perry  IJ, Kearney  PM.  Hypertension prevalence, awareness, treatment, and control: should 24-hour ambulatory blood pressure monitoring be the tool of choice?   J Clin Hypertens (Greenwich). 2016;18(7):697-702. doi:10.1111/jch.12737PubMedGoogle ScholarCrossref
68.
Oe  Y, Shimbo  D, Ishikawa  J,  et al.  Alterations in diastolic function in masked hypertension: findings from the masked hypertension study.   Am J Hypertens. 2013;26(6):808-815. doi:10.1093/ajh/hpt021PubMedGoogle ScholarCrossref
69.
Park  JS, Rhee  MY, Namgung  J,  et al.  Comparison of optimal diagnostic thresholds of hypertension with home blood pressure monitoring and 24-hour ambulatory blood pressure monitoring.   Am J Hypertens. 2017;30(12):1170-1176. doi:10.1093/ajh/hpx115PubMedGoogle ScholarCrossref
70.
Poudel  B, Booth  JN  III, Sakhuja  S,  et al.  Prevalence of ambulatory blood pressure phenotypes using the 2017 American College of Cardiology/American Heart Association blood pressure guideline thresholds: data from the Coronary Artery Risk Development in Young Adults study.   J Hypertens. 2019;37(7):1401-1410. doi:10.1097/HJH.0000000000002055PubMedGoogle ScholarCrossref
71.
Presta  V, Figliuzzi  I, D’Agostino  M,  et al.  Nocturnal blood pressure patterns and cardiovascular outcomes in patients with masked hypertension.   J Clin Hypertens (Greenwich). 2018;20(9):1238-1246. doi:10.1111/jch.13361PubMedGoogle ScholarCrossref
72.
Rhee  MY, Kim  JY, Kim  JH,  et al.  Optimal schedule of home blood-pressure measurements for the diagnosis of hypertension.   Hypertens Res. 2018;41(9):738-747. doi:10.1038/s41440-018-0069-6PubMedGoogle ScholarCrossref
73.
Rudd  P, Price  MG, Graham  LE,  et al.  Consequences of worksite hypertension screening: changes in absenteeism.   Hypertension. 1987;10(4):425-436. doi:10.1161/01.HYP.10.4.425PubMedGoogle ScholarCrossref
74.
Salazar  MR, Espeche  WG, Stavile  RN,  et al.  Could self-measured office blood pressure be a hypertension screening tool for limited-resources settings?   J Hum Hypertens. 2018;32(6):415-422. doi:10.1038/s41371-018-0057-yPubMedGoogle ScholarCrossref
75.
Scuteri  A, Morrell  CH, Orru’  M,  et al.  Gender specific profiles of white coat and masked hypertension impacts on arterial structure and function in the SardiNIA study.   Int J Cardiol. 2016;217:92-98. doi:10.1016/j.ijcard.2016.04.172PubMedGoogle ScholarCrossref
76.
Scuteri  A, Najjar  SS, Orru’  M,  et al.  Age- and gender-specific awareness, treatment, and control of cardiovascular risk factors and subclinical vascular lesions in a founder population: the SardiNIA Study.   Nutr Metab Cardiovasc Dis. 2009;19(8):532-541. doi:10.1016/j.numecd.2008.11.004PubMedGoogle ScholarCrossref
77.
Sehestedt  T, Jeppesen  J, Hansen  TW,  et al.  Can ambulatory blood pressure measurements substitute assessment of subclinical cardiovascular damage?   J Hypertens. 2012;30(3):513-521. doi:10.1097/HJH.0b013e32834f6f60PubMedGoogle ScholarCrossref
78.
Selenta  C, Hogan  BE, Linden  W.  How often do office blood pressure measurements fail to identify true hypertension? an exploration of white-coat normotension.   Arch Fam Med. 2000;9(6):533-540. doi:10.1001/archfami.9.6.533PubMedGoogle ScholarCrossref
79.
Sherwood  A, Hill  LK, Blumenthal  JA, Hinderliter  AL.  The effects of ambulatory blood pressure monitoring on sleep quality in men and women with hypertension: dipper vs. nondipper and race differences.   Am J Hypertens. 2019;32(1):54-60. doi:10.1093/ajh/hpy138PubMedGoogle ScholarCrossref
80.
Shimbo  D, Newman  JD, Schwartz  JE.  Masked hypertension and prehypertension: diagnostic overlap and interrelationships with left ventricular mass: the Masked Hypertension Study.   Am J Hypertens. 2012;25(6):664-671. doi:10.1038/ajh.2012.15PubMedGoogle ScholarCrossref
81.
Shin  J, Park  SH, Kim  JH,  et al.  Discordance between ambulatory versus clinic blood pressure according to global cardiovascular risk group.   Korean J Intern Med. 2015;30(5):610-619. doi:10.3904/kjim.2015.30.5.610PubMedGoogle ScholarCrossref
82.
Spruill  TM, Feltheimer  SD, Harlapur  M,  et al.  Are there consequences of labeling patients with prehypertension? an experimental study of effects on blood pressure and quality of life.   J Psychosom Res. 2013;74(5):433-438. doi:10.1016/j.jpsychores.2013.01.009PubMedGoogle ScholarCrossref
83.
Stergiou  GS, Salgami  EV, Tzamouranis  DG, Roussias  LG.  Masked hypertension assessed by ambulatory blood pressure versus home blood pressure monitoring: is it the same phenomenon?   Am J Hypertens. 2005;18(6):772-778. doi:10.1016/j.amjhyper.2005.01.003PubMedGoogle ScholarCrossref
84.
Stergiou  GS, Skeva  II, Baibas  NM, Kalkana  CB, Roussias  LG, Mountokalakis  TD.  Diagnosis of hypertension using home or ambulatory blood pressure monitoring: comparison with the conventional strategy based on repeated clinic blood pressure measurements.   J Hypertens. 2000;18(12):1745-1751. doi:10.1097/00004872-200018120-00007PubMedGoogle ScholarCrossref
85.
Taylor  DW, Haynes  RB, Sackett  DL, Gibson  ES.  Longterm follow-up of absenteeism among working men following the detection and treatment of their hypertension.   Clin Invest Med. 1981;4(3-4):173-177.PubMedGoogle Scholar
86.
Terracciano  A, Scuteri  A, Strait  J,  et al.  Are personality traits associated with white-coat and masked hypertension?   J Hypertens. 2014;32(10):1987-1992. doi:10.1097/HJH.0000000000000289PubMedGoogle ScholarCrossref
87.
Thomas  SJ, Booth  JN  III, Bromfield  SG,  et al.  Clinic and ambulatory blood pressure in a population-based sample of African Americans: the Jackson Heart Study.   J Am Soc Hypertens. 2017;11(4):204-212.e5. doi:10.1016/j.jash.2017.02.001PubMedGoogle ScholarCrossref
88.
Tocci  G, Presta  V, Figliuzzi  I,  et al.  Prevalence and clinical outcomes of white-coat and masked hypertension: analysis of a large ambulatory blood pressure database.   J Clin Hypertens (Greenwich). 2018;20(2):297-305. doi:10.1111/jch.13181PubMedGoogle ScholarCrossref
89.
Tompson  AC, Ward  AM, McManus  RJ,  et al.  Acceptability and psychological impact of out-of-office monitoring to diagnose hypertension: an evaluation of survey data from primary care patients.   Br J Gen Pract. 2019;69(683):e389-e397. doi:10.3399/bjgp19X702221PubMedGoogle ScholarCrossref
90.
Ungar  A, Pepe  G, Monami  M,  et al.  Isolated ambulatory hypertension is common in outpatients referred to a hypertension centre.   J Hum Hypertens. 2004;18(12):897-903. doi:10.1038/sj.jhh.1001756PubMedGoogle ScholarCrossref
91.
Verdecchia  P, Angeli  F, Borgioni  C, Gattobigio  R, Reboldi  G.  Ambulatory blood pressure and cardiovascular outcome in relation to perceived sleep deprivation.   Hypertension. 2007;49(4):777-783. doi:10.1161/01.HYP.0000258215.26755.20PubMedGoogle ScholarCrossref
92.
Viera  AJ, Lin  FC, Tuttle  LA,  et al.  Reproducibility of masked hypertension among adults 30 years or older.   Blood Press Monit. 2014;19(4):208-215. doi:10.1097/MBP.0000000000000054PubMedGoogle ScholarCrossref
93.
Viera  AJ, Lingley  K, Esserman  D.  Effects of labeling patients as prehypertensive.   J Am Board Fam Med. 2010;23(5):571-583. doi:10.3122/jabfm.2010.05.100047PubMedGoogle ScholarCrossref
94.
Viera  AJ, Lingley  K, Hinderliter  AL.  Tolerability of the Oscar 2 ambulatory blood pressure monitor among research participants: a cross-sectional repeated measures study.   BMC Med Res Methodol. 2011;11:59. doi:10.1186/1471-2288-11-59PubMedGoogle ScholarCrossref
95.
Wei  FF, Zhang  ZY, Thijs  L,  et al.  Conventional and ambulatory blood pressure as predictors of retinal arteriolar narrowing.   Hypertension. 2016;68(2):511-520. doi:10.1161/HYPERTENSIONAHA.116.07523PubMedGoogle ScholarCrossref
96.
Wojciechowska  W, Stolarz-Skrzypek  K, Olszanecka  A,  et al.  Subclinical arterial and cardiac damage in white-coat and masked hypertension.   Blood Press. 2016;25(4):249-256. doi:10.3109/08037051.2016.1150563PubMedGoogle ScholarCrossref
97.
Wood  S, Martin  U, Gill  P,  et al.  Blood pressure in different ethnic groups (BP-Eth): a mixed methods study.   BMJ Open. 2012;2(6):2012. doi:10.1136/bmjopen-2012-001598PubMedGoogle ScholarCrossref
98.
Ye  C, Foster  G, Kaczorowski  J,  et al.  The impact of a Cardiovascular Health Awareness Program (CHAP) on reducing blood pressure: a prospective cohort study.   BMC Public Health. 2013;13:1230. doi:10.1186/1471-2458-13-1230PubMedGoogle ScholarCrossref
99.
Zabludowski  JR, Rosenfeld  JB.  Evaluation of clinic blood pressure measurements: assessment by daytime ambulatory blood pressure monitoring.   Isr J Med Sci. 1992;28(6):345-348.PubMedGoogle Scholar
100.
Zakopoulos  NA, Kotsis  VT, Pitiriga  VCh,  et al.  White-coat effect in normotension and hypertension.   Blood Press Monit. 2002;7(5):271-276. doi:10.1097/00126097-200210000-00004PubMedGoogle ScholarCrossref
101.
Whelton  PK, Carey  RM, Aronow  WS,  et al.  2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.   Hypertension. 2018;71(6):e13-e115.PubMedGoogle Scholar
102.
Czernichow  S, Zanchetti  A, Turnbull  F,  et al; Blood Pressure Lowering Treatment Trialists’ Collaboration.  The effects of blood pressure reduction and of different blood pressure-lowering regimens on major cardiovascular events according to baseline blood pressure: meta-analysis of randomized trials.   J Hypertens. 2011;29(1):4-16. doi:10.1097/HJH.0b013e32834000bePubMedGoogle ScholarCrossref
103.
Blood Pressure Lowering Treatment Trialists’ Collaboration.  Blood pressure-lowering treatment based on cardiovascular risk: a meta-analysis of individual patient data.   Lancet. 2014;384(9943):591-598. doi:10.1016/S0140-6736(14)61212-5PubMedGoogle ScholarCrossref
104.
Xie  X, Atkins  E, Lv  J,  et al.  Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis.   Lancet. 2016;387(10017):435-443. doi:10.1016/S0140-6736(15)00805-3PubMedGoogle ScholarCrossref
105.
Ettehad  D, Emdin  CA, Kiran  A,  et al.  Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis.   Lancet. 2016;387(10022):957-967. doi:10.1016/S0140-6736(15)01225-8PubMedGoogle ScholarCrossref
106.
Bundy  JD, Li  C, Stuchlik  P,  et al.  Systolic blood pressure reduction and risk of cardiovascular disease and mortality: a systematic review and network meta-analysis.   JAMA Cardiol. 2017;2(7):775-781. doi:10.1001/jamacardio.2017.1421PubMedGoogle ScholarCrossref
107.
Brunström  M, Carlberg  B.  Association of blood pressure lowering with mortality and cardiovascular disease across blood pressure levels: a systematic review and meta-analysis.   JAMA Intern Med. 2018;178(1):28-36. doi:10.1001/jamainternmed.2017.6015PubMedGoogle ScholarCrossref
108.
Hypertension in adults: diagnosis and management. National Institute for Health and Care Excellence. Published August 28, 2019. Accessed March 19, 2021. https://www.nice.org.uk/guidance/ng136
109.
Reino-Gonzalez  S, Pita-Fernández  S, Seoane-Pillado  T, López-Calviño  B, Pértega Díaz  S.  How in-office and ambulatory BP monitoring compare: a systematic review and meta-analysis.   J Fam Pract. 2017;66(1):E5-E12.PubMedGoogle Scholar
110.
Omboni  S, Aristizabal  D, De la Sierra  A,  et al; ARTEMIS (international Ambulatory blood pressure Registry: TEleMonitoring of hypertension and cardiovascular rISk project) Investigators.  Hypertension types defined by clinic and ambulatory blood pressure in 14 143 patients referred to hypertension clinics worldwide: data from the ARTEMIS study.   J Hypertens. 2016;34(11):2187-2198. doi:10.1097/HJH.0000000000001074PubMedGoogle ScholarCrossref
111.
Briasoulis  A, Androulakis  E, Palla  M, Papageorgiou  N, Tousoulis  D.  White-coat hypertension and cardiovascular events: a meta-analysis.   J Hypertens. 2016;34(4):593-599. doi:10.1097/HJH.0000000000000832PubMedGoogle ScholarCrossref
112.
Huang  Y, Huang  W, Mai  W,  et al.  White-coat hypertension is a risk factor for cardiovascular diseases and total mortality.   J Hypertens. 2017;35(4):677-688. doi:10.1097/HJH.0000000000001226PubMedGoogle ScholarCrossref
113.
Pierdomenico  SD, Cuccurullo  F.  Prognostic value of white-coat and masked hypertension diagnosed by ambulatory monitoring in initially untreated subjects: an updated meta analysis.   Am J Hypertens. 2011;24(1):52-58. doi:10.1038/ajh.2010.203PubMedGoogle ScholarCrossref
114.
Asayama  K, Thijs  L, Li  Y,  et al; International Database on Ambulatory Blood Pressure in Relation to Cardiovascular Outcomes (IDACO) Investigators.  Setting thresholds to varying blood pressure monitoring intervals differentially affects risk estimates associated with white-coat and masked hypertension in the population.   Hypertension. 2014;64(5):935-942. doi:10.1161/HYPERTENSIONAHA.114.03614PubMedGoogle ScholarCrossref
115.
Cohen  JB, Lotito  MJ, Trivedi  UK, Denker  MG, Cohen  DL, Townsend  RR.  Cardiovascular events and mortality in white coat hypertension: a systematic review and meta-analysis.   Ann Intern Med. 2019;170(12):853-862. doi:10.7326/M19-0223PubMedGoogle ScholarCrossref
116.
Shimbo  D, Muntner  P.  Should out-of-office monitoring be performed for detecting white coat hypertension?   Ann Intern Med. 2019;170(12):890-892. doi:10.7326/M19-1134PubMedGoogle ScholarCrossref
117.
Fagard  RH, Staessen  JA, Thijs  L,  et al; Systolic Hypertension in Europe (Syst-Eur) Trial Investigators.  Response to antihypertensive therapy in older patients with sustained and nonsustained systolic hypertension.   Circulation. 2000;102(10):1139-1144. doi:10.1161/01.CIR.102.10.1139PubMedGoogle ScholarCrossref
118.
Beckett  NS, Peters  R, Fletcher  AE,  et al; HYVET Study Group.  Treatment of hypertension in patients 80 years of age or older.   N Engl J Med. 2008;358(18):1887-1898. doi:10.1056/NEJMoa0801369PubMedGoogle ScholarCrossref
119.
Bulpitt  CJ, Beckett  N, Peters  R,  et al.  Does white coat hypertension require treatment over age 80? results of the hypertension in the very elderly trial ambulatory blood pressure side project.   Hypertension. 2013;61(1):89-94. doi:10.1161/HYPERTENSIONAHA.112.191791PubMedGoogle ScholarCrossref
120.
Myers  MG, Cloutier  L, Gelfer  M, Padwal  RS, Kaczorowski  J.  Blood pressure measurement in the post-SPRINT Era: a Canadian perspective.   Hypertension. 2016;68(1):e1-e3. doi:10.1161/HYPERTENSIONAHA.116.07598PubMedGoogle ScholarCrossref
121.
Jegatheswaran  J, Ruzicka  M, Hiremath  S, Edwards  C.  Are automated blood pressure monitors comparable to ambulatory blood pressure monitors? a systematic review and meta-analysis.   Can J Cardiol. 2017;33(5):644-652. doi:10.1016/j.cjca.2017.01.020PubMedGoogle ScholarCrossref
122.
Pappaccogli  M, Di Monaco  S, Perlo  E,  et al.  Comparison of automated office blood pressure with office and out-off-office measurement techniques.   Hypertension. 2019;73(2):481-490. doi:10.1161/HYPERTENSIONAHA.118.12079PubMedGoogle ScholarCrossref
123.
Herrett  E, Gadd  S, Jackson  R,  et al.  Eligibility and subsequent burden of cardiovascular disease of four strategies for blood pressure-lowering treatment: a retrospective cohort study.   Lancet. 2019;394(10199):663-671. doi:10.1016/S0140-6736(19)31359-5PubMedGoogle ScholarCrossref
124.
Anstey  DE, Booth  JN  III, Abdalla  M,  et al.  Predicted atherosclerotic cardiovascular disease risk and masked hypertension among Blacks in the Jackson Heart Study.   Circ Cardiovasc Qual Outcomes. 2017;10(7):e003421. doi:10.1161/CIRCOUTCOMES.116.003421PubMedGoogle Scholar
125.
Booth  JN  III, Muntner  P, Diaz  KM,  et al.  Evaluation of criteria to detect masked hypertension.   J Clin Hypertens (Greenwich). 2016;18(11):1086-1094. doi:10.1111/jch.12830PubMedGoogle ScholarCrossref
126.
Green  BB, Anderson  ML, Campbell  J,  et al.  Blood pressure checks and diagnosing hypertension (BP-CHECK): Design and methods of a randomized controlled diagnostic study comparing clinic, home, kiosk, and 24-hour ambulatory BP monitoring.   Contemp Clin Trials. 2019;79:1-13. doi:10.1016/j.cct.2019.01.003PubMedGoogle ScholarCrossref
127.
Omboni  S, Kario  K, Bakris  G, Parati  G.  Effect of antihypertensive treatment on 24-h blood pressure variability: pooled individual data analysis of ambulatory blood pressure monitoring studies based on olmesartan mono or combination treatment.   J Hypertens. 2018;36(4):720-733. doi:10.1097/HJH.0000000000001608PubMedGoogle ScholarCrossref
128.
Webb  AJ, Fischer  U, Mehta  Z, Rothwell  PM.  Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: a systematic review and meta-analysis.   Lancet. 2010;375(9718):906-915. doi:10.1016/S0140-6736(10)60235-8PubMedGoogle ScholarCrossref
129.
Piper  MA, Evans  CV, Burda  BU,  et al.  Screening for High Blood Pressure in Adults: A Systematic Evidence Review for the U.S. Preventive Services Task Force. Agency for Healthcare Research and Quality; 2014. Report 13-05194-EF-1.
130.
Shimbo  D, Abdalla  M, Falzon  L, Townsend  RR, Muntner  P.  Studies comparing ambulatory blood pressure and home blood pressure on cardiovascular disease and mortality outcomes: a systematic review.   J Am Soc Hypertens. 2016;10(3):224-234.Google ScholarCrossref
Views 5,910
Citations 0
US Preventive Services Task Force
Evidence Report
April 27, 2021

Screening for Hypertension in Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force

Author Affiliations
  • 1Department of Family Medicine, University of Washington, Tacoma
  • 2Kaiser Permanente Evidence-based Practice Center, Center for Health Research, Kaiser Permanente, Portland, Oregon
  • 3Center for Healthcare Policy and Research, University of California, Davis, Sacramento
JAMA. 2021;325(16):1657-1669. doi:10.1001/jama.2020.21669
Abstract

Importance  Hypertension is a major risk factor for cardiovascular disease and can be modified through lifestyle and pharmacological interventions to reduce cardiovascular events and mortality.

Objective  To systematically review the benefits and harms of screening and confirmatory blood pressure measurements in adults, to inform the US Preventive Services Task Force.

Data Sources  MEDLINE, PubMed, Cochrane Collaboration Central Registry of Controlled Trials, and CINAHL; surveillance through March 26, 2021.

Study Selection  Randomized clinical trials (RCTs) and nonrandomized controlled intervention studies for effectiveness of screening; accuracy studies for screening and confirmatory measurements (ambulatory blood pressure monitoring as the reference standard); RCTs and nonrandomized controlled intervention studies and observational studies for harms of screening and confirmation.

Data Extraction and Synthesis  Independent critical appraisal and data abstraction; meta-analyses and qualitative syntheses.

Main Outcomes and Measures  Mortality; cardiovascular events; quality of life; sensitivity, specificity, positive and negative predictive values; harms of screening.

Results  A total of 52 studies (N = 215 534) were identified in this systematic review. One cluster RCT (n = 140 642) of a multicomponent intervention including hypertension screening reported fewer annual cardiovascular-related hospital admissions for cardiovascular disease in the intervention group compared with the control group (difference, 3.02 per 1000 people; rate ratio, 0.91 [95% CI, 0.86-0.97]). Meta-analysis of 15 studies (n = 11 309) of initial office-based blood pressure screening showed a pooled sensitivity of 0.54 (95% CI, 0.37-0.70) and specificity of 0.90 (95% CI, 0.84-0.95), with considerable clinical and statistical heterogeneity. Eighteen studies (n = 57 128) of various confirmatory blood pressure measurement modalities were heterogeneous. Meta-analysis of 8 office-based confirmation studies (n = 53 183) showed a pooled sensitivity of 0.80 (95% CI, 0.68-0.88) and specificity of 0.55 (95% CI, 0.42-0.66). Meta-analysis of 4 home-based confirmation studies (n = 1001) showed a pooled sensitivity of 0.84 (95% CI, 0.76-0.90) and a specificity of 0.60 (95% CI, 0.48-0.71). Thirteen studies (n = 5150) suggested that screening was associated with no decrement in quality of life or psychological distress; evidence on absenteeism was mixed. Ambulatory blood pressure measurement was associated with temporary sleep disturbance and bruising.

Conclusions and Relevance  Screening using office-based blood pressure measurement had major accuracy limitations, including misdiagnosis; however, direct harms of measurement were minimal. Research is needed to determine optimal screening and confirmatory algorithms for clinical practice.

×